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Abstract

This paper is devoted to the study of a three species ecosystem model
consisting of a prey, a predator and a top predator. This model
is given by a reaction diffusion system defined on a circular spatial
domain and incorporates the Holling type II and a modified Leslie-
Gower functional response. The aim of this paper is to investigate
theoretically and numerically the asymptotic behavior of the interior
equilibrium of the model. The conditions of boundedness, existence
of a positively invariant and attracting set are proved. Sufficient
conditions of local/global stability of the positive steady state are
established. In the end, we present a numerical evidence of time
evolution of the pattern formation.

©2016 L&H Scientific Publishing, LLC. All rights reserved.

1 Introduction and Mathematical Model

In the last few decades, the dynamic relationship between predator and its prey has long been and will
continue to be one of the dominant themes in both ecology and mathematical modeling. One of the
oldest and well known mathematical model which describing the interaction between predator and prey
populations was introduced by A. Lotka 1925 [1] and V. Volterra 1927 [2], governed by the following
differential equations {

u̇(t) = u(t)(m1 −n1v(t)),

v̇(t) = v(t)(−m2 +n2u(t)),
(1)

where u and v represent the population densities of prey and predator at time t, respectively, m1, n1, m2

and n2 are positive constants, which stand for the prey growth rate in the absence of the predators, the
capture rate of prey by per predator, the constant death rate in the absence of prey and the rate at which
each predator converts captured prey into predator births, respectively. They showed that, predator-
prey systems permanently oscillate for any initial condition if the prey growth rate is constant and
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the predator functional response is linear. The dynamical behavior of interacting species with different
functional response has been extensively investigated in terms of boundedness of solutions, existence
of an attracting set, local/global stability of equilibria and bifurcations (see, for example, [3–6]).

In [4], the authors considered a reaction diffusion predator-prey model defined on a square do-
main which incorporates Holling type II and a modified Leslie-Gower functional response. They have
proved the local/global stability, occurrence of bifurcations and patterns formations. In [7], the authors
considered the same model defined on a circular domain which is given by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂u
∂ t

= ∆rθu+u(1−u)− av
u+ e1

u = ∆rθu+ f (u,v) (r,θ) ∈ Ω, t > 0,

∂v
∂ t

= δ∆rθv+b(1− v
u+ e2

)v = δ∆rθv+g(u,v) (r,θ) ∈ Ω, t > 0,

∂ru(.,r,θ) = ∂rv(.,r,θ) = 0 for r = R (radial derivative).

(2)

This two species food chain model describes a prey population u which serves as food for a predator v,
where f (u,v) and g(u,v) are the local activity (in the absence of diffusion), Ω is a disc domain and ∆rθ
is the Laplacian operator in polar coordinates. The parameters a, b, e1 and e2 are assumed positive
values. Boundedness of the system, existence of an attracting set, local/global stability, occurrence of
Hopf and Turing bifurcations and patterns formation are studied.

In [8], the authors studied a reaction diffusion system of predator-prey model which is based on
the modified Leslie-Gower model with Beddington-DeAngelis functional responses on a circular domain
below

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂u
∂ t

= D1∆rθu+(a1 −b1u−
c1v

d1u+d2v+ k1
)u (r,θ) ∈ Ω, t > 0,

∂v
∂ t

= D2∆rθv+(a2 −
c2v

u+ k2
)v (r,θ) ∈ Ω, t > 0.

(3)

Recently, many researchers have studied the pattern formation for different models of three interacting
species in discrete and continuous cases and most of them have considered a food chain model with
diffusion and have investigated the local/global stability in the spatio-temporal system defined on a
square domain (see [9–13]).

In the present paper, we consider a three-species food chain model consisting of prey, intermediate
predator and top-predator, modeled by a reaction-diffusion system defined on a circular spatial domain
and incorporates the Holling type II and a modified Leslie-Gower functional response. One of the well
known methods in biology or ecology plays a crucial role in regulating the balance of the ecosystem and
controlling the dynamics of species is the introduction of a population further called “top-predator”.
However, the impact of this introduction should previously be studied in order to minimize adverse
effects. The first species denoted by U is the only food source of the second V . As well, intermediate
predatorV is the only prey of a top-predatorW . Local interactions between speciesU andV are modeled
by Lotka-Volterra type scheme and the interactions between species W and V has been modeled by
Leslie-Gower scheme [14, 15]. The spatio-temporal system for the three components species can be
written as follows (see [16]):

⎧
⎪⎪⎨

⎪⎪⎩

∂U(T,x,y)
∂T

= D1∆U(T,x,y)+ (a0 −b0U(T,x,y)− v0V (T,x,y)
U(T,x,y)+d0

)U(T,x,y),

∂V (T,x,y)
∂T

= D2∆V (T,x,y)+ (−a1 +
v1U(T,x,y)

U(T,x,y)+d0
− v2W (T,x,y)

V (T,x,y)+d2
)V (T,x,y),

(4)
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂W (T,x,y)
∂T

= D3∆W (T,x,y)+ (c3 −
v3W (T,x,y)

V (T,x,y)+d3
)W (T,x,y),

∂U
∂n

=
∂V
∂n

=
∂W
∂n

= 0,

U(0,x,y) =U0(x,y) ≥ 0, V (0,x,y) =V0(x,y) ≥ 0, W (0,x,y) =W0(x,y) ≥ 0,

where U(T,x,y), V (T,x,y) and W (T,x,y) are the densities of prey, intermediate predator and top-
predator, respectively, at time T and position (x,y) defined on a circular domain Ω with radius R
(i.e. Ω = {(x,y) ∈ R2/x2 + y2 < R2}. The three species are assumed to diffuse at rates Di (i = 1, 2,
3). The parameters a0, b0, v0, d0, a1, v1, v2, d2, c3, v3 and d3 are assumed to be positive constants
and are defined as follows: a0 is the growth rate of the prey U, b0 measures the mortality due to the
competition between individuals of the species U, v0 is the maximum extent that the rate of reduction
by individual U can reach, d0 measures the protection that the species U and V benefit through the
environment, a1 represents the death rate of V in the absence of U, v1, v2 and v3 are the the maximum
value that the rate of reduction by the individual of U , V and W can reach respectively, d2 is the value
of V for which the rate of elimination by individual V becomes v2

2 , c3 describes the growth rate of W,
assuming that there is the same number of males and females and d3 represents the residual loss caused
by high scarcity of prey V of the specie W . The vector n is an outward unit normal vector to the
smooth boundary ∂Ω. The homogeneous Neumann boundary conditions mean that the system is self
contained and there is no flux across the boundary ∂Ω.

The first model proposed in this topic is given by a system of ordinary differential equations as
follows (see [17]):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂U
∂T

= a0U −b0U2− v0VU
U +d0

,

∂V
∂T

=−a1V +
v1UV
U +d1

− v2WV
V +d2

,

∂W
∂T

= c3W 2 − v3W 2

V +d3
,

(5)

where U, V and W represent the population densities at time T, a0, b0, v0, d0, a1, v1, d1, v2, d2, c3, v3 and
d3 are model parameters assumed to be positive. Based on the studies presented in [17, 18], our main
contribution in this paper is to generalize the results presented in [7,8] for two species to three-species
reaction-diffusion system defined on a circular domain.

The organization of the remaining part of this work is as follows. In Section 2, we show the
boundedness of solutions. In section 3, we prove the existence of the equilibrium points and their
stability. Section 4 is devoted to the global stability of the nontrivial steady state. In section 5, we
give some numerical simulations and we end our work by a conclusion.

2 Boundedness of solutions

Considering system (4) and writing x and y in polar coordinates x = rcosθ and y = r sinθ , we get
Γ = {(r,θ) : 0 < r < R, 0 ≤ θ < 2π} (R is the radius of the disc), r =

√
x2 + y2 and θ = tan−1( y

x).
Without loss of generalities we denote also u(t,x,y) = u(t,rcos(θ),r sin(θ)) = u(t,r,θ),
v(t,x,y) = v(t,rcos(θ),r sin(θ)) = v(t,r,θ) and w(t,x,y) =w(t,rcos(θ),r sin(θ)) =w(t,r,θ) as the densities
of prey, predator and top predator in polar coordinates, respectively. Therefore, the Laplacian operator
in polar coordinates is given by

∆rθu =
∂ 2u
∂ r2 +

1
r

∂u
∂ r

+
1
r2

∂ 2u
∂θ2 . (6)
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To simplify system (4) we introduce the following transformations:

U =
a0

b0
u, V =

a2
0

b0v0
v, W =

a3
0

b0v0v2
w, T =

t
a0

, r =
r
′

a0
, θ = θ

′
,

and

a =
b0d0

a0
, b =

a1

a0
, c =

v1

a0
, d =

d2v0b0

a2
0

, p =
c3a2

0

v0b0v2
, q =

v3

v2
, s =

d3v0b0

a2
0

, δ1 =
D1

a0
, δ2 =

D2

a0
, δ3 =

D3

a0
.

In polar coordinates, the spatio-temporal system (4) is written as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u(t,r,θ)
∂ t

= δ1∆rθu(t,r,θ)+ (1−u(t,r,θ)− v(t,r,θ)
u(t,r,θ)+a

)u(t,r,θ), ∀(r,θ) ∈ Γ, t > 0

∂v(t,r,θ)
∂ t

= δ2∆rθv(t,r,θ)+ (−b+
cu(t,r,θ)

u(t,r,θ)+a
− w(t,r,θ)

v(t,r,θ)+d
)v(t,r,θ), ∀(r,θ) ∈ Γ, t > 0

∂w(t,r,θ)
∂ t

= δ3∆rθw(t,r,θ)+ (p− qw(t,r,θ)
v(t,r,θ)+ s

)w(t,r,θ) ∀(r,θ) ∈ Γ, t > 0

∂ru(.,r,θ) = ∂rv(.,r,θ) = ∂rw(.,r,θ) = 0 for r = R (radial derivative)

u(0,r,θ) = u0(r,θ) ≥ 0, v(0,r,θ) = v0(r,θ) ≥ 0, w(0,r,θ) = w0(r,θ) ≥ 0.

(7)

The following result gives the boundedness of solutions for system (7).

Theorem 1. Let Θ be a set defined as follows:

Θ ≡ [0,1]× [0,1+a]× [0,
p
q
(1+a+ s)]. (8)

Then,
i) Θ is positively invariant region,
ii) All solutions of (7) starting in Θ are ultimately bounded and eventually enter the attracting set Θ.

Proof: From equation (7), we have

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂u(t,r,θ)
∂ t

= δ1∆rθu(t,r,θ)+ (1−u(t,r,θ))u(t,r,θ ) ≤ (1−u)u,

∂u(0,r,θ)
∂n

= 0,

u(0,r,θ) = u0(r,θ) ≤ u01 = max
(r,θ )∈Γ

u0(r,θ),

(9)

and ⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂v(t,r,θ)
∂ t

= δ2∆rθv+(−b+
cu

u+a
− w

v+d
)v ≤ (

c
1+a

−b)v,

∂v(0,r,θ)
∂n

= 0,

v(0,r,θ) = v0(r,θ) ≤ v01 = max
(r,θ )∈Γ

v0(r,θ),

(10)

and ⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂w(t,r,θ)
∂ t

= δ3∆rθw+(p− qw
v+ s

)w ≤ p(1− w
p
q
(1+a+ s)

)w,

∂w(0,r,θ)
∂n

= 0,

w(0,r,θ) = w0(r,θ) ≤ w01 = max
(r,θ )∈Γ

w0(r,θ).

(11)
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From equations (9)-(11) and by applying the comparison principle, we have u(t,r,θ) ≤ u1 ≤ 1,
v(t,r,θ)≤ v1 ≤ 1 and w(t,r,θ)≤w1 ≤ 1 such that: limsup

t→+∞
u1(t) = 1, limsup

t→+∞
v1(t) = 1+a and limsup

t→+∞
w1(t) =

p
q (1+a+ s), where u1, v1 and w1 are solutions of the following equations, respectively,

⎧
⎪⎨

⎪⎩

du(t,r,θ)
dt

= (1−u1)u1,

u1(0) = u01 = max
(r,θ )∈Γ

u0(r,θ) ≤ 1,
(12)

⎧
⎪⎨

⎪⎩

dv(t,r,θ)
dt

= (
c

1+a
−b)v1,

v1(0) = v01 = max
(r,θ )∈Γ

v0(r,θ) ≤ 1,
(13)

and ⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dw(t,r,θ)
dt

= p(1− w
p
q
(1+a+ s)

)w,

w1(0) = w01 = max
(r,θ )∈Γ

w0(r,θ) ≤ 1.
(14)

Then, we deduce the result.

3 Analysis of Temporal System

In this section, we will study the behavior of system (7) in the absence of diffusion, (i.e., δ1 = δ2 = δ3 = 0).

3.1 Equilibria and Local Stability

Without diffusion, system (7) becomes
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

du(t)
dt

= (1−u(t)− v(t)
u(t)+a

)u(t),

dv(t)
dt

= (−b+
cu(t)

u(t)+a
− w(t)

v(t)+d
)v(t),

dw(t)
dt

= (p− qw(t)
v(t)+ s

)w(t).

(15)

Let E = (u,v,w)T and

F(E) =

⎛

⎝
f (u,v,w)
g(u,v,w)
h(u,v,w)

⎞

⎠=

⎛

⎜⎜⎜⎝

(1−u− v
u+a

)u

(−b+
cu

u+a
− w

v+d
)v

(p− qw
v+ s

)w

⎞

⎟⎟⎟⎠
.

Then, system (15) takes the following form:

dE
dt

= F(E). (16)

By computation, system (16) has four trivial equilibrium points E0 = (0,0,0), E1 = (1,0,0), E2 =
(0,0, sp

q ), E3 = (1,0, sp
q ) and a positive nontrivial one E∗ = (u∗,v∗,w∗) which exists if and only if the

following inequality is satisfied

qc > bq+ p and qc−bq− p > a(bq+ p) (17)
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such that

u∗ =
a(bq+ p)

qc−bq− p
, v∗ = (1−u∗)(u∗+a) and w∗ =

p(v∗+ s)
q

. (18)

By linearizing system (16) around the equilibrium point E∗, we obtain the associated Jacobian Matrix
J defined by

J(E∗) =

⎛

⎜⎜⎜⎜⎜⎜⎝

1−2u∗ − av∗

(u∗+a)2
− u∗

u∗+a
0

acv∗

(u∗+a)2
cu∗

u∗+a
−b− dw∗

(v∗+d)2
− v∗

v∗+d

0
q(w∗)2

u∗+a
−b− dw∗

(v∗+d)2
− 2qw∗

v∗+d

⎞

⎟⎟⎟⎟⎟⎟⎠
. (19)

Evaluating the Jacobian Matrix J at E0, E1, E2 and E3 and calculating the corresponding eigenvalues,
we have the following result:

Theorem 2. i) The steady state E0 is unstable,
ii) If ab > c−b, then the steady state E1 is asymptotically stable and it is unstable elsewhere,
iii) The steady state E2 is a saddle point,
iv) If b+ sp

qd > c
1+a , then the equilibrium point E3 = (1,0, sp

q ) is asymptotically stable and is a saddle
point elsewhere.

In the following, we prove the stability of the positive equilibrium E∗ = (u∗,v∗,w∗).

Theorem 3. If the condition (17) holds and the following inequalities are satisfied

a+1
qc

>
2a

qc−bq− p

and

b+
dp((1−u∗)(u∗+a)+ s)
q((1−u∗)(u∗+a)+d)2

>
cu∗

u∗+a
(20)

and
p2((1−u∗)(u∗+a)+ s)2

q(u∗+a)
> b+

dp((1−u∗)(u∗+a)+ s)
q((1−u∗)(u∗+a)+d)2

,

then, the nontrivial equilibrium point E∗ = (u∗,v∗,w∗) is asymptotically stable.

Proof: Writing FE(E∗) as

FE(E
∗) = J(E∗) =

⎛

⎝
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞

⎠ .

According to (18), a direct computation yields
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a11 = 1−2u∗ − a(1−u∗)
(u∗+a)

, a12 =− u∗

u∗+a
,a13 = 0,

a21 =
ac(1−u∗)
(u∗+a)

, a22 =
cu∗

u∗+a
−b−

dp
q
((1−u∗)(u∗+a)+ s)

((1−u∗)(u∗+a)+d)2
, a23 =− (1−u∗)(u∗+a)

(1−u∗)(u∗+a)+d
,

a31 = 0, a32 =

p2

q
((1−u∗)(u∗+a)+ s)2

u∗+a
−b−

dp
q
((1−u∗)(u∗+a)+ s)

((1−u∗)(u∗+a)+d)2
, a33 =−2p((1−u∗)(u∗+a)+ s)

(1−u∗)(u∗+a)+d
,

(21)
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where

u∗ =
a(bq+ p)

qc−bq− p
.

The characteristic polynomial of FE(E∗) can be written as:

ϕ(λ ) = λ 3 +B1λ 2 +B2λ +B3, (22)

where

(1−u∗)(u∗+a) =
aqc(qc− (bq+ p)(a+1))

(qc−bq− p)2
,
(1−u∗)
(u∗+a)

=
qc− (bq+ p)(a+1)

aqc
and

u∗

(u∗+a)
=

bq+ p
qc

.

Hence

B1 = −tr(LE(E
∗))

= −(a11 +a22 +a33)

= u∗(2− a
u∗+a

)+b+
dp(qc−bq− p)2(aqc(qc− (bq+ p)(a+1))+ s(qc−bq− p)2)

q(aqc(qc− (bq+ p)(a+1))+d(qc−bq− p)2)

+
2paqc(qc− (bq+ p)(a+1))

aqc(qc− (bq+ p)(a+1))+d(qc−bq− p)2
> 0,

B2 = a11a22 +a11a33 +a22a33 −a23a32 −a12a21

= (− cu∗

u∗+a
+b+

dp
q ((1−u∗)(u∗+a)+ s)

((1−u∗)(u∗+a)+d)2
)(2u∗ − (bq+ p)(a+1)

qc
+

2p((1−u∗)(u∗+a)+ s)
(1−u∗)(u∗+a)+d

)

+(
2p((1−u∗)(u∗+a)+ s)
(1−u∗)(u∗+a)+d

)(2u∗ − (bq+ p)(a+1)
qc

)+ (
ac(1−u∗)u∗

(u∗+a)2
)

+(

p2

q ((1−u∗)(u∗+a)+ s)2

u∗+a
−b−

dp
q ((1−u∗)(u∗+a)+ s)

((1−u∗)(u∗+a)+d)2
)(

(1−u∗)(u∗+a)
(1−u∗)(u∗+a)+d

)> 0,

B3 = −det(LE(E
∗))

= a12a21a33 +a11a23a32 −a11a22a33

= (
ac(1−u∗)u∗

(u∗+a)2
)(

2p((1−u∗)(u∗+a)+ s)
(1−u∗)(u∗+a)+d

)

+(

p2

q ((1−u∗)(u∗+a)+ s)2

u∗+a
−b−

dp
q ((1−u∗)(u∗+a)+ s)

((1−u∗)(u∗+a)+d)2
)

×(2u∗ − (bq+ p)(a+1)
qc

)(
(1−u∗)(u∗+a)

(1−u∗)(u∗+a)+d
)+ (− cu∗

u∗+a
+b+

dp
q ((1−u∗)(u∗+a)+ s)

((1−u∗)(u∗+a)+d)2
)

×(2u∗ − (bq+ p)(a+1)
qc

)(
2p((1−u∗)(u∗+a)+ s)
(1−u∗)(u∗+a)+d

)> 0,

B1B2 −B3 = a2
11(−a22 −a33)+a2

22(−a11 −a33)+a2
33(−a11 −a22)

+a12a21(a11 +a22)+a32a23(a33 +a22)−2a11a22a33

= [a2
11 −a32a23](−a22 −a33)+ [a2

33 −a12a21](−a11 −a22)+a2
22(−a11 −a33)−2a11a22a33

= (− cu∗

u∗+a
+b+

dp
q ((1−u∗)(u∗+a)+ s)

((1−u∗)(u∗+a)+d)2
+

2p((1−u∗)(u∗+a)+ s)
(1−u∗)(u∗+a)+d

)

[a2
11 +(

(1−u∗)(u∗+a)
(1−u∗)(u∗+a)+d

)× (

p2

q ((1−u∗)(u∗+a)+ s)2

u∗+a
−b−

dp
q ((1−u∗)(u∗+a)+ s)

((1−u∗)(u∗+a)+d)2
)]

+a2
22(2u∗ − (bq+ p)(a+1)

qc
+

2p((1−u∗)(u∗+a)+ s)
(1−u∗)(u∗+a)+d

)
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+[a2
33 +(

acu∗(1−u∗)
(u∗+a)2

)](2u∗ − (bq+ p)(a+1)
qc

− cu∗

u∗+a
+b+

dp
q ((1−u∗)(u∗+a)+ s)

((1−u∗)(u∗+a)+d)2
)

+2(2u∗ − (bq+ p)(a+1)
qc

)(− cu∗

u∗+a
+b+

dp
q ((1−u∗)(u∗+a)+ s)

((1−u∗)(u∗+a)+d)2
)(

2p((1−u∗)(u∗+a)+ s)
(1−u∗)(u∗+a)+d

)

> 0.

Using the condition (20), we have B1B2 −B3 > 0. By applying the Routh-Hurwitz criteria, we deduce
the result.

4 Global Stability of the Nontrivial Steady State with Diffusion

In this section, we study the global stability of the homogeneous non-trivial equilibrium E∗ = (u∗,v∗,w∗)
with diffusion terms.

Theorem 4. Suppose that the condition (17) holds and the following inequalities are satisfied

b < c, 1−a < u∗ <
ab

c−b
and v∗ < d(c−b). (23)

Then, the homogeneous non-trivial steady state (u∗,v∗,w∗) is globally asymptotically stable for system
(7).

Proof: The proof is based on the positive definite Lyapunov function. Let

ˆ
Γ

f (ρ)dρ =

ˆ R

0

ˆ 2π

0
f (r,θ)dθdr

and

Z(u,v,w) = z1(u)+ z2(v)+ z3(w),

where

z1(u) =
ˆ u

u∗

η −u∗

η
dη , z2(v) =

ˆ v

v∗

(η − v∗)(η +d)
η

dη and z3(w) =
ˆ w

w∗

η −w∗

η
dη . (24)

Let

Ψ(u,v,w) =
ˆ

Γ
Z(u(t,ρ),v(t,ρ),w(t,ρ))dρ (25)

=

ˆ
Γ
z1(u(t,ρ))dρ +

ˆ
Γ
z2(v(t,ρ))dρ +

ˆ
Γ
z3(w(t,ρ))dρ

=

ˆ
Γ
z1(u(t,ρ))dρ +

ˆ
Γ
z2(v(t,ρ))dρ +

ˆ
Γ
z3(w(t,ρ))dρ ,
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where Ψ is positive for all (u,v,w) ∈R3
∗+ and Ψ(u∗,v∗,w∗)= 0.By differentiating Ψ with respect to time

t, we have

dΨ
dt

=

ˆ
Γ
(
∂Z
∂u

∂u
∂ t

+
∂Z
∂v

∂v
∂ t

+
∂Z
∂w

∂w
∂ t

)dρ

=

ˆ
Γ
(
∂Z
∂u

(δ1∆u+ f (u,v,w))+
∂Z
∂v

(δ2∆v+g(u,v,w))+
∂Z
∂w

(δ3∆w+h(u,v,w)))dρ

=

ˆ
Γ
(δ1

∂Z
∂u

∆u+δ2
∂Z
∂v

∆v+δ3
∂Z
∂w

∆w)dρ +

ˆ
Γ
(
∂Z
∂u

f (u,v,w)+
∂Z
∂v

g(u,v,w)+
∂Z
∂w

h(u,v,w))dρ

=

ˆ
Γ
(δ1

∂Z
∂u

∆u+δ2
∂Z
∂v

∆v+δ3
∂Z
∂w

∆w)dρ +

ˆ
Γ
Żdρ ,

where Ż = ∂Z
∂ t . From Green’s identity we get

ˆ
Γ

∂Z
∂u

∆udρ =

ˆ
∂Γ

∂Z
∂u

∂u
∂η −

ˆ
Γ

∇∂Z
∂u

∇udρ

= −
ˆ

Γ
∇∂Z

∂u
∇udρ ,

ˆ
Γ

∂Z
∂v

∆vdρ =

ˆ
∂Γ

∂Z
∂v

∂v
∂η −

ˆ
Γ

∇∂Z
∂v

∇vdρ

= −
ˆ

Γ
∇∂Z

∂v
∇vdρ

and ˆ
Γ

∂Z
∂w

∆wdρ =

ˆ
∂Γ

∂Z
∂w

∂w
∂η

−
ˆ

Γ
∇ ∂Z

∂w
∇wdρ

= −
ˆ

Γ
∇ ∂Z

∂w
∇wdρ ,

where ∇rθu = (∂u
∂ r ,

1
r

∂u
∂θ ).

As Z(u,v,w) = z1(u)+ z2(v)+ z3(w) is written in a separable form, we have

z′′1(u) =
u∗

u
≥ 0, z′′2(v) =

v+dv∗

v
≥ 0 and z′′3(v) =

w∗

w
≥ 0.

Therefore, the matrix ⎛

⎜⎜⎜⎜⎜⎜⎝

∂ 2Z
(∂u)2

∂ 2Z
∂u∂v

∂ 2Z
∂u∂w

∂ 2Z
∂v∂u

∂ 2Z
(∂v)2

∂ 2Z
∂v∂w

∂ 2Z
∂w∂u

∂ 2Z
∂w∂v

∂ 2Z
(∂w)2

⎞

⎟⎟⎟⎟⎟⎟⎠

is positive definite and we haveˆ
Γ
(
∂Z
∂u

δ1∆u+δ2
∂Z
∂v

∆v+δ3
∂Z
∂w

∆w)dρ ≤ 0.

As Ż ≤ 0, we deduce that

dΨ
dt

≤ 0 for b < c, 1−a < u∗ <
ab

c−b
and v∗ < d(c−b).

Then, we have the result.
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5 Numerical simulations

In this section, we give some numerical simulations of pattern formation resulting from spatial distri-
bution of system (7) on the disc Γ = {(r,θ) : 0 < r < R, 0≤ θ < 2π}. The Laplacian describing diffusion
is calculated using finite difference schemes, that is, the derivatives are approached by differences over
space steps (∆r) and an explicit Euler’s method for the time integration with a time step size (∆t) with
zero-flux on the boundary. In order to avoid numerical artifacts, the values of time (∆t) and space steps
(∆r and ∆θ) have been chosen sufficiently small satisfying the CFL (Courant-Friedrichs-Levy) stability
criterion for diffusion equation. For numerical simulations, the initial condition is a small perturbation
in the vicinity of equilibrium point (u∗,v∗,w∗). These initial conditions have been chosen as:

u(0,r,θ) = u∗((rcosθ)2 +(r sinθ)2)< 50,

v(0,r,θ) = v∗((rcosθ)2 +(r sinθ)2)< 50,

w(0,r,θ) = w∗((rcosθ)2 +(r sinθ)2)< 50.

The used parameters are summarized in Table 1. The time evolution of spatial distributions is observed

Table 1 Table of the used parameters and the corresponding pictures of patterns formations

t a0 a1 b0 c3 d0 d2 d3 v0 v1 v2 v3

Fig.1(a) 0 0.5 0.4 0.36 0.2 0.3 0.4 0.4 0.4 0.8 0.4 0.6

Fig.1(b) 1200 0.5 0.4 0.36 0.2 0.3 0.4 0.4 0.4 0.8 0.4 0.6

Fig.1(c) 20000 0.5 0.4 0.36 0.2 0.3 0.4 0.4 0.4 0.8 0.4 0.6

in Fig.1, where the left figures are the evolution of the prey spatial distribution and the right figures
are the top predators and the center ones are the predators. We observe that, for t = 0 we have spots
patterns over the whole domain (see Fig.1 (a)). If we increase time t, these spots burst leading to
an aperiodic spatial distribution of some domain. Then this aperiodicity spreads throughout the area
and remains in time. After a while, the patterns exhibit a behavior that does not seem to change
its characteristics anymore and the labyrinth spatial pattern arise and we obtain the spatio-temporal
chaos. Thus, we have observed the patterns formation with respect to time (see Fig.1).

6 Conclusion

In this paper, we have considered a three-species food chain, namely, prey, predator and top predator,
given by a reaction diffusion system incorporating Holling type II and a modified Leslie-Gower func-
tional response defined in a circular domain. We have proved the conditions for boundedness, existence
of a positively invariant and attracting set. By using Routh-Hurwitz criterion, we have showed that E∗

is locally asymptotically stable for system (15) if some conditions are satisfied. By constructing a Lya-
punov function, we have obtained a sufficient conditions for global stability of the positive equilibrium
for system (7). By numerical simulations, we have plotted the nature of spatial patterns with respect
to time (see Fig.1) which leads to the formation of the labyrinth spatial patterns (the formation of
spatio-temporal chaos).
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(a)

(b)

(c)

Fig. 1 Spatial distribution of prey (first column), predator (second column) and top predator (third column)
are population densities of the spatial system (7). Spatial patterns are obtained with diffusivity coefficients
δ1 = 0.02, δ2 = 0.01 and δ3 = 0.05.
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