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Abstract: This article describes a simple Susceptible Infected Recovered (SIR) model fitting with
COVID-19 data for the month of march 2020 in New York (NY) state. The model is a classical SIR, but
is non-autonomous; the rate of susceptible people becoming infected is adjusted over time in order
to fit the available data. The death rate is also secondarily adjusted. Our fitting is made under the
assumption that due to limiting number of tests, a large part of the infected population has not been
tested positive. In the last part, we extend the model to take into account the daily fluxes between
New Jersey (NJ) and NY states and fit the data for both states. Our simple model fits the available
data, and illustrates typical dynamics of the disease: exponential increase, apex and decrease. The
model highlights a decrease in the transmission rate over the period which gives a quantitative
illustration about how lockdown policies reduce the spread of the pandemic. The coupled model
with NY and NJ states shows a wave in NJ following the NY wave, illustrating the mechanism of
spread from one attractive hot spot to its neighbor.
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0. Introduction and model

From a scientific perspective, the COVID-19 pandemic has highlighted the crucial role of
mathematical and statistical models in providing guidance for health policies. Expressions such
as "flatten the curve", the "apex", the "plateau" have been widely heard in medias and employed by
decision makers to explain their choices regarding rules and policies during this critical period. In this
short article, we first introduce a simple SIR model, in which we adjust a key parameter k standing for
a control on the Susceptible-Infected rate, and secondarily the death rate, in order to fit the data of the
pandemic in NY state in March 2020, and provide predictions for a near future. Then, we add a node
in the model to take into account the daily fluxes between NY and NJ states. Note that these two close
states, are, up to the day of redaction of this article, the more severe hit by the pandemic in United
States. Of course, the coupling may be extended to other states. However, in this article, we restrict
ourselves to NY and NJ. Accordingly, the main key points of this article are that, 1) it highlights the
dynamics and epidemiological characteristics which have been discussed in press and health policies;
It highlights qualitatively how lockdown policies have decreased the spread of the virus and provides
prediction and explanation of an upcoming apex, 2) it fits real data provided for the New York sate
and 3) it fits the data of NJ state by considering coupled equations taking into account the daily fluxes
between NY and NJ. This provides a quantitative visualization of how the virus may spread from
an attractive hot spot (New York City in NY state) towards close states trough the daily fluxes of
commuters.

We especially focus on fitting the total number of cases tested positive for COVID-19 as well as
the number of deaths in both NY and NJ states. We also give insights in prediction of the number of
people needing hospitalization in NY state.
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SIR models are very classic in literature. For some reader’s convenience, we mention here some
contextual elements and references. The simplest classical SIR model is the Kermack–McKendrick
(KMcK) model which goes back to 1927, see [1,2]. It writes

(KMcK)


St = −kSI
It = kIS− rI

Rt = rI
(1)

In this original (KMcK) model, the population splits into three classes. The class S stands for susceptible,
who can catch the disease, I stands for infective, who have the disease and can transmit it and R stands
for the removed, namely, those who have or have had the disease but not transmit it anymore. Note
that our terminology is slightly different as explained below. In (1), the dynamics follow the scheme

S→ I → R

with respective transfer rates between classes of k and r.
SIR type models and more generally, mathematical models of epidemics have in fact a significant

history. We refer to [2] for a textbook on these models and a brief history of epidemics. Models
have become more sophisticated and may include more compartments such as exposed, infective
asymptomatic, infective with symptoms, and also reservoirs such as bats, and include stochastic
dynamics. Recently, SIR type models have been widely used in the context of the COVID-19 pandemic,
to model the spread all around the world, see for example [3–9] and reference therein cited. Here are
also some examples of references for SIR models in other epidemic diseases: Dengue [10], Chikungunya
[11,12] and Ebola [13]. See also references therein cited.

In the present article, we first consider the following model
St = −k(t) S

I+S+R I
It = k(t) S

I+S+R I − r(t)I − d(t)I
Rt = r(t)I

(2)

This simple model has classically three classes: S for susceptible, I for infected and R for recovered.
Specifically, the class I is intended to represent all the people who bear effectively the virus at a given
time, and can transmit it if in contact with other people. It includes all infected people with or without
symptoms, reported or not. There are some differences with equation (1). First, it includes a death rate
d(t). And even tough, the number of deaths does not appear explicitly as a variable, it is simply given
by the integral

∫ t
0 d(u)I(u)du. Also note that in expression

St = −k(t)
S

S + I + R
I,

the rate of contamination from S to I is proportional to the proportion of susceptible (S) in the whole
population (S + I + R). This is a classical expression standing for the fact that the probability for
each individual in the I class to spread the virus among the class S is proportional to the portion of S
in the whole population, see for example [14,15] and references therein cited. This rate is corrected
by a crucial coefficient k(t) which is intended to fit the real transfer rate and which contains the
effects inherent to the properties of the virus (for example change of propagation rate due to genetic
mutation of the virus) or to specific policies (like quarantine, social distancing, lockdown...). This time
dependence allows to adjust the dynamics to fit the data. This is a specificity of our model and turns it
into a non-autonomous equation. This time dependence of k is obviously relevant in our model since
the rate of transfer from S to R is the main target of health policies and is subsequently subject to vary
over time. Secondarily, we also allow the death rate to vary. Many internal or external factors may
affect the death rate among which are concomitant lethal disease, temperature, hospital conditions...
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More significantly, one has to note that the rate transfers considered here are instantaneous transfer
between compartments, and the function d(t) is different from the Case Fatality Rate (CFR). Recall that
the CFR is the death rate per confirmed case over a given period of time, and is a typical indicator for
death rate. In South Korea, the country which led the highest number of tests, it has been reported to
be of 1 percent, see [16]. In China as of February 20, this rate varied between 3.8 in the region of Wuhan
and 0.7 in others regions, see [17] and also [18]. Using tables 1 and 2 gives a CFR in NY from March 1
to April 1 of 1941

83804 ' 2.3 per cent. Since our model fits the data, by definition, it fits the CFR. At the end
of the epidemic, if the whole number of people that contracted the virus would be tested positive the
CFR would provide the probability to die for an individual who catches the virus. However, during a
growing phase such as the month of March considered here, the CFR has large variations. Moreover,
there is a delay between the time a person is tested positive and the time he dies. The time between
symptom onset and death has been reported to range from about 2 weeks to 8 weeks, see [18]. The
typical average being 23 days according to [16]. One could for example introduce a time-integral
death expression

∫ t
0 d̃(u, t)I(u)du to take into account these informations. However, the time-window

considered here is short and corresponds to the beginning of reported cases in NY. Furthermore, in this
short article, we wanted to focus on a simple model able to fit data, highlight relevant dynamics and
provide estimations. Since, a person in the I compartment, will either recover or die, above remarks
on the function d hold for the coefficient r. In the present work, for sake of simplicity, we have set
the r coefficient to the constant value 0.64. This is a simplification which is classical in SIR models.
Note that setting the coefficient r to a constant value is equivalent to assume that people recovering
between times t− 1 and t, which is given by R(t)− R(t− 1) would also write r

∫ t
t−1 I(u)du according

to equations (2). A more meaningful expression for R(t)− R(t− 1) would be
∫ t

0 r̃(u, t)I(u)du standing
to the fact that people recovering between time t− 1 and t have been infected from a period ranging

from 0 to t, with a transfer rate given by r̃(u, t). This would lead to the equation r =
∫ t

0 r̃(u,t)I(u)du∫ t
t−1 I(u)du

. Once

r is set to a constant value, to fit data over a reasonable period, numerical tries provide a unique choice
for constants k and d. It was still possible to use different values of r to fit the data. However, different
values of r result in different dynamics over time, and notably different time for apex. Our choice
of r = 0.64 was made to provide dynamics that seem relevant to us regrading the timely dynamics
beyond the data. In particular, too smaller of values for r would provide dynamics with a late apex
and less relevant regarding the timely effects of the disease. Other studies have considered models
with a constant r, with different values. See for example [19] and references therein cited. Remarkably,
varying r, and make it depend on time, provides some freedom to later fit data over a longer period of
time, taking in account the end of the first wave in NY.

Upon the above discussions, our strategy is rather simple: set r to a constant value. Then choose
a constant k which fits the data of positive cases during a period of time. Next, choose a constant d
to fit deaths data for the same period of time. Note that since the parameter k has much more effect
than the small parameter d, this procedure is possible and efficient. After, repeat the procedure over a
subsequent period. The overall procedure results in a constant function r and two piecewise constant
functions k(t) and d(t). For our model and the given data, the procedure was efficient allowing to
provide these choices by successive tries. Note that this could be done automatically by cooking an
algorithm to set the parameters following these guidelines. Note finally that our assumptions do not a
include birth rate for the susceptible population but rather focus on the short time effects of the disease.

1. Numerical Simulations, Data and Dynamics

1.1. Fitting the total number of infected people and the number of deaths

Data from total infected people and total number of deaths in New York state is available at the
New York times web site, see [20]. We have downloaded the data from there from March 1 to April 1,
which makes 32 days. We have reported the number of total cases in table 1 and the number of deaths
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Day 3/1 3/2 3/3 3/4 3/5 3/6 3/7 3/8 3/9 3/10 3/11
Number of cases 1 1 2 11 22 44 89 106 142 173 217

Day 3/12 3/13 3/14 3/15 3/16 3/17 3/18 3/19 3/20 3/21 3/22
Number of cases 326 421 610 732 950 1374 2382 4152 7102 10356 15168

Day 3/23 3/24 3/25 3/26 3/27 3/28 3/29 3/30 3/31 4/1
Number of cases 20875 25665 33066 38987 44635 53363 59568 67174 75832 83804

Table 1. Total number of cases reported in NY state from march 1 to April 1. See [20].

in table 2.
For numerical simulations of equation (2), the parameter r was set to 0.64. Then, in order to fit the data
of the total number of infected people, we chose:

k(t) =


k1 = 1.057 if 0 ≤ t < 21

k2 = 0.9 if 21 ≤ t < 24
k3 = 0.67 if 24 ≤ t < 27
k4 = 0.71 if 27 ≤ t ≤ 32

(3)

and to fit the total number of deaths, we chose:

d(t) =


d1 = 0.0016 if 0 ≤ t < 21

d2 = 0.00232 if 21 ≤ t < 24
d3 = 0.00232 if 24 ≤ t < 27

d4 = 0.0068 if 27 ≤ t ≤ 32

(4)

Initial conditions were set to
(19453556, 5, 0),

19453556 being the number of people living in NY state in 2019 according to USA Census bureau.
Regarding reported data in tables 1 and 2, as a matter of fact, not all infected people in March 2020
were tested. To take into account this fact in our model, we adjusted the parameters to fit the quantity
0.2× (I + R) from the model, with the total number of infected people (data in table 1) minus the
total number of deaths (data in table 2), i.e. we assume here that only 20 percent of living people
that have contracted the virus has been tested positive. Note that shortly after the first submission of
this work, NY state reported the result of a random antibody test over a sample of 3000 individuals.
Statewide, 13.9 percent of people were tested positive, ranging form 21.2 percent in New York City
(NYC), to 3.6 percent in upstate counties. See [21,22]. Comparing with data from [20], this gives a
ratio of approximatively 10; only about 10 percent of people having caught the virus in NY would
have been tested positive. Statistical estimates of related ratio, depending on the number of estimates
provide a range of [5, 3000], see [23]. Simulation of system (2), and comparison with data resulting
from tables 1 and 2 are plotted in Figure 1-a. In Figure 1-b, we plotted the total number of deaths from
the model and compared it to the data. In Figure 1-c, we have plotted four curves corresponding to
various I(t) for different simulations of (2).

• The curve I1(t) in red corresponds to the simulation of (2) with k(t) = k1 = 1.057 and d(t) =
d1 = 0.0016 for all time.

• The curve I2(t) in green corresponds to the simulation of (2) with k(t) = k1 = 1.057 and
d(t) = d1 = 0.016 for 0 ≤ t ≤ 21, and k(t) = k2 = 0.9 and d(t) = d2 = 0.00232 for 21 ≤ t < 24.

• The curve I3(t) in pink corresponds to the simulation of (2) with k(t) as given in (3), i.e. k(t) = ki
and d(t) = di, t ∈ [ti−1, ti), i ∈ {1, ..., 4} with t0 = 0, t1 = 21, t2 = 24, t3 = 27, t4 = 32.

This panel illustrates how the health policies flatten the curve. In Figure 1-d, we have again plotted the
solution I(t) for k(t) as in (3), for a longer period.
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Figure 1. This figure illustrates the simulation of system (2) and how it fits the data. In (a), we have
plotted the quantity 0.2× (I + R) as a function of time in red. The blue dots correspond to the data
retrieved from [20]. Analogously, in (b), we have plotted the quantity

∫ t
0 d(s)I(s)ds, which represents

the total number of deaths according with the model, as a function of time in red. The blue dots
correspond to the data retrieved from [20]. In (c), we have illustrated the quantity I(t) corresponding to
different values of k(t), d(t): the curve I1(t) in red corresponds to the simulation of (2) with k(t) = k1

and d(t) = d1 for all time. The curve I2(t) in green corresponds to the simulation of (2) with k(t) = k1

and d(t) = d1 for 0 ≤ t ≤ 21, and k(t) = k2 and d(t) = d2 for t ≥ 21. The curve I3(t) in pink
corresponds to the simulation of (2) with k(t) as given in (3), i.e. k(t) = ki and d(t) = di, t ∈ [ti−1, ti),
i ∈ {1, ..., 4} with t0 = 0, t1 = 21, t2 = 24, t3 = 27, t4 = 32. It illustrates how the health policies flatten
the curve. In (d), we have again plotted the solution I(t) for k(t) as in (3), for a longer period.
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Day 3/1 3/2 3/3 3/4 3/5 3/6 3/7 3/8 3/9 3/10 3/11
Number of deaths 0 0 0 0 0 0 0 0 0 0 0

Day 3/12 3/13 3/14 3/15 3/16 3/17 3/18 3/19 3/20 3/21 3/22
Number of deaths 0 0 2 6 10 17 27 30 57 80 122

Day 3/23 3/24 3/25 3/26 3/27 3/28 3/29 3/30 3/31 4/1
Number of deaths 159 218 325 432 535 782 965 1224 1550 1941

Table 2. Total number of deaths reported in NY state from march 1 to April 1. See [20].

k(t) d(t)
I1(t) k(t) = 1.057 d(t) = 0.0016
I2(t) 1.057 if t < 21; 0.9 otherwise 0.0016 if t < 21; 0.00232 otherwise
I3(t) ki if ti−1 ≤ t < ti, i ∈ {1, ..., 4} di if ti−1 ≤ t < ti, i ∈ {1, ..., 4}

Table 3. Summary of the values used in Figure 1-c to obtain the curves I1(t), I2(t) and I3(t). Recall that
k1 = 1.057, k2 = 0.9, k3 = 0.67, k4 = 0.71, d1 = 0.0016, d2 = 0.00232, d3 = 0.00232, d4 = 0.0068, t0 = 0,
t1 = 21, t2 = 24, t3 = 27 and t4 = 32.

1.2. Fitting the total number of people at hospital

Next, we have retrieved data corresponding to the number of people being at the hospital between
March 16 and April 1. During this period, and after, NY state officially reported daily useful charts
and statistics, on the local spread. We have then computed an estimation of people being effectively
at hospital at a given date. We denote H(ti), ti ∈ {16, 17, ..., 32} the total number of hospitalizations
at a given date. In order to fit the solution of (2) with this data, we performed a linear regression
between (I(ti)), ti ∈ {16, 17, ..., 32} and (H(ti)), ti ∈ {19, 20, ..., 32}. The coefficients a and b of the
linear regression were determined by the least-square method, leading to the formulas:

a =
< x, y > −nx̄ȳ
||x||2 − x̄2

b = ȳ− ax̄

with
x = (H(ti), ti ∈ {16, 17, ..., 32}

y = (I(ti)), ti ∈ {16, 17, ..., 32}

< x, y >=
n

∑
i=1

xiyi, ||x||2 =< x, x >, x̄ =
1
n

n

∑
i=1

xi, ȳ =
1
n

n

∑
i=1

yi, n = 14.

The result is plotted in Figure 2-a. It clearly shows a good approximation by two distinct lines,
corresponding to

a1 = 10.3301, b1 = −1227.61

and
a2 = 1.91478, b2 = 33560.3.

Day 3/16 3/17 3/18 3/19 3/20 3/21 3/22 3/23 3/24 3/25
Total number of hospitalized 326 496 617 1042 1496 2043 2629 3343 4079 5327

Day 3/26 3/27 3/28 3/29 3/30 3/31 4/1
Total number of hospitalized 6481 7328 8503 9517 10929 12226 13383

Table 4. Total number of daily current hospitalizations reported in NY state from March 16 to April 1.
See [23,24].
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Figure 2. This figure illustrates how to provide an estimation for people needing hospitalization thanks
to equation (2) and statistical methods. Panel (a) illustrates an approximation of I(ti), ti ∈ {16, 17, ..., 32}
by a vector (a1H(ti) + b1), ti ∈ {16, 17, ..., 23} and another vector (a2H(ti) + b2), ti ∈ {24, 25, ..., 32}
where aj and bj, j ∈ {1, 2} are the coefficients obtained thanks to the least-square method. Panel (b)

then provides a prediction of people in need of hospitalization by plotting the quantity H(t) = I(t)−b2
a2

if I(t) ≥ 41475.76, H(t) = I(t)−b1
a1

otherwise.

Then, a prevision of number of people needing hospitalization can be provided by the formula:

H(t) =
I(t)− b2

a2
if I(t) ≥ 41475.76, H(t) =

I(t)− b1

a1
otherwise.

The result is plotted in Figure 2-b.

1.3. Dynamics

Summing up the equations in (2) and looking for stationary solutions yield the following theorem.

Theorem 1. We assume that initial condition of system (2) satisfies S(0) > 0, I(0) > 0 and R(0) = 0. Then
for t > 0, all variables remain bounded and positive: there exists a positive constant M < R(0) + I(0) such
that for all t > 0:

0 < S(t) < M, 0 < I(t) < M, 0 < R(t) < M

and

S(t) + I(t) + R(t) ≤ S(0) + I(0)−
∫ t

0
d(s)I(s)ds.

Non-negative stationary solutions of the system are given by (S̄, 0, R̄), with S̄ ≥ 0 and R̄ ≥ 0. Furthermore,
S(t) is decreasing, R(t) is increasing and the variation of I(t) is given by the sign of

k(t)
S(t)

S(t) + I(t) + R(t)
− r− d(t). (5)

Remark 1. It is worth noting that this theorem, which proof is relatively straightforward provides two simple
but relevant interpretations from the applicative point of view. The first thing is that the stationary solutions are
given by (S̄, 0, R̄), with S̄ ≥ 0 and R̄ ≥ 0. This means that the stationary solutions, are all with 0 infected but
may take arbitrary non-negative values (within a bounded interval) for susceptible and recovered. This reflects
the reality of the disappearance of the virus. The second thing we want to mention is that the variation of I is
given by the sign of expression (5). In particular, basically during a classical wave, this sign will be positive
before the apex and negative after.
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2. Two coupled SIR systems fitting COVID-19 for NY and NJ states

It is estimated that around 400000 people used to commute from NJ to NY before the lockdown
policies due to the pandemic. It is natural to integrate these effects in the model, since those commuters
played the role of vector for virus before the lockdown. We therefore build a small network by coupling
two nodes, representing NY (node 1) and NJ (node 2). To this end, we couple two copies of the local
model (2) to take into account the daily fluxes between those two states. This leads to the following
model: 

S1t = −k1(t)I1
S1

I1+S1+R1
+ l(t)

(
cS

12(t)S2 − cS
21(t)S1

)
I1t = k1(t)I1

S1
I1+S1+R1

− rI1 − d1(t)I1 + l(t)
(
cI

12(t)I2 − cI
21(t)I1

)
R1t = rI1 + l(t)

(
cR

12(t)R2 − cR
21(t)R1

)
S2t = −k2(t)I2

S2
I2+S2+R2

+ l(t)
(
− cS

12(t)S2 + cS
21(t)S1

)
I2t = k2(t)I2

S2
I2+S2+R2

− rI2 − d2(t)I2 + l(t)
(
− cI

12(t)I2 + cI
21(t)I1

)
R2t = rI2 + l(t)

(
− cR

12(t)R2 + cR
21(t)R1

)
(6)

The assumptions are analog to those given section 2, but we aim here to take into account the daily
fluxes between NJ and NY. For sake of simplicity, we consider that there is a flux of people coming
from NJ to NY in the morning and returning home at night. The coupling functions, which are
non-autonomous here are given by: l(t)

(
cS

12(t)S2 − cS
21(t)S1

)
l(t)
(
cI

12(t)I2 − cI
21(t)I1

)
l(t)
(
cR

12(t)R2 − cR
21(t)R1

)


for node 1 and  l(t)
(
− cS

12(t)S2 + cS
21(t)S1

)
l(t)
(
− cI

12(t)I2 + cI
21(t)I1

)
l(t)
(
− cR

12(t)R2 + cR
21(t)R1

)


for node 2, where functions +cij stand for the densities of population coming from mode j and going
into node i. In the remaining of the manuscript we assume that these functions cij do not depend on
S, I and R and drop the superscripts. Furthermore, we assume c12 and c21 to be periodic of period 1
(one day), with a Gaussian profile and respective apex at 8:30 am and 6:30 pm. Not that the amplitude
c21 is multiplied by a coefficient greater than 1. in comparison with c12 to take in account the amount
of population int NY and NJ. We want to emphasize here the attractivity of NYC, and therefore assume
that the fluxes are mainly from NJ to NY in the morning and form NY to NJ in the evening. The
function l(t) integrates policies of lockdown: after March 23, in the model, the daily fluxes are divided
by 1000. Therefore, the function l(t) is a piecewise constant function given by:

l(t) :=

{
1 if 0 ≤ t < 23

10−3 if t ≥ 23.
(7)

Initial conditions were set to
(19453556, 5, 0),

for node 1 and
(8882190, 0, 0),

for node 2. Note there are no infected cases at initial time in NJ. This means that in our model, initial
spread in NJ follows from infection in NY. The same methods as in section 2 were used to fit the data
for both NY and NJ for the network model (6). Illustrations are provided in Figure 3. It shows how the
model fits the data. In Figure 3-a, we have plotted the quantity 0.2(I2 + R2) as a function of time in
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Figure 3. This figure illustrates the simulation of system (6) and how it fits the data. In (a), we
have plotted the quantity 0.2(I2 + R2) as a function of time in red. Recall that, in the model I2 + R2,
represents the number of people in the population which has been infected by the virus and are still
alive. The blue dots correspond to the data retrieved from [20] and plots the total number of infected
minus the number of total deaths. Analogously, in (b) we have plotted the quantity

∫ t
0 d2(u)I2(u)du)

as a function of time in red. The blue dots correspond to the total number of deaths in NJ according
with data retrieved from [20]. Panel (c) illustrates I1(t) and I2(t), which represent respectively the
infected in NY and NJ.

red. Recall that, in the model I2 + R2, represents the number of people in the population which has
been infected by the virus and are still alive. The blue dots correspond to the data retrieved from [20]
and plots the total number of infected minus the number of total deaths. Analogously, in Figure 3-b
we have plotted the quantity

∫ t
0 d2(u)I2(u)du as a function of time, in red. The blue dots correspond to

the data retrieved from [20]. Finally, Figure 3-c illustrates I1t) and I2(t), which represent respectively
the infected population in NY and NJ. It shows how the curve of NJ follows the curve in NY, with a
small attenuation. An analog theoretical result as in section 2 holds for solutions of (6).

Theorem 2. We assume that initial condition of system (6) satisfies S1(0) > 0, I1(0) > 0, R2(0) = 0,
S2(0) > 0, I2(0) = 0 and R1(0) = 0. Then for t > 0, all variables remain bounded and positive: there exists a
positive constant M < R(0) + I(0) such that for all t > 0:

0 < Si(t) < M, 0 < Ii(t) < M, 0 < Ri(t) < M, i ∈ {1, 2}

and

S1(t) + I1(t) + R1(t) + S2(t) + I2(t) + R2(t) ≤ S1(0) + I1(0) + S2(0)−
∫ t

0
(d1(s)I1(s) + d2(s)I2(s))ds.
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For any non negative S1(0), R1(0), S2(0), R2(0), the following functions satisfying for t > 0

I1(t) = I2(t) = 0
S1(t) + S2(t) = S1(0) + S2(0)

R1(t) + R2(t) = R1(0) + R2(0)
S1t = −S2t = l(t)

(
c12(t)S2 − c21(t)S1

)
R1t = −R2t = l(t)

(
c12(t)R2 − c21(t)R1

)
are solutions of (6). Furthermore, S1(t) + S2(t) is decreasing, R1(t) + R2(t) is increasing and I1(t) + I2(t) is
non increasing if and only if

I1(t)k1(t)
S1(t)

S1(t) + I1(t) + R1(t)
+ I2(t)k2(t)

S2(t)
S2(t) + I2(t) + R2(t)

≤ I1(t)(r + d1(t)) + I2(t)(r + d2(t)).

(8)

Remark 2. As in remark 1, we want to point out some interpretation of this theorem in the context of the
pandemic. Here, we have described some solutions with free epidemic component (I(t) = I2(t) = 0). Note that
in this case however, Si and Ri are not constant since they vary according to the fluxes between the two nodes.
Again the last inequality, quantifies the idea that when the spread of the virus becomes lower than the death and
recovery the infected population starts to decrease. The difference here is that we take into account the two nodes
together.

3. Conclusion

In this article, we have considered a simple non-autonomous SIR model to fit the data of COVID-19
in New York state. The model illustrates and quantifies how acting on the control k(t) allows to flatten
the curve of infected people over the time. From the model, using classical statistical methods, it is then
possible to provide predictions of the number of people in needs of hospitalization. Lastly, we have
fitted data from NJ state thanks to a coupled SIR model taking into account the daily fluxes between
NJ and NY. It allows to predict similar dynamics in NY and NJ, with a delay and small attenuation.
Note that, despite its simplicity, our model fits, as good as more sophisticated models, the available
data during the growing phase of March 2020. In a forthcoming work, we aim to fit data with the
model over a longer period . This would provide an accurate estimation of the different parameters.
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