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a b s t r a c t

We consider a FitzHugh–Nagumo reaction–diffusion type system (FHN). The dynamics of
the reaction part induces a unique repulsive stationary point (0, 0) and a unique attractive
limit cycle. After a description of the asymptotic behaviour of the FHN system,we deal with
the synchronization and control analysis of N coupled FHN systems.
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1. Introduction

In 1952, after experiences on the squid giant axon, Hodgkin and Huxley proposed the first neuron model (see for
example, [1–5]),

C
dV
dt

= −ḡKn4(V − VK ) − ḡNam3h(V − VNa) − ḡL(V − VL) + I

dm
dt

= αm(V )(1 − m) − βm(V )m

dn
dt

= αn(V )(1 − n) − βn(V )n

dh
dt

= αh(V )(1 − h) − βh(V )h

where,

V represents the membrane potential;
I represents an external applied current;
m, n and h, varying between 0 and 1, represent respectively the sodium activation, the sodium inactivation and the
potassium activation. They determine the membrane permeability with respect to the associated ion;
C is the membrane capacitance;
ḡK , ḡNa and ḡL represent the maximal conductance of the membrane respectively for the potassium, sodium and leakage
(mainly carried by chlorure ions) current;
VK , VNa and VL represent the Nernst equilibrium potential for potassium, sodium and leakage current. The α’s and β ’s
are functions of V , they represent the transfer rates, and have been experimentally determined by Hodgkin and Huxley.
Thus, the Hodgkin–Huxley model gives a description of the main ionic fluxes across the neuron membrane creating the
nervous signal. In 1961, FitzHugh proposed a 2Dmodel that reproduces excitability and oscillatory features found in the
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Fig. 1. Solutions of system (1).

Hodgkin–Huxley model; see [6]. It is a modification of the well-known Van der Pol model, and has been initially called,
the Bonhoeffer–van der Pol (BVP) model,

xt = c(F(x) + y + z)

yt =
1
c
(x − a + by)

with,

wt =
dw
dt

,

and where F is a cubic function, a, b > 0, z corresponds to a stimulus intensity.
In the same paper [6], FitzHugh showed that the quantities u = V − 36m, w = 0.5(n − h) obtained from the

Hodgkin–Huxley model evolve like the variables x and y of the BVP model. In 1962, Nagumo et al. proposed an electronic
circuit whose behaviour is modelled by the BVP model; see [3]. The BVP model is now called the FitzHugh–Nagumo model.
Another way to reduce the Hodgkin–Huxley to the FitzHugh–Nagumo model is to use properties of the Hodgkin–Huxley
model and set, h = 0.85− n andm(V ) =

αm(V )

αm(V )+βm(V )
, then approximate the nullclines by a cubic and a straight line; see for

example [2]. Thus, we consider here the following model of the FitzHugh–Nagumo type,
ϵut = f (u) − v
vt = u − δv

(1)

where

f (u) = −u3
+ 3u and ϵ > 0, δ > 0 are small parameters.

In this case, all the solutions of system (1) different from (0, 0) evolve towards the unique attractive limit cycle (see Fig. 1
and for example [7], in the limit case δ = 0).

Based on model (1), we study a reaction–diffusion system of FitzHugh–Nagumo type (FHN) (see also [8]),
ϵut = f (u) − v + du1u
vt = u − δv + dv1v

(2)

with u = u(x, t), v = v(x, t), on a smooth bounded domainΩ ⊂ Rn with du, dv > 0 andwithNeumann zero flux conditions
on the boundary Γ of Ω ,

∂u
∂ν

=
∂v

∂ν
= 0.

If the solutions of system (1) are well-known, what can we expect about the asymptotic behaviour of solutions of system
(2)? This is the aim of the first part of Section 2, in which we also provide sufficient conditions under which the solutions go
to (0, 0). In the second part of this section, we extend the obtained result for N coupled systems of FHN type, N = 1, 2, . . .
and give results on synchronization phenomenon in the last section of this paper.
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2. Analytical results on the space temporal behaviour of N coupled systems of FHN type

This section deals with the asymptotic behaviour of the solutions of N coupled systems of FHN type and mainly with the
space homogeneous characteristic or pattern formation.

2.1. One system of FHN type

Our concern here, is the asymptotic behaviour of solutions of system (2) when those of system (1) are known. Such a
question may be found, for example, in [9]. Using these techniques, one can prove the following result.

Theorem 1. Let λ be the smallest non zero eigenvalue of the Laplacian operator with zero flux Neumann boundary conditions. If,

3 − λdu < 0 (3)

then,

lim
t→+∞

(∥u − ū∥L2(Ω) + ∥v − v̄∥L2(Ω)) = 0 (4)

where,

ū(t) =


Ω
u(x, t)dx
|Ω|

, v̄ =


Ω

v(x, t)dx
|Ω|

and where ū, v̄ are solutions of the following system,
ϵūt = f (ū) − v̄ + g(t)
v̄t = ū − δv̄

(5)

with g(t) → 0 with exponential rate when t goes to +∞.

This means that, asymptotically, the solutions are space homogeneous, and for each x ∈ Ω , solutions of system (2) are
solutions of system (1) which,

(i) either evolve around the limit cycle of (1),
(ii) or evolve towards (0, 0). (6)

Remark 1. Let us recall (see [9]) that the eigenvalue λ increases when the size of Ω decreases. This means that condition
(3) is satisfied when the size of Ω is small or the diffusion coefficients du, dv are large.

Proof of Theorem 1. Let φ(t) =
1
2 (ϵ∥∇u∥2

L2(Ω)
+ ∥∇v∥

2
L2(Ω)

); then,

φ̇ =


Ω

(ϵ∇u∇ut + ∇v∇vt)

=


Ω

(∇u∇(f (u) − v + du1u) + ∇v∇(u − δv + dv1v))

=


Ω

(f ′(u)|∇u|2 − δ|∇v|
2
− du(1u)2 − dv(1v)2)

≤


Ω

3|∇u|2 − λdu


Ω

|∇u|2 − δ|∇v|
2
− λdv


Ω

|∇v|
2

≤ (3 − λdu)


Ω

|∇u|2 − (λdv + δ)


Ω

|∇v|
2.

Now, since, λdu > 3 we have,

φ̇ ≤ −2min


λdu − 3
ϵ

, λdv + δ


φ

thus,

φ(t) ≤ φ(0)e−c1t

where,

c1 = 2min


λdu − 3
ϵ

, λdv + δ


.
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Furthermore,

∥u − ū∥2
L2(Ω)

+ ∥v − v̄∥
2
L2(Ω)

≤
1
λ

(∥∇u∥2
(L2(Ω))n

+ ∥∇v∥
2(L2(Ω))n) ≤

2
λϵ

φ(t)

which implies (4). In the remaining of the proof, we show that, ū et v̄ are solutions of (5). We have,ϵūt =
1
Ω


Ω

f (u) − v̄

v̄t = ū − v̄

thus, ϵūt =
1
Ω


Ω

(f (u) − f (ū)) + f (ū) − v̄

v̄t = ū − δv̄

that is,
ϵūt = g(t) + f (ū) − v̄
v̄t = ū − δv̄

where,

g(t) =
1

|Ω|


Ω

(f (u) − f (ū)).

But,

|g(t)| =

 1
|Ω|


Ω

( f (u) − f (ū))


≤
M
|Ω|


Ω

|u − ū|

≤
M

|Ω|
1
2
∥u − ū∥L2(Ω)

where,

M = sup
t∈R+

|f ′(ū)|

since from a result in [7], we know that (u, v) ∈ L∞(Ω) × L∞(Ω), one can also see [10], which completes the proof. �

The following proposition gives a sufficient condition to the occurrence of the asymptotic behaviour (ii) given by (6).

Proposition 1. If condition (3) of Theorem 1 is satisfied and if,
Ω

u(x, 0)dx =


Ω

v(x, 0)dx =


Ω

f (u(x, 0))dx = 0, (7a)

and

∀t ≥ 0,


Ω

f (u(x, t))dx = 0 (7b)

then,

lim
t→+∞

(∥u∥L2(Ω) + ∥v∥L2(Ω)) = 0.

Proof. By integrating system (2) and dividing by |Ω|, we have,
ϵ

∂

∂t
ū =

1
|Ω|


Ω

f (u) − v̄

∂

∂t
v̄ = ū − δv̄

(8)
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Fig. 2. Space homogeneous and periodic-time asymptotic behaviour of system (2) for almost initial conditions, with parameter values given by (9),
(a) initial condition u(x, 0), (b) asymptotic behaviour u(x, 200).
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Fig. 3. Mirror asymptotic behaviour of system (2) for particular initial conditions near the set of functions satisfying (7a), with parameter values given
by (9), (a) initial condition u(x, 0), (b) asymptotic behaviour u(x, 200).

since 
Ω

1udx =


Ω

1vdx = 0,

and

(ū(t), v̄(t)) =


Ω
u(x, t)dx
|Ω|

,


Ω

v(x, t)dx
|Ω|


.

Thus, due to condition (7), we obtain, that (0, 0) is the unique solution of Eq. (8).
Then, the result follows obviously from application of Theorem 1. �

If condition (3) is satisfied, Theorem 1 gives a comprehensive description of the asymptotic behaviour. Either, the
solutions of system (2) evolve towards solutions of kind (ii) given by (6), that is space homogeneous solution (0, 0), and for
this, (7) provides a sufficient condition, either solutions evolve toward solutions of kind (i) given by (6), that is the asymptotic
behaviour is space homogeneous and time-periodic. Now, we consider the case where condition (3) is not satisfied and
perform numerical simulations to analyse the asymptotic behaviour of solutions. We use the following parameter values,

Ω = [0, 100] × [0, 100] ⊂ R2

ϵ = 0.1
δ = 0.001
du = dv = 1.

(9)

We observe that, if (7) is not satisfied, the system still evolves like solutions of kind (ii) given by (6). For instance, Fig. 2 shows
such a behaviour in the case where the initial conditions u(x, 0), v(x, 0) follow a uniform law on the interval [0, 1] for all
x = (x1, x2) ∈ Ω . This figure and all the following have been obtained, using an explicit finite difference scheme, with C++

language, and with a time step discretization equal to 0.01 and space step discretization equal to 1.
While, if condition (7) is satisfied, our numerical simulations show special patterns. Indeed, Fig. 3 shows amirror solution

of system (2) for particular initial conditions satisfying (7a). Likewise Figs. 4 and 5, show a spiral and a multiple spiral
solutions of system (2) for particular initial conditions satisfying (7a).

Under the same conditions, as those used for Figs. 3–5, if we choose initial conditions following a uniform law on [−1, 1]
for all x ∈ Ω , that is, near the set of functions satisfying condition (7a), our numerical simulations show amore complicated
asymptotic behaviour as done in Fig. 6.

Remark 2. Let us remark that wave propagation and pattern formation are of great interest in understanding the behaviour
of lot of systems and in particular the brain or cardiac dynamics. For example, in [11], and references therein cited, formation
of spiral patterns have been experimentally shown in neocortex.
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Fig. 4. Spiral asymptotic behaviour of system (2) for particular initial conditions near the set of functions satisfying (7a), with parameter values given by
(9), (a) initial condition u(x, 0), (b) asymptotic behaviour u(x, 200).
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Fig. 5. Multiple spirals solution asymptotic behaviour of system (2) for particular initial conditions near the set of functions satisfying (7a), with parameter
values given by (9), (a) initial condition u(x, 0), (b) asymptotic behaviour u(x, 200).
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Fig. 6. Solution asymptotic behaviour of system (2) for particular random initial conditions near the set of functions satisfying (7a), with parameter values
given by (9), (a) initial condition u(x, 0), (b) asymptotic behaviour u(x, 200).

2.2. Coupling N systems of FHN type

We can extend these results to N coupled systems of FHN type. Let us consider the following system,

ϵu1t = f (u1) − v1 + du11u1
v1t = u1 − δ1v1 + dv11v1
...
ϵuit = f (ui) − vi + dui1ui + αi(ui−1 − ui)
vit = ui − δivi + dvi1vi + βi(vi−1 − vi)
...
ϵuNt = f (uN) − vN + duN 1uN + αN(uN−1 − uN)
vNt = uN − δNvN + dvN 1vN + βN(vN−1 − vN)

(10)

where βi ≥ 0, for i = 2, . . . ,N , and with zero flux boundary Neumann conditions. Then, if αi = 0, i = 2, . . . ,N , we have
the following result which can be also easily proved when αi ≠ 0,

Theorem 2. Let λ be the smallest non zero eigenvalue of the Laplacian operator, with zero flux Neumann boundary conditions.
Assume that,

3 − λdui < 0 ∀i ∈ 1, . . . ,N; (11)
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then,

lim
t→+∞

N
i=1

(∥ui − ūi∥L2(Ω) + ∥vi − v̄i∥L2(Ω)) = 0, (12)

where,

ūi(t) =


Ω
ui(x, t)dx
|Ω|

, v̄i =


Ω

vi(x, t)dx
|Ω|

, ∀i ∈ 1, . . . ,N

with (ūi, v̄i) satisfying,
ϵūit = f (ūi) − v̄i + gi(t)
v̄it = ūi − δiv̄i + βi(v̄i−1 − v̄i)

(13)

and where, gi(t) → 0 when t → +∞ with exponential rate decay.

Proof. It comes from an induction argument, by using similar techniques as those given in the proof of Theorem 1. More
precisely, let,

φi =
1
2


Ω

(ϵ|∇ui|
2
+ |∇vi|

2),

by algebraic computations we obtain,

φ̇i ≤ (3 − λdui)


Ω

|∇ui|
2
−


λdvi + δi +

βi

2


Ω

|∇vi|
2
+

βi

2


Ω

|∇vi−1|
2

≤ (3 − λdui)


Ω

|∇ui|
2
−


λdvi + δi +

βi

2


Ω

|∇vi|
2
+

βi

2
Ki−1e−ci−1t

where Ki−1, ci−1 are positive constants.
This yields,

φi(t) ≤ Kie−cit .

The remaining of the proof is similar as one of Theorem 1. �

Similarly, one can easily extend Proposition 1.

Proposition 2. If condition (11) of Theorem 2 are satisfied, and if,
Ω

ui(x, 0)dx =


Ω

vi(x, 0)dx = 0,

and

∀t ≥ 0,


Ω

f (ui(x, t))dx = 0

then,

lim
t→+∞

N
i=1

(∥ui∥L2(Ω) + ∥vi∥L2(Ω)) = 0. (14)

Proof. Similar to the proof of Proposition 1. �

3. Synchronization

Synchronization phenomenon has been widely studied, mainly for ordinary or delay differential equations. However, for
partial differential equations, only few results exist; see for example [12–14].

3.1. General result for coupled FHN systems

Definition 1. Let Si = (ui, vi). We say that Si and Sj synchronize if,

lim
t→+∞

(∥ui − uj∥L2(Ω) + ∥vi − vj∥L2(Ω)) = 0.
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The quantity,

(∥ui − uj∥
2
L2(Ω)

+ ∥vi − vj∥
2
L2(Ω)

)
1
2

is called the norm of synchronization error between Si and Sj. Let S = (S1, S2, . . . , SN). We say that S synchronize if,

lim
t→+∞

N−1
i=1

(∥ui − ui+1∥L2(Ω) + ∥vi − vi+1∥L2(Ω)) = 0.

The quantity,
N−1
i=1

(∥ui − ui+1∥
2
L2(Ω)

+ ∥vi − vi+1∥
2
L2(Ω)

)

 1
2

is called the norm of synchronization error of S.

Let us consider system (10) with dui = duj , dvi = dvj and δi = δj = δ ∀i, j ∈ 1, . . . ,N; then we have the following result.

Theorem 3. Assume that βi ≥ 0, i = 2, . . . ,N. If,

αi > 3, i = 2, . . . ,N,

then the system S = ((u1, v1), (u2, v2), . . . , (uN , vN)) synchronize.

Proof. Let,

φi(t) =
1
2


Ω

(ϵ(ui − ui−1)
2
+ (vi − vi−1)

2).

Our proof is based on an induction idea; thus, we first consider the system (u2, v2). By derivating φ2 and using the Green
formula, we obtain,

φ̇2(t) ≤


Ω

((f (u2) − f (u1) − α2(u2 − u1))(u2 − u1) − (δ + β2)(v2 − v1)
2)dx

≤


Ω


f ′(u1) − α2 +

f ′′(u1)

2
(u2 − u1) − (u2 − u1)

2


(u2 − u1)
2
− (δ + β2)(v2 − v1)

2


,

≤


Ω


f ′(u1) − α2 +

(f ′′(u1))
2

16


(u2 − u1)

2
− (δ + β2)(v2 − v1)

2


since for all real b, c ,

−x2 + bx + c ≤
b2

4
+ c.

This yields,

φ̇2(t) ≤


Ω


3 −

3
4
u2
1 − α2


(u2 − u1)

2
− (δ + β2)(v2 − v1)

2


.

Since, α2 > 3, we obtain,

φ2(t) ≤ φ2(0)e−c2t ,

where c2 is a positive constant. The remaining of the proof follows by induction and using the same technique as in
Theorem 2. �

3.2. Numerical simulations

Now, we consider system (10) for N = 2 or 3 and dui = dvi = 1, δi = 0.001, ∀i ∈ 1, . . . ,N , that are two or three
coupled FHN systems. Moreover, we set αi = 0, choose βi > 0, ∀i ∈ 1, . . . ,N , and fix ϵ = 0.1. First of all, let us consider
two coupled FHN systems,

ϵu1t = f (u1) − v1 + 1u1
v1t = u1 − δv1 + 1v1
ϵu2t = f (u2) − v2 + 1u2
v2t = u2 − δv2 + 1v2 + β2(v1 − v2).

(15)



B. Ambrosio, M.A. Aziz-Alaoui / Computers and Mathematics with Applications ( ) – 9

100
90
80
70
60
50
40
30
20
10
0

X
2

100
90
80
70
60
50
40
30
20
10
0

X
2

100
90
80
70
60
50
40
30
20
10
0

X
2

X1

0 10 20 30 40 50 60 70 80 90 100

X1

0 10 20 30 40 50 60 70 80 90 100

X1

0 10 20 30 40 50 60 70 80 90 100

2

1.5

1

0.5

0

-0.5

-1

-1.5

-2

2

1.5

1

0.5

0

-0.5

-1

-1.5

-2

2

1.5

1

0.5

0

-0.5

-1

-1.5

-2

a b c

Fig. 7. Synchronization of two systems of type FHN for δ = 0.001 and ϵ = 0.1. Isovalues, of u2(x, t) at fixed time t = 200 and respectively for the coupling
strength (a) β2 = 0.15, (b) β2 = 0.15441558 and (c) β2 = 0.15441559.
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coupling strength (a) β2 = β3 = 0.23, (b) β2 = β3 = 0.24.

Our numerical simulations (see Figs. 7 and 8) show that system (15) synchronize for a coupling strength β2 belonging to the
interval [0.15441558, 0.15441559]. In this figure, the initial conditions are u1(x, 0) = v1(x, 0) = 1 and u2(x, 0), v2(x, 0)
particular functions leading to the spiral pattern formation as done in Fig. 4.

Now, we consider three coupled FHN systems,
ϵu1t = f (u1) − v1 + 1u1
v1t = u1 − δv1 + 1v1
ϵu2t = f (u2) − v2 + 1u2
v2t = u2 − δv2 + 1v2 + β2(v1 − v2)
ϵu3t = f (u3) − v3 + 1u3
v3t = u3 − δv3 + 1v3 + β3(v2 − v3).

(16)

Our numerical simulations (see Figs. 9 and 10) show that system (16) synchronize for a coupling strength β2 = β3 belonging
to the interval [0.23, 0.24]. In this figure, the initial conditions are u1(x, 0) = v1(x, 0) = 1 and (u2(x, 0), v2(x, 0)) =

(u3(x, 0), v3(x, 0)) particular functions leading to the spiral pattern formation as done in Fig. 4.

4. Conclusion

In this paper, we have studied a reaction–diffusion FitzHugh–Nagumo type system. A natural question was how the
asymptotic behaviour of the PDE was related to one of the ODE. By using techniques from existing works we have
comprehensively responded to this question in case where a condition on the Laplacian operator was satisfied. In particular,
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Fig. 10. Synchronization of three systems of type FHN for δ = 0.001 and ϵ = 0.1. The norm of synchronization error between S2 and S3 given by
Definition 1 on the interval of time [0, 200] for the coupling strength respectively (a) β2 = β3 = 0.23, (b) β2 = β3 = 0.24.

this condition is verified if the domain has a small size or if the diffusion coefficients are large. We also exhibited a
condition that allows the formation of special spacial time-periodic patterns. These patterns have been observed in brain or
cardiac dynamics. We then extended our results to N coupled FHN systems, and studied a synchronization phenomenon.
In neuroscience context, this can be interpreted in terms of control. Particular neurons or external signals could be used to
control the behaviour of other ones. Several open questions and further work on FHN systems are in progress and left to
forthcoming papers.
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