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The active control of the unstable synchronization manifold in a shift-invariant ring of N mutu-
ally coupled chaotic oscillators is investigated. After deriving the bifurcation structures and
chaotic states in the single oscillator, we find the regime of coupling parameters leading to sta-
ble and unstable synchronization phenomena in the ring, using the Master stability function
approach with the transverse Lyapunov exponents. The active control technique is applied on
the mutually coupled chaotic systems to suppress unstable synchronization states. We derive
the range of control gain parameters which leads to a successful control and the stability of the
control design. The effects of the amplitude of the parametric perturbations on the stability
boundaries of the controlled unstable synchronization process are also studied.
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1. Introduction

Synchronization of mutually coupled nonlinear
oscillators in the regular and chaotic states has been
investigated for a long time by many researchers.
This is due to the fact that synchronization is fre-
quent in nature and can explain many phenomena
in biology, chemistry, physics with various applica-
tions in engineering and communication [Pecorra
et al., 1997; Nakata et al., 1998; Miyakawa &
Yamada, 2001; Strogatz & Stewat, 1993; Kuramoto,
1984; Reimann et al., 1999]. In this spirit, the
emergence of collective and synchronized dynam-
ics in large networks of coupled units has also been

investigated since the beginning of the nineties in
different contexts and in a variety of fields, ranging
from biology and ecology [Vannucchi & Boccaletti,
2004; Hansel & Sompolinsky, 1992; Pasemann,
1999], to semiconductor lasers [Winful & Rahman,
1990; Li & Erneux, 1993, 1994; Otsuka et al.,
2000], to electronic circuits [Jankowski et al., 1995;
Filatrella et al., 2001]. In particular, synchroniza-
tion of mutually coupled systems is one of the most
intensively investigated topics in nonlinear science
[Heagy et al., 1994, 1995; Chen & Zhou, 2006].

A crucial issue in the study of synchronization
of mutually coupled systems is the assessment of
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the stability of the synchronization process. As most
of the practical implementations of such a process
require to have stable synchronization regimes for
all values of the coupling parameters, it is important
to introduce strategies to suppress unstable syn-
chronization. One possibility that has recently been
proposed consists in coupling each unit to an exter-
nal control force with the aim of stabilizing the syn-
chronization manifold [Nana Nbendjo & Yamapi,
2007].

We consider in this Letter the stability of
the controlled synchronization manifold in a ring
of mutually coupled chaotic systems. Our aim is
to derive the range of control gain parameters
which leads to successful control and the sta-
bility of the control design. After the onset of
chaos states in the uncoupled driven oscillator,
we begin by the derivation of different dynami-
cal states which appear in the mutually coupled
chaotic systems without control. For this aim, we
use the Master stability function approach to derive
the variation of the transverse Lyapunov expo-
nents versus the coupling coefficient. The para-
metric active control technique is then applied to
the mutually coupled systems to suppress unde-
sired behavior such as unstable synchronization
or to find the de-synchronization phenomena. The
effects of the control or gain parameters in the
control process and the amplitude of the paramet-
ric perturbations on the stable control domain are
derived, and the results are shown in the stability
diagram.

The Letter is organized as follows. In the next
section we describe a ring of N mutually cou-
pled self-sustained electrical systems and derive
the equations of motion. After presenting various
bifurcation structures in the single oscillator in
Sec. 3, the theory for the stability of the syn-
chronous solution is given in Sec. 4 (master sta-
bility function approach). Attention is focused on
the numerics of the stability analysis of the syn-
chronization process of a shift-invariant ring of
mutually coupled chaotic systems, and the types
of behavior which appear on the shift-invariant
ring. In Sec. 5, after presenting the model under
the parametric active control, we analyze the
stability of the control process using the Mas-
ter stability function approach. The effects of
the control parameters and the parametric per-
turbations on the synchronization manifold are
derived. The paper ends with a short concluding
section.

2. Description of Mutually Coupled
Systems

The electrical model shown in Fig. 1 is a shift-
invariant ring of N mutually coupling identical
self-excited electrical systems. Each self-excited sys-
tem (see Fig. 2) consists of a capacitor C, an induc-
tor L and a nonlinear resistor NLR, all connected in
series. Two types of nonlinear components are con-
sidered: the voltage of the condenser is a nonlinear
function of the instantaneous electrical charge qν ,
which for the νth unit is expressed as

V ν
c =

1
C0

qν + a3q
3
ν , (1)

where C0 is the linear value of C and a3 is
a nonlinear coefficient depending on the type of
the capacitor in use. This is typical of nonlin-
ear reactance components such as varactor diodes
widely used in many areas of electrical engineer-
ing to design for instance parametric amplifiers,
up-converters, mixers, low-power microwave oscil-
lators, etc. [Oksasoglou & Vavrim, 1994]. The
current–voltage characteristics of a resistor for the
νth unit is also defined as

V ν
R0

= R0i0

[
−
(

iν
i0

)
+

(
iν
i0

)3
]

, (2)

where R0 and i0 are respectively, the normaliza-
tion resistance and current, iν the value of current
corresponding to the limit resistor voltage. In this
case, the model has the property to exhibit self-
excited oscillations. This is due to the fact that the
model incorporates through its nonlinear resistance
a dissipative mechanism to damp oscillations that
grow too large, and is also a source of energy to
pump up those that become too small. The pres-
ence of such nonlinear resistors in each electrical
system confers to the mechanism of self-sustained
oscillations. The coupling between the N identical
self-sustained electrical models is realized through
a capacitor Cm (high-pass coupling). When the N
self-sustained electrical systems are interconnected
as in Fig. 1, the Kirchhoff law of the voltage and
current enables to find that the kth self-sustained
electrical system is described by the following
equations

Vk − Vk+1 = Vself , (3)

and

Ik−1 − Ik = Iself = Cm
dVk

dτ1
, (4)
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Fig. 1. A ring of mutually coupled self-sustained electrical systems.

(a)

(b)

Fig. 2. (a) Schema of each electrical unit; (b) Alternative schema of a unit including the capacitors to ground at each end,
which makes the unit forced self-exciting.
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which leads to

Vk =
1

Cm
(qk−1 − qk) (5)

Substituting Eq. (4) into Eq. (5) yields

Vself =
1

Cm
(qk−1 − qk) − 1

Cm
(qk − qk+1). (6)

It is found that the ring of mutually coupled self-
sustained electrical oscillators is described as

L
d2qν

dτ2
1

− R0

[
1 − 1

i20

(
dqν

dτ1

)2
]

dqν

dτ1
+

qν

C0
+ a3q

3
ν

= ν0 cos Ωτ1 +
1

Cm
(qν+1 − 2qν + qν−1),

ν = 1, 2, . . . , N (7)

with the following dimensionless variables

xν =
qν

q0
, t = ωeτ1,

and

α0 =
q2
0w

2
e

i20
, ω2

e =
1

LC0
, µ =

R0

Lωe
, β =

a3q
2
0

Lω2
e

,

K =
C0

Cm
, E0 =

v0

Lq0ω2
e

, ω =
Ω
ωe

.

Equation (7) yields the following set of coupled
nondimensional differential equations

ẍν − µ(1 − α0ẋ
2
ν)ẋν + xν + βx3

ν

= E0 cos wt + K(xν+1 − 2xν + xν−1)

ν = 1, 2, . . . , N, (8)

where xν describes the components of the νth
self-sustained electrical system. K is the coupling
parameter, E0 and w are the amplitude and fre-
quency of the external excitation. We fix α0 = 1,
and introduce yν = ẋν to obtain

ẋν = yν ,

ẏν = µ(1 − y2
ν)yν − xν − βx3

ν + E0 cos wt

+ K(xν+1 − 2xν + xν−1)

ν = 1, 2, . . . , N.

(9)

Equations (9) are described by a set of N mutu-
ally coupled identical Rayleigh–Duffing equations.

Thus, we have a shift-invariant ring of N mutually
coupled self-sustained electrical systems.

The great interest devoted to the model shown
in Fig. 1 and described by Eqs. (8) is due to the fact
that this model can be used to describe several phe-
nomena and have applications in many areas. For
instance, in electrical engineering, this model is used
for a parallel operating system of microwave oscilla-
tors [Fukui & Nagi, 1980, 1986]. A computer study
of the mutual synchronization of a large number of
these oscillators can be used to model intestinal sig-
nal [Robertson-Dunn & Linkens, 1974] or colorec-
tal myoelectrical activity in humans [Linkens et al.,
1976].

3. Bifurcation Structures and Chaos

We find is this section various bifurcation structures
which appear in the single or uncoupled Rayleigh–
Duffing system before the onset of chaos. For this
purpose, the periodic stroboscopic bifurcation dia-
grams of the coordinate x is used to map the
transitions (the stroboscopic time period is T =
2π/w). We have found that chaos appears in the
model for the physical parameters: E0 = 3.5, w =
1, µ = β = 5. Figures 3–5 show a representative
bifurcation diagram and the variation of the cor-
responding Lyapunov exponent versus some par-
ticular coefficient parameters. We have done the
numerical calculations very accurately in double
precision for different initial conditions and for dif-
ferent variations of parameters, and verified our
results. In order to obtain reliable numerical results,
the step size has been chosen to be equal to 10−4,
and the first 107 steps are discarded to avoid the
transient regime. These curves are obtained by solv-
ing numerically, Eq. (8) with K = 0 and the
corresponding variational equations, the Lyapunov
exponent being defined by

Lya = lim
t→+∞

ln(
√

dx2 + dẋ2)
t

(10)

where dx and dẋ are respectively the variations of
x and ẋ. That is a measure of the rate of divergence
between initially closed trajectories in the two-
dimensional phase space. As it appears, different
types of bifurcations take place before the onset of
chaos. In Fig. 3, we find that as E0 increases from
zero, the amplitude of the quasi-periodic oscillations
increases until E0 = 2.41 where the quasi-periodic
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(a)

(b)

Fig. 3. (a) Bifurcation diagram and (b) variation of the Lyapunov exponent versus E0 with w = 1 and µ = β = 5.

behavior bifurcates into a small window of chaos.
Then after the value E0 = 2.45, a periodic transi-
tion appears and the system passes into 2T-periodic
state. As E0 increases further, the 2T-period orbit
bifurcates to an other chaotic states and the period-
doubling cascade continues leading to a chaotic

window and periodic orbit. In summary, it appears
that the chaotic states are found in the region
of E0 defined as E0 ∈ [2.41; 2.45] ∪ [3.18; 3.36] ∪
[3.44; 3.65] ∪ [3.71; 3.73] ∪ [3.83; 3.9] ∪ [6.14; 6.39] ∪
[6.74] ∪ [6.86] ∪ [6.95; 7.07] ∪ [7.14; 7.16]. Figures 4
and 5 also show the bifurcation structures and
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(a)

(b)

Fig. 4. (a) Bifurcation diagram and (b) variation of the Lyapunov exponent versus β with w = 1 and α = 5, E0 = 3.5.

the variation of the Lyapunov exponent versus β
(for fixed µ = 5, E0 = 3.5) and µ (for fixed
β = 5, E0 = 3.5), respectively. For example,
when µ = 5, the chaotic states appear for β ∈
[4.47; 4.54] ∪ [4.74; 4.78] ∪ [4.82; 4.92] ∪ [4.97; 5.18] ∪

[6.39; 6.54] ∪ [7.02; 7.07] ∪ [7.31; 7.35] . . ., while for
β = 5, chaos appears for µ ∈ [3.18; 3.25] ∪
[4.67; 4.72] ∪ [4.81; 5.05] ∪ [5.12; 5.23] ∪ [6.05; 6.12] ∪
[6.16; 6.24] ∪ [6.32; 6.45] ∪ [6.5; 6.55] ∪ [6.94; 7.1] ∪
[7.16; 7.45] ∪ [7.84; 8.49].
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(a)

(b)

Fig. 5. (a) Bifurcation diagram and (b) variation of the Lyapunov exponent versus µ with w = 1 and β = 5, E0 = 3.5.

4. Synchronization Analysis

4.1. The Master stability function
approach

Various dynamical states which appear in the shift-
invariant ring depending on the coupling strength K

and the number N of self-sustained electrical sys-
tems are identified here. The model is physically
interesting so long as the dynamical states are
stable. As we are interested in bifurcations from
synchronous chaotic states; these states reside on
a synchronization manifold defined by M = {x1 =
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x2 = · · · = xN ; y1 = y2 = · · · = yN}, which has the
dimension two of the single chaotic self-sustained
electrical system. The central goal of this investiga-
tion is the ability to predict when the synchronized
state defined by xk = xs(t); yk = ys(t), is stable ∀ k,
representing the stable synchronization manifold
M, whose stability will be the object of the study.
In what follows, we present the stability analysis
of the synchronized state of a shift-invariant ring
of mutually coupled Rayleigh–Duffing systems. The
master stability approach [Boccaletti et al., 2006;
Pecora & Carroll, 1998] will be used to find the sta-
ble chaos synchronization in the ring. For this pur-
pose, let Xi be the two-dimensional vector of the
dynamical variables of the ith unit, H : R2 → R2

an arbitrary function of each unit variables used in
the coupling. Thus, the dynamics of the ith unit are
rewritten as a function of the 2 × N column vector
state Xi as

Ẋi = F(Xi) + K

N∑
j

GijH(Xj), i = 1, 2, . . . , N,

(11)

where Xi = [xi, yi]T ,F(Xi) = [yi, µ(1− y2
i )yi −xi −

βx3
i ]

T , and the function H is defined through the
matrix

E =
(

0 0
1 0

)

by H(Xi) = EXi. Gij ∈ R are N × N symmetry
connectivity matrix G in the shift-invariant ring of
mutually chaotic coupled oscillators and defined by

G =




−2 1 0 . . . 1
1 −2 1 . . . 0

0 1 −2 . . .
...

...
...

...
. . . 1

1 0 . . . 1 −2




and adheres to the zero row-sum condition:∑n
j=1 Gij = 0 for all i. The synchronization man-

ifold M is an invariant set, due to the zero row-
sum condition of the coupling matrix G and due
to the fact that the function H(X) is the same
for all shift-invariant ring units. Therefore, sta-
bility of the synchronous state reduces to satisfy
the system’s dynamical properties along directions
in phase that are transverse to the synchroniza-
tion manifold. Thus, the stability of the result-
ing dynamical states can be determined by letting

xν = δxν + xs, yν = δyν + ys and linearizing equa-
tions (11) around the state (xs, ys). This leads to

δẊ = [1N
⊗

JF(Xs) + KG
⊗

JH(Xs)]δX, (12)

where
⊗

stands for the direct product between
matrices, J denotes the Jacobian operator and the
2 × N column vectors δXi = (δxi, δyi) is the devi-
ation of the ith vector state from the synchroniza-
tion manifold. Note that H is just a matrix E and
JH = E.

A necessary condition for stability of the
synchronization manifold [Boccaletti et al., 2006;
Pecora & Carroll, 1998] is that the set of (N −1)∗2
Lyapunov exponents that corresponds to phase
space directions transverse to the 2-dimensional
hyperplane Xi = Xs be entirely made of negative
values. Equation (12) is used to calculate Lyapunov
exponents. Since Eqs. (12) are high-dimensional,
the synchronization problem is to reduce this high-
dimensional set of variational equations, governing
the stability of the synchronous state, to a more
manageable, low-dimensional set. We really want
to consider only variations which are transverse to
the synchronization manifold. We next show how
to separate out those variations and simplify the
problem. Let γi and vi be the set of real eigenval-
ues and the associated orthonormal eigenvectors of
the matrix G respectively, such that Gvi = γivi

and vT
j · vi = δij . The arbitrary state δX can be

written as δX(t) =
∑N

i=1 vi
⊗

ξi(t) with ξi(t) =
(ξi,1(t), ξi,2(t)). If one applies vT

j to the left side of
each equations (12), one finally obtains the follow-
ing set of N variational equations

ξ̇k = [JF(Xs) + KγkJH(Xs)]ξk,

k = 0, 1, 2, . . . , N − 1, (13)

in the evolution kernel. We recall that γk is the
eigenvalue of G, and is given by γk = −4 sin2(πk/N)
for the diffusive coupling configuration [Pecora &
Carroll, 1998]. One notes that each equation in
(13) corresponds to a set of two conditional Lya-
punov exponents λj

k (j = 1, 2) along the eigen-
mode corresponding to the specific eigenvalue γk.
For k = 0, we have the variational equation for
the synchronization manifold and its maximum
Lyapunov exponent λ0

max = 0.191 is that of the iso-
lated chaotic dynamical unit. The remaining varia-
tions ξk, k = 1, 2, . . . , N − 1 are transverse to M,
and describe the system’s response to small devi-
ation from the synchronization manifold, and then
control the stability of the synchronized state. Any
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Fig. 6. Variations of the transverse Lyapunov exponents versus K with w = 1 and β = µ = 5, E0 = 3.5.
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deviation from the synchronization manifold will be
reflected in the growth of one or more of these varia-
tions. We note that the stability of the synchronized
state is ensured if arbitrarily small transverse varia-
tions decay to zero. For k �= 0, Eqs. (13) enables to
calculate the maximum transverse Lyapunov expo-
nent λmax

k of each mode k as the function of the
coupling parameter K. We recall that the syn-
chronization state is stable if all the maximum
Lyapunov exponents λk

max of the transverse modes
are negative.

4.2. Numerical simulations

Now we report in this subsection on numerical com-
putation of the Lyapunov exponents and determine
the domain of stable synchronization. When the
coupling coefficient is turned off (i.e. K is equal
to zero), the chaotic driven self-sustained electri-
cal systems are uncoupled. The corresponding max-
imum Lyapunov exponents are λmax

0 = 0.191 for
the physical set of parameters used in the following
analysis of the paper: E0 = 3.5;w = 1;µ = β = 5.
For K �= 0, and for a given value of N , the maxi-
mum transverse Lyapunov exponents will enable us
to derive the range of the coupling parameter K in
which the transverse Fourier modes are stable, and
then each of a group of systems of the ring works
in a synchronizing manner.

The variation of the transverse Lyapunov expo-
nents are derived and plotted on Fig. 6. As K
increases, two different dynamical states appear
in the mutually coupled systems: The first is the
unstable domain in which there is some positive
Lyapunov exponent and hardly depends on the
number N , no synchronization is observed, all the
modes are on the transverse manifold where vari-
ations transverse to the synchronization manifold
do not decay with the time since all the transverse
Lyapunov exponents are positive i.e. λmax

k > 0. In
the second, the synchronization process is observed
and all the transverse Lyapunov exponents are neg-
ative. In this case, all the modes move from the
unstable domain to the stable one, the ring is syn-
chronized and stable synchronization is observed.
The results are shown in Table 1 where the bound-
aries of stable synchronization are presented as a
function of the coupling coefficient K. It appears
that the domains of stable synchronization reduce
dramatically and there is no domain of stable syn-
chronization for negative values of the coupling
coefficient K.

Table 1. Dynamical states in the mutually coupled chaotic
systems.

Domains of Domains of
Number N K for (SS) Number N K for (SS)

2 [0.92; +∞] 11 [11.49; +∞[
3 [1.22; +∞] 12 [13.61; +∞[
4 [1.83; +∞] 13 [15.92; +∞[
5 [2.64; +∞] 14 [18.42; +∞[
6 [3.65; +∞[ 15 [21.1; +∞[
7 [4.85; +∞[ 16 [23.96; +∞[
8 [6.23; +∞[ 17 [27.01; +∞[
9 [7.8; +∞[ 18 [30.24; +∞[
10 [9.5; +∞[ 19 [33.66; +∞[

20 [37.26; +∞[

(SS): Stable synchronization.

2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

35

40

N

K

Fig. 7. Stability boundaries of the synchronization in the
(K, N) plan with w = 1 and β = 5, E0 = 3.5.

Figure 7 is the stability diagram, that displays
the two main dynamical states and the stability
boundaries and we find that the number of units
hardly affects the stability boundaries of the syn-
chronization process in the ring.

5. Active Control

5.1. Mathematical formulation

The main outcome of the previous analysis is that
the synchronization process is stable or unstable,
depending upon the coupled coefficient K. It is then
interesting to study how unstable synchronization
can be controlled, and devise an active control strat-
egy to suppress the undesired behavior. To illustrate
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that, we consider the following equations modeling
the controlled system

ẍν − µ(1 − ẋ2
ν)ẋν + xν + βx3

ν

+ λ1(1 + q cos 2wt)u̇ν

= E0 cos wt + K(xν+1 − 2xν + xν−1)
üν + u̇ν + uν − λ2(1 + q cos 2wt)ẋν = 0

ν = 1, 2, . . . , N (14)

where uν is the control force of the νth self-
sustained electrical system, λi the control gain
parameters, q is the amplitude of the parametric
coupling with 0 ≤ q < 1. Practically, this type of
control can be carried out in engineering by mak-
ing use of a mechanical system, put together to the
original self-sustained electrical system. The origi-
nal self-sustained electrical system and the mechan-
ical system are coupled to the electromagnetic force
to form a self-sustained electromechanical system
such as those presented in [Yamapi et al., 2003;
Yamapi & Bowong, 2006]. The origin of the para-
metric coupling is due to the fact that some param-
eters of the electromechanical device can vary with
time because of the functioning constraints. This
is particulary the case for the parameters of the
electromagnetic coupling e.g. time variations of the
magnetic field and the region of electromagnetic
action. We assume that the time variation is peri-
odic with frequency 2w.

Introducing vk = u̇k, Eqs. (14) yield

ẋν = yν

ẏν = µ(1 − y2
ν)yν − xν − βx3

ν

−λ1(1 + q cos 2wt)vν + E0 cos wt

+ K(xν+1 − 2xν + xν−1)
u̇ν = vν

v̇ν = −vν − uν + λ2(1 + q cos 2wt)yν

ν = 1, 2, . . . , N,

(15)

q is the amplitude of the parametric perturba-
tions on the gain coupled elements. We remind that
we are interested in bifurcations from synchronous
states; which reside on a synchronization manifold
defined by N = {x1 = x2 = · · · = xN ; y1 =
y2 = · · · = yN ;u1 = u2 = · · · = uN ; v1 =
v2 = · · · = vN}.

5.2. Stability of the control process

The Master stability approach [Boccaletti et al.,
2006; Pecora & Carroll, 1998] can be also used
to find the appropriate range of the control gain

parameters. For this purpose, let Yi be the four-
dimensional vector of the dynamical variables of the
ith unit. Equations (14) can be rewritten as

Ẏi = F(t,Yi) + K

N∑
j

GijH(Yj), i = 1, 2, . . . , N,

(16)

where Yi = [xi, yi, ui, vi]T , F(t,Yi) = [yi, µ(1 −
y2

i )yi − xi − βx3
i − λ1(1 + q cos 2wt)vi, vi,−vi −

ui + λ2(1 + q cos 2wt)yi]T . As in the above section,
the stability of the control reduces to take care of
the system’s dynamical properties along directions
in phase that are transverse to the synchroniza-
tion manifold. Thus, the stability of the result-
ing dynamical states can be determined by letting
xν = δxν + xs, yν = δyν + ys, uν = δuν + us,
vν = δvν + vs and linearizing Eqs. (16) around the
state (xs, ys, us, vs). This leads to

δẎ = [1N

⊗
JF(t,Ys) + KG

⊗
JH(Ys)]δY, (17)

where the 4 × N column vector δYi = (δxi, δyi,
δui, δvi) is the deviation of the ith vector state from
the controlled synchronization manifold. We remind
that H is also defined through the matrix E, and
JH = E with

E =




0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0




The arbitrary state δY can be written as δY(t) =∑N
i=1 vi

⊗
ηi(t) with ηi(t) = (ηi,1(t), ηi,2(t), ηi,3(t),

ηi,4(t)). If one applies vT
j to the left-hand side of

each equation (17), one finally obtains the following
set of N variational equations

η̇k = [JF(Ys) + KγkJH(Ys)]ηk,

k = 0, 1, 2, . . . , N − 1, (18)

As γk is the eigenvalue of G, it is given as
γk = −4 sin2(πk/N) for the diffusive coupling [Pec-
ora & Carroll, 1998], and each equation in (18)
corresponds to a set of four conditional Lyapunov
exponents λj

k (j = 1, 2, 3, 4) along the eigenmode
corresponding to the specific eigenvalue γk. For
λi �= 0, Eqs. (17) enables to calculate the maximum
transverse Lyapunov exponent λmax

k of each mode
k as the function of the coupling gain parameter λi.
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Fig. 8. Variations of the transverse Lyapunov exponents versus λ1 with w = 1, λ2 = 0.5 and β = µ = 5, E0 = 3.5.

5.3. Results of the control

5.3.1. Results without parametric
perturbation (q = 0)

The theory of the stability of the control of the
unstable synchronization manifold is presented in

the above subsection, the aim of the present sub-
section is to investigate the effects of the control
on the synchronization manifold. This is to find the
range of gain parameter λi in which the control pro-
cess is good. It is important to note that the choice
of K can been found in the unstable region for
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the uncontrolled ring of mutually coupled chaotic
oscillators. One notices that, the role of the active
control is to ensure that all arbitrary small trans-
verse variations decay to zero, and consequently the
controlled system develops a stable synchronization.
On the other hand, we need to verify whether the
active control has a positive or a negative effect on
the unstable synchronization manifold, or find if the
gain parameter introduces de-synchronization phe-
nomena in the original system.

Figure 8 shows the variation of the Maximum
transverse Lyapunov exponents as a function of the
coupling parameter λ1 for two values of the coupling
coefficient K which corresponds to the unstable syn-
chronization, (i.e. K = 1 and K = 2). Table 2
presents the stability boundary of the control pro-
cess in the plan (λ1, λ2) for the ring of N = 10
oscillators with the value of K choose in the unsta-
ble. As it appears, different types of dynamical
states take place. In Fig. 8, we find that as λ1

increases from zero with a fixed value of λ2, (i.e.
for example λ2 = 0.5) the unstable synchroniza-
tion exits until λ1 = 0.61 where the bifurcation
from unstable to stable synchronization appears,
and remains until λ1 = 3.4. Then after the value

λ1 = 3.4, the desynchronization transition appears
and the system passes into unstable synchronization
state, the control process of the unstable synchro-
nization manifold is not achieved. As λ1 increases
further, the unstable synchronization state bifur-
cates to other stable synchronization states and
the transition cascade continues leading to a stable
and unstable synchronization state. In summary,
for λ2 = 0.5, it appears that the good gain coef-
ficient λ1, for controlling the unstable synchroniza-
tion manifold is found in the region of λ1 defined
as λ1 ∈ [0.6; 3.4] ∪ [5.8; 14.1] ∪ [15.1; 18.5]. Table 2
shows that some regions of the gain coefficients lead
to stable control of the unstable synchronization
manifold.

5.3.2. Effects of parametric perturbations
on the control

The previous subsection deals with finding the
region of the gain parameters (λ1, λ2) successfully
and the results are shown in Table 2. To analyze
the effects of the amplitude of parametric pertur-
bations on the domain of the good gain parameters
for the control process in the plane (λ1, λ2), let us

Table 2. Some dynamical states in the mutually coupled chaotic systems under the control.

λ2 Domains of λ1 for Stable Control λ2 Domains of λ1 for Stable Control

0.1 [2.8; 16.3] · · · 1.6 [0.2; 1] ∪ [1.7; 4.4] ∪ [4.7; 6.7] · · ·
0.2 [1.9; 8.5] ∪ [14.2; 30] · · · 1.7 [0.2; 1] ∪ [1.7; 4.1] ∪ [4.5; 6.1] · · ·
0.3 [1; 5.6] ∪ [9.6; 25] · · · 1.8 [0.1; 0.9] ∪ [1.6; 3.9] ∪ [4.2; 5.8] · · ·
0.4 [0.8; 4.2] ∪ [7.2; 17.6] · · · 1.9 [0.2; 0.8] ∪ [1.6; 3.7] ∪ [4; 5.5] · · ·
0.5 [0.6; 3.4] ∪ [5.8; 14.1] ∪ [15.1; 18.5] · · · 2.0 [0.2; 0.8] ∪ [1.4; 3.5] ∪ [3.8; 5.3] · · ·
0.6 [0.6; 2, 8] ∪ [4.8; 11.8] · · · 2.1 [0.1; 0.8] ∪ [1.3; 3.3] ∪ [3.6; 5.6] · · ·
0.7 [0.5; 2.4] ∪ [4.1; 10.1] ∪ [10.7; 15] · · · 2.2 [0.2; 0.8] ∪ [1.3; 3.3] ∪ [3.5; 4.8] · · ·
0.8 [0.4; 2.1] ∪ [3.6; 8.8] ∪ [9.5; 13.4] · · · 2.3 [0.2; 0.7] ∪ [1.2; 3.0] ∪ [3.3; 4.5] · · ·
0.9 [0.1; 1.9] ∪ [3.2; 7.9] ∪ [8.4; 11.7] · · · 2.4 [0.2; 0.7] ∪ [1.2; 3.0] ∪ [3.2; 4.4] · · ·
1.0 [0.3; 1.7] ∪ [2.9; 7.1] ∪ [7.6; 10.5] · · · 2.5 [0.2; 0.6] ∪ [1.2; 4.2] · · ·
1.1 [0.3; 1.5] ∪ [2.6; 6.4] ∪ [6.9; 8.5] · · · 2.6 [0.2; 0.6] ∪ [1.0; 4] · · ·
1.2 [0.2; 1.5] ∪ [2.6; 6.4] ∪ [6.9; 8.5] · · · 2.7 [0.2; 0.6] ∪ [1.1; 3.9] · · ·
1.3 [0.3; 1.3] ∪ [2.3; 5.8] ∪ [6.3; 8.8] · · · 2.8 [0.2; 0.6] ∪ [1.1; 3.7] · · ·
1.4 [0.3; 1.2] ∪ [2.1; 5] ∪ [5.4; 7.5] · · · 2.9 [0.2; 0.6] ∪ [0.9; 3.6] · · ·
1.5 [0.2; 1.1] ∪ [2.0; 4.8] ∪ [5.1; 7.0] · · · 3.0 [0.1; 0.5] ∪ [1.0; 3.5] · · ·

Table 3. Effects of the amplitude of the parametric perturbation on the domains of the stable
control.

q Domains of λ1 for Stable Control (λ2 = 0.2)

0 [1.5; 8.5] ∪ [14.2; 30] · · ·
0.3 [1.0; 5.3] ∪ [6.0; 6.8] ∪ [14.4; 29.3] · · ·
0.6 [0.8; 3.6] ∪ [4.1; 5] ∪ [5.6; 5.9] ∪ [8.7; 16.1] ∪ [17.3; 17.5] ∪ [21.1; 25.4] ∪ [26.8; 27.3] · · ·
0.9 [0.6; 2.7] ∪ [3.1; 4.4] ∪ [6.3; 11.5] ∪ [16.2; 18] ∪ [20.3; 21.7] ∪ [22.7; 30] · · ·
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Fig. 9. Effects of the amplitude of the parametric coupling q on the variations of the transverse Lyapunov exponents versus
λ1 with w = 1, λ2 = 0.2 and β = µ = 5, E0 = 3.5.
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Fig. 9. (Continued )
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Fig. 10. Variations of the transverse Lyapunov exponents versus q with w = 1 and β = µ = 5, E0 = 3.5, λ1 = 0.2, K = 1,
(a) λ1 = 5 and (b) λ1 = 17.
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fix the value of one gain coefficient before carry-
ing out our analysis. For example, for λ2 = 0.2,
the above investigation of master stability function
approach enables to find that the control of the
unstable synchronization manifold is stable for the
value of λ1 defined as λ1 ∈ [1.5; 8.5] ∪ [14.2; 20] · · ·.
Analyzing the effects of the parametric pertur-
bations, we use three values of q as λ1 varies.
When q = 0.3, our investigations enable us to
find that the control process of the unstable syn-
chronization manifold in the ring is achieved for
λ1 ∈ [1.0; 5.3] ∪ [6.0; 6.8] ∪ [14.4; 29.3] · · ·. For the
other values of q, the results are shown in Table 3,
and we find that the domains of stable control of
the unstable synchronization are strongly changed
when the amplitude q of the parametric perturba-
tions increases. The situation also shows up in Fig. 9
where the variation of the transverse Lyapunov
exponents are plotted versus the coupling gain
parameter λ1.

Figure 10 shows the variation of the transverse
Lyapunov exponents versus q with the values of the
coupled gain parameters chosen in the region of sta-
ble control. We find here the negative effects of the
parametric perturbations on the control.

6. Conclusions

We have studied in this Letter the possibility of con-
trolling the unstable synchronization manifold on a
ring of mutually coupled chaotic oscillators. Var-
ious bifurcation structures and transition for the
chaotic states have first been found using numer-
ical simulation. Stability boundaries for the syn-
chronization process in a shift-invariant ring of
oscillators have been derived following the mas-
ter stability function approach, and the trans-
verse Lyapunov exponents. Secondly, we have used
the parametric active control strategy to stabi-
lize the controlled system under variations of the
gain parameters. The stability of the control pro-
cess was done using the master stability function
approach.
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