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2Ibnou Zohr University, Polydisciplinary Faculty of Ouarzazate, B.P: 638, Ouarzazate, Morocco.
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Abstract

In this paper, a finite difference method for a non-linear reaction diffusion
equation defined on a circular domain is presented. A simple second-order
finite difference treatment of polar coordinate singularity for Laplacian
operator, the centered difference approximations, the treatments for Neu-
mann boundary problems are used to discretize this equation. By using
this method, numerical solutions can be computed. In the end, we give
two applications of reaction diffusion predator-prey models with modified
Leslie-Gower and Holling type II functional responses.
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1 Introduction

A reaction-diffusion equation is a partial differential equation which comprises reaction and diffusion terms:

∂u
∂ t

= D∆u+ f (u), (1)

where u= u(t,x) is a state variable and describes density/concentration of a substance or a population at position
x∈Ω⊂Rn and at time t, Ω is an open domain, ∆ is the Laplacian operator and D is a diagonal matrix of diffusion
coefficients.

This type of equations was introduced by Fisher [2] and Kolmogorov, Petrovsky and Piskunov [3] to describe
the spreading of biological populations. Some of these equations can be solved analytically and numerically but
for a large number of equations, the analytical solution is unknown and can be approximated by using numerical
methods. In the literature, there exist many numerical methods for the resolution of different problems, here are
some used to discretize a system of equations: the finite element method, finite difference method, finite volume
method. In this review, we are interested in finite difference method.
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For the finite difference method (Thomée [15]), the domain is represented by a finite number of points
xi = Ωh called nodes of the mesh and the solution is represented by a set of values ui approaching u(xi). The
method replaces the partial derivatives by differences or combinations of these punctual values of the function
using truncated Taylor developments. The advantages of this method are its simplicity of writing and low
computational cost.

The finite difference method (Richtmyer and Morton [6]; Hildebrand [7]) is widely used by many authors for
approximating numerical solution of reaction-diffusion equations. Many authors (for example Ascher et al. [8];
Pao [9]; Jerome [16]; Li et al. [14]) also used this method to study stability and convergence result.

In [1], the author considered the following reaction-diffusion model defined:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂u(t,x,y)
∂ t

= D1∆u(t,x,y)+ f (u(t,x,y),v(t,x,y)) (x,y) ∈ Ω, t > 0,

∂v(t,x,y)
∂ t

= D2∆v(t,x,y)+g(u(t,x,y),v(t,x,y)) (x,y) ∈ Ω, t > 0,

∂u(t,x,y)
∂n

=
∂v(t,x,y)

∂n
= 0, (x,y) ∈ ∂Ω,

(2)

u(t,x,y) and v(t,x,y) represents the densities of populations, Ω = [0,L]× [0,L] and ∆u is the Laplacian operator

∆u =
∂ 2u
∂x2 +

∂ 2u
∂y2 , (3)

D1 and D2 are the diffusion coefficients, f (u,v) and g(u,v) model the local activity (absence of diffusion).
Authors in [13] are numerically solved this system with appropriate functions f and g by using finite difference
method on square domain and with Neumann boundary conditions.
In this review, we extend this method to a 2-D reaction diffusion system defined on a circular domain (Ω =
{(x,y) ∈ R2/x2 + y2 < R2}) and with Neumann boundary conditions. To do that, we strive to linearize the
reaction-diffusion system using the finite difference method [4] in polar coordinates. To apply this method to
two dimensions, a simple division in reaction-diffusion equation defines the node at any point of the mesh of the
circular domain.

The organization of the remaining part of the paper is as follows: In Section 2, we present a finite difference
discretization for equation (2) given in polar coordinates. In Section 3, we apply this method to two component
reaction diffusion predator-prey model defined on a disk. Then, we extend this result to three component reaction
diffusion predator-prey model.

2 Discretization of reaction-diffusion equation defined on a disk domain

In this section, through the finite difference method and the principle of the numerical method used in [5], we
solve numerically equation (2) defined on a disk domain Ω = {(x,y) ∈ R2/x2 + y2 < R2}.

As (x,y) ∈ Ω, we can make the following change of variables:
{

x = rcosθ ,

y = r sinθ ,
where

⎧
⎨

⎩
r =

√
x2 + y2,

θ = tan−1
( y

x

)
.

Without loss of generalities we also denote
{

u(t,x,y) = u(t,rcos(θ),r sin(θ)) = u(t,r,θ),

v(t,x,y) = v(t,rcos(θ),r sin(θ)) = v(t,r,θ).
Therefore the Laplacian operator in polar coordinates is given by :

∆rθu =
∂ 2u
∂ r2 +

1
r

∂u
∂ r

+
1
r2

∂ 2u
∂θ2 (4)
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and {
f (u(t,x,y),v(t,x,y)) = f (u(t,r,θ),v(t,r,θ)),

g(u(t,x,y),v(t,x,y)) = g(u(t,r,θ),v(t,r,θ)).

The Neumann boundary conditions in polar coordinates becomes:

⎧
⎪⎨

⎪⎩

∂u(t,x,y)
∂n

|∀(x,y)∈∂Ω = ∂ru(t,r,θ)| for r=R Radial derivative ,

∂v(t,x,y)
∂n

|∀(x,y)∈∂Ω) = ∂rv(t,r,θ)| for r=R Radial derivative .

Then system (2) can be written as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂u(t,r,θ)
∂ t

= D1∆rθu(t,r,θ)+ f (u(t,r,θ),v(t, r,θ )) for (r,θ) ∈ D and t > 0,

∂v(t,r,θ)
∂ t

= D2∆rθv(t,r,θ)+g(u(t,r,θ),v(t,r,θ )) for (r,θ) ∈ D and t > 0,

∂ru(.,r,θ) = ∂rv(.,r,θ) = 0, for r = R Radial derivative,

(5)

where D = {(r,θ) : 0 < r < R, 0 ≤ θ < 2π}.
Equation (2) is written

∂u(t,r,θ)
∂ t

= D1(
∂ 2u
∂ r2 +

1
r

∂u
∂ r

+
1
r2

∂ 2u
∂θ2 )+ f (u(t,r,θ),v(t,r,θ)). (6)

We see that, equation (6) has a singularity at the origin r = 0, (see [11]). This singularity is due to the representa-
tion of the equation in polar coordinates. If f is regular enough, the solution itself is nonsingular at the origin. In
order to have the desired regularity and accuracy, the classical finite difference scheme uses a uniformly integers
grid with some conditions at the origin. This pole conditions act as a numerical boundary condition at the origin
which is needed in finite difference scheme.

Considering the Neumann boundary conditions [12] and by discretization, we obtain the following approxi-
mation of equation (15). For n = 1, . . . ,N, with N = T

∆t , i= 1, . . . ,P+1, and j = 1, . . . ,M+1 we find {un
i, j,v

n
i, j}

such that

⎧
⎨

⎩
∂nun

i, j = ∆riθ j u
n
i, j + f (

−→
un

i, j,
−−→
un−1

i, j ),

∂nvn
i, j = δ∆riθ j v

n
i, j +g(

−→
un

i, j,
−−→
un−1

i, j ),
(7)

where
−→
un

i, j = (un
i, j,v

n
i, j)

T denotes the two-dimensional approximation at the point (ri,θ j, tn) with tn = n∆t.
The approximations of the initial conditions are given as:

u0
i, j = u0(ri,θ j), v0

i, j = v0(ri,θ j).

We choose a grid such that the points are integers in azimuthal direction and half-integer in radial direction (see
Fig. 1):

ri = (i− 1
2
)∆r, θ j = ( j−1)∆θ , (8)

where

∆r =
2

2P+1
, ∆θ =

2π
M

.
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Fig. 1 The circular mesh.

For i = 2, . . . ,P and j = 1, . . . ,M and using the centered difference method to discretize the Laplacian oper-
ator, we have

∆riθ j u
n
i, j ≈

un
i+1, j +un

i−1, j −2un
i, j

∆r2 +
un

i+1, j −un
i−1, j

2ri∆r
+

un
i, j+1 +un

i, j−1 −2un
i, j

r2
i ∆θ2

. (9)

From the Neumann boundary conditions (the flow is zero on the edge)

un
P+1, j −un

P, j

∆r
= 0, (10)

so the numerical boundary values at r = 1, un
P+1, j can be approximated by un

P, j, and un
i,0 = un

i,M , un
i,1 = un

i,M+1
since u is 2π periodic in θ . At i = 1, equation (9) becomes

∆r1θ j u
n
1, j ≈

un
2, j +un

0, j −2un
1, j

∆r2 +
un

2, j −un
0, j

2r1∆r
+

un
1, j+1 +un

1, j−1 −2un
1, j

r2
1∆θ2

(11)

since r1 =
∆r
2 , the term un

0, j is simplified and the equation (11) is written by

∆r1θ j u
n
1, j ≈

2(un
2, j −un

1, j)

∆r2 +
un

1, j+1 +un
1, j−1 −2un

1, j

r2
1∆θ2

. (12)

In order to approach ∂nun
i, j, we use the implicit Euler method,

∂nu
n
i, j =

un
i, j −un−1

i, j

∆t
.

Finally we obtain the following equation
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

un
i, j −un−1

i, j

∆t
= D1

(
un

i+1, j +un
i−1, j −2un

i, j

∆r2 +
un

i+1, j −un
i−1, j

2ri∆r
+

un
i, j+1 +un

i, j−1 −2un
i, j

r2
i ∆θ2

)
+ f (

−→
un

i, j,
−−→
un−1

i, j ),

vn
i, j − vn−1

i, j

∆t
= D2

(
vn
i+1, j + vn

i−1, j −2vn
i, j

∆r2 +
vn
i+1, j − vn

i−1, j

2ri∆r
+

vn
i, j+1 + vn

i, j−1 −2vn
i, j

r2
i ∆θ2

)
+ f (

−→
vn
i, j,

−−→
vn−1
i, j ).

(13)
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3 Application

In this section, we apply the above method to 2-D two component reaction-diffusion predator-prey model with
modified Leslie-Gower and Beddington-DeAngelis functional response and then we extend this method to 2-D
three reaction diffusion component predator-prey model.

3.1 Example of a predator-prey model of two species

Let us now consider the model with two component:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂u(t,x,y)
∂ t

= D1∆u(t,x,y)+ (a1 −b1u(t,x,y)−
c1v(t,x,y)

d1u(t,x,y)+d2v(t,x,y)+ k1
)u(t,x,y)

∂v(t,x,y)
∂ t

= D2∆v(t,x,y)+ (a2 −
c2v(t,x,y)

u(t,x,y)+ k2
)v(t,x,y).

(14)

This two species food chain model describes a prey population u which serves as food for a predator v. u(t,x,y)
and v(t,x,y) represent population densities at time t and the position (x,y) defined on a circular domain Ω with
radius R (i.e. Ω = {(x,y) ∈ R2/x2 + y2 < R2}), r1,a1,b1,k1,r2,a2, and k2 are positive parameters, a1 is the
growth rate of prey u, a2 describes the growth rate of predator v, b1 measures the strength of competition among
individuals of species u, c1 is the maximum value of the per capita reduction of u due to v, c2 has a similar
meaning to c1, k1 measures the extent protection to which environment provides to prey u, k2 has a similar
meaning to k1 relatively to the predator v, d1 and d2 are two positive constants, D1 and D2 are the diffusions
coefficients of the preys and the predators.

In polar coordinates model (14) is written as follows:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂u(t,r,θ)
∂ t

= D1∆rθu(t,r,θ)+ f (u(t,r,θ),v(t,r,θ )) for (r,θ) ∈ D and t > 0,

∂v(t,r,θ)
∂ t

= D2∆rθv(t,r,θ)+g(u(t,r,θ),v(t, r,θ )) for (r,θ) ∈ D and t > 0,

∂ru(.,r,θ) = ∂rv(.,r,θ) = 0 for r = R Radial derivative,

(15)

where ⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f (u(t,r,θ),v(t,r,θ )) = (a1 −b1u(t,r,θ)−
c1v(t,r,θ)

d1u(t,r,θ)+d2v(t,r,θ)+ k1
)u(t,r,θ),

g(u(t,r,θ),v(t,r,θ )) = (a2 −
c2v(t,r,θ)

u(t,r,θ)+ k2
)v(t,r,θ).

(16)

u(t,r,θ) and v(t,r,θ) represent the population densities at time t and the position (r,θ).
By computation, one can show that system (15) has four equilibrium points:

E0 = (0,0),E1 = (1,0),E2 = (0,e2),E∗ = (u∗,v∗),

where

u∗ =
1−a− e1+

√
(a+ e1 −1)2 +4(e1 −ae2)

2
, (17)

and
v∗ = u∗+ e2. (18)

Next, we consider the disc domain Ω = {(x,y) ∈ R2 : x2 + y2 < 400} and the boundary conditions are of the
Neumann type. In order to avoid numerical artifacts, the values of the time (∆t) and space steps (∆r and ∆θ)
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have been chosen sufficiently small and satisfying the CFL (Courant-Friedrichs-Levy) stability criterion for
reaction diffusion equation.

Therefore, we obtain the following system
⎧
⎨

⎩
∂nun

i, j = D1∆riθ j u
n
i, j + f (

−→
un

i, j,
−−→
un−1

i, j )

∂nvn
i, j = D2∆riθ j v

n
i, j +g(

−→
un

i, j,
−−→
un−1

i, j )
(19)

with ⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f (
−→
un

i, j,
−−→
un−1

i, j ) = a1un−1
i, j −b1un−1

i, j |un−1
i, j |−

c1vn−1
i, j

d1|un−1
i, j |+d2|vn−1

i, j |+ k1
un−1

i, j

g(
−→
un

i, j ,
−−→
un−1

i, j ) = a2vn−1
i, j −

c2vn−1
i, j

|un−1
i, j |+ k2

vn−1
i, j .

(20)

The linear system associated to system (15) is
AZ = B

and the unknown vector Z =

(−→u n

−→v n

)
is defined by

−→u n =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

un
1

un
2
...
...

un
M−1
un

M

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,−→v n =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

vn
1

vn
2
...
...

vn
M−1
vn
M

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, with un
j =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

un
1, j

un
2, j
...
...

un
P−1, j
un

P, j

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

and vn
j =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

vn
1, j

vn
2, j
...
...

vn
P−1, j
vn
P, j

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

and the matrix A can be written as

A =

(
A1 0
0 A2

)

where (
A1 = I+D1∆tL
A2 = I+D2∆tL

)

in which I is the identity matrix and the size of the matrix L is ((P+1)× (P+1)) and written as follows:

L =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q−2S S 0 . . . 0 S

S
. . .

. . .
. . .

. . . 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0
. . .

. . .
. . .

. . . S
S 0 . . . 0 S Q−2S

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

Q =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 1+λ1 0 . . . . . . 0

1−λ2
. . .

. . .
. . .

. . .
...

0
. . .

. . . 1+λi
. . .

...
...

. . . 1−λi
. . .

. . .
...

...
. . .

. . .
. . . −2 1+λP−1

0 . . . . . . 0 1−λP 1+λP

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and S =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β1 0 . . . . . . . . . 0

0
. . .

. . .
. . .

. . .
...

...
. . . βi

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

0 . . . . . . . . . 0 βP

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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with

βi =
1

(i−0.5)2∆θ2
,λi =

1

(i−0.5)
, i = 1, ....,P.

The known vector B =

(−→u n−1 +∆t
−→
f

−→v n−1 +∆t−→g

)
is defined by

B =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

B1

B2

.

.

.

.

.

.

BM−1

BM

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Bj =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∆r2(un−1

1, j +∆t f n−1

1, j )
.
.
.

∆r2(un−1

P, j +∆t f n−1

P, j )

∆r2(vn−1

1, j +∆tgn−1

1, j )
.
.
.

∆r2(vn−1

P, j +∆tgn−1

P, j )

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The initial conditions are small perturbation in the vicinity of equilibrium point (u∗,v∗) and are chosen as:

u0(ri,θ j) = u∗((ri cosθ j)
2 +(ri sinθ j)

2) = u∗r2

i < 400, (21)

v0(ri,θ j) = v∗((ri cosθ j)
2 +(ri sinθ j)

2) = v∗r2

i < 400. (22)

The values of the used parameters are given by

a1 = 1, a2 = 0.02, b1 = 1, k1 = 0.2, k2 = 0.1, d1 = 0.9, d2 = 0.1, c1 = 1.1,

c2 = 0.02, D1 = 1, D2 = 1. (23)

We suppose that the two species diffuse in the same way, (i.e. D1 =D2). In Fig. (2), the numerical solutions

un
i, j and vn

i, j of the predator-prey system are plotted. The left figures are the spatial distribution of prey population

and on the right ones are of the predator population. We observe that the spatial distribution is a spiral wave type

for system (15).

(a) (b)

(c) (d)

Fig. 2 Spatial distribution of species of system (15), for different values of time t, (a) t=100, (b) t=1000, (c) t=1800, (d)

t=6000
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3.2 Example of a three species predator-prey

In this example, we consider a three-species food chain model consisting of prey, intermediate predator and
top-predator, modeled by a system of three reaction-diffusion equations defined on a circular spatial domain and
incorporates the Holling type II and a modified Leslie-Gower functional response. The first species denoted U
is the only food source of the second V . As well, intermediate predator V is the only prey of a top-predator W .
Local interactions between species U and V are modeled by Lotka-Volterra type scheme and the interactions
between species W and V has been modeled by Leslie-Gower scheme [17]. The spatio-temporal system can be
written as follows (see [10]):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂U(T,x,y)
∂T

= D1∆U(T,x,y)+ (a0 −b0U(T,x,y)− v0V (T,x,y)
U(T,x,y)+d0

)U(T,x,y),

∂V (T,x,y)
∂T

= D2∆V (T,x,y)+ (−a1 +
v1U(T,x,y)

U(T,x,y)+d0
− v2W (T,x,y)

V (T,x,y)+d2
)V (T,x,y),

∂W (T,x,y)
∂T

= D3∆W (T,x,y)+ (c3 −
v3W (T,x,y)

V (T,x,y)+d3
)W (T,x,y),

∂U
∂n

=
∂V
∂n

=
∂W
∂n

= 0,

U(0,x,y) =U0(x,y) ≥ 0, V (0,x,y) =V0(x,y) ≥ 0, W (0,x,y) =W0(x,y) ≥ 0,

(24)

where U(T,x,y), V (T,x,y) and W (T,x,y) are the densities of prey, intermediate predator and top-predator,
respectively, at time T and position (x,y) defined on a circular domain Ω with radius R (i.e. Ω = {(x,y) ∈
R2/x2 + y2 < R2}. The three species are assumed to diffuse at rates Di (i = 1, 2, 3). The parameters a0, b0,
v0, d0, a1, v1, v2, d2, c3, v3 and d3 are assumed to be positive constants and are defined as follows: a0 is the
growth rate of the prey U, b0 measures the mortality due to the competition between individuals of the species
U, v0 is the maximum extent that the rate of reduction by individual U can reach, d0 measures the protection
that the species U and V benefit through the environment, a1 represents the death rate of V in the absence of U,
v1, v2 and v3 are the the maximum value that the rate of reduction by the individual of U , V and W can reach
respectively, d2 is the value of V for which the rate of elimination by individual V becomes v2

2 , c3 describes the
growth rate of W, assuming that there is the same number of males and females and d3 represents the residual
loss caused by high scarcity of prey V of the specie W .

Using the following transformations and by change of variables to polar coordinates:

U =
a0

b0
u, V =

a2
0

b0v0
v, W =

a3
0

b0v0v2
w, T =

t
a0

,

and

a =
b0d0

a0
, b =

a1

a0
, c =

v1

a0
, d =

d2v0b0

a2
0

, p =
c3a2

0

v0b0v2
, q =

v3

v2
, s =

d3v0b0

a2
0

, δ1 =
D1

a0
, δ2 =

D2

a0
, δ3 =

D3

a0

the spatio-temporal system (24) becomes
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u(t,r,θ)
∂ t

= δ1∆rθu(t,r,θ)+ (1−u(t,r,θ)− v(t,r,θ)
u(t,r,θ)+a

)u(t,r,θ), ∀(r,θ) ∈ Γ, t > 0

∂v(t,r,θ)
∂ t

= δ2∆rθv(t,r,θ)+ (−b+
cu(t,r,θ)

u(t,r,θ)+a
− w(t,r,θ)

v(t,r,θ)+d
)v(t,r,θ), ∀(r,θ) ∈ Γ, t > 0

∂w(t,r,θ)
∂ t

= δ3∆rθw(t,r,θ)+ (p− qw(t,r,θ)
v(t,r,θ)+ s

)w(t,r,θ) ∀(r,θ) ∈ Γ, t > 0

∂ru(.,r,θ) = ∂rv(.,r,θ) = ∂rw(.,r,θ) = 0 for r = R (radial derivative),

u(0,r,θ) = u0(r,θ) ≥ 0, v(0,r,θ) = v0(r,θ) ≥ 0, w(0,r,θ) = w0(r,θ) ≥ 0.

(25)
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u(t,r,θ), v(t,r,θ) and w(t,r,θ) represent the population densities at time t and the position (r,θ) ∈ Γ, Γ =
{(r,θ) : 0 < r < R, 0 ≤ θ < 2π}.

By computation, system (25) has four trivial equilibrium points E0 = (0,0,0), E1 = (1,0,0), E2 = (0,0, sp
q ),

E3 = (1,0, sp
q ) and a positive nontrivial one E∗ = (u∗,v∗,w∗)which exists if and only if the following inequalities

hold
qc > bq+ p and qc−bq− p > a(bq+ p), (26)

such that

u∗ =
a(bq+ p)

qc−bq− p
, v∗ = (1−u∗)(u∗+a) and w∗ =

p(v∗+ s)
q

. (27)

Therefore, we obtain the following system

⎧
⎪⎪⎨

⎪⎪⎩

∂nun
i, j = δ1∆riθ j u

n
i, j + f (

−→
un

i, j,
−−→
un−1

i, j ),

∂nvn
i, j = δ2∆riθ j v

n
i, j +g(

−→
un

i, j,
−−→
un−1

i, j ),

∂nwn
i, j = δ3∆riθ jw

n
i, j +h(

−→
un

i, j,
−−→
un−1

i, j ),

(28)

with ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (
−→
un

i, j,
−−→
un−1

i, j ) = un−1
i, j −un−1

i, j |un−1
i, j |−

vn−1
i, j

|un−1
i, j |+a

un−1
i, j ,

g(
−→
un

i, j,
−−→
un−1

i, j ) =−bvn−1
i, j +

cun−1
i, j

|un−1
i, j |+a

vn−1
i, j −

wn−1
i, j

|vn−1
i, j |+d

vn−1
i, j ,

h(
−→
un

i, j,
−−→
un−1

i, j ) = pwn−1
i, j −

qwn−1
i, j

|vn−1
i, j |+ s

wn−1
i, j .

(29)

The linear system associated with system (15) is given by

DH =C.

The unknown vector H =

⎛

⎝
−→u n

−→v n

−→w n

⎞

⎠ is defined by

−→u n =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

un
1

un
2
...
...

un
M−1
un

M

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,−→v n =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

vn
1

vn
2
...
...

vn
M−1
vn
M

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, −→w n =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

wn
1

wn
2
...
...

wn
M−1
wn

M

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, with un
j =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

un
1, j

un
2, j
...
...

un
P−1, j
un

P, j

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, vn
j =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

vn
1, j

vn
2, j
...
...

vn
P−1, j
vn
P, j

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, wn
j =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

wn
1, j

wn
2, j
...
...

wn
P−1, j
wn

P, j

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

and the matrix A can be written as

D =

⎛

⎝
D1 0 0
0 D2 0
0 0 D3

⎞

⎠ ,

⎛

⎝
D1 = I+δ1∆tL
D2 = I+δ2∆tL
D3 = I+δ2∆tL

⎞

⎠ .
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The known vector C =

⎛

⎜⎝

−→u n−1 +∆t
−→
f

−→v n−1 +∆t−→g
−→w n−1 +∆t

−→
h

⎞

⎟⎠ is defined by

C =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1

C2
...
...

CM−1

CM

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Cj =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∆r2(un−1
1, j +∆t f n−1

1, j )
...

∆r2(un−1
P, j +∆t f n−1

P, j )

∆r2(vn−1
1, j +∆tgn−1

1, j )
...

∆r2(vn−1
P, j +∆tgn−1

P, j )

∆r2(wn−1
1, j +∆thn−1

1, j )
...

∆r2(wn−1
P, j +∆thn−1

P, j )

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We simulate the spatial distributions of the three populations in the limited field Ω = {(x,y) ∈R2 : x2+y2 <
50}. The boundary conditions are of Neumann type, (i.e. there is no emigration or immigration of populations).
The initial conditions are a small perturbation in the vicinity of equilibrium point (u∗,v∗,w∗) and are chosen as

u0(ri,θ j) = u∗((ri cosθ j)
2 +(ri sinθ j)

2) = u∗r2
i < 50, (30)

v0(ri,θ j) = v∗((ri cosθ j)
2 +(ri sinθ j)

2) = v∗r2
i < 50,

w0(ri,θ j) = w∗((ri cosθ j)
2 +(ri sinθ j)

2) = w∗r2
i < 50

and parameters values are:

a0 = 0.5, a1 = 0.4, b0 = 0.36, d0 = 0.3, d2 = 0.4, d3 = 0.4, v0 = 0.4, v1 = 0.8, v2 = 0.4, v3 = 0.6. (31)

From Fig. (3), different types of dynamics are observed when the bifurcation parameter c3 varies.

4 Conclusions

In this paper, we have considered a nonlinear reaction-diffusion equation defined on a circular domain with the
Neumann boundary conditions. We used the implicit Euler scheme to approach the derivative in time and the
finite difference method to approximate the Laplacian operator in polar-coordinates. So, we extract a linear
system in the form AX = B which is necessary for the numerical solution of such equation.

To provide efficiency of this method, we have presented two applications arising from mathematical ecology.
A MATLAB code was also developed with the assumptions that the values of the time step (∆t) and space

steps (∆r and ∆θ) have been chosen sufficiently small (number of nodes on the radius and the perimeter is very
large) and satisfying the CFL (Courant-Friedrichs-Levy) stability criterion for reaction diffusion equation.

We chose a set of fixed parameters and the initial conditions depends on the points of the grid on the radius
and the numbers of nodes of the mesh on the radius and perimeter are set. Figure (2) represents the evolution
of the spatial distribution of two species for different values of time. We observe from this figure that when
increasing the value of time, the number of iterations in time increases (to calculate the solution), so the solution
of the system converges to a stable state. Figure (3) represents the evolution of the spatial distribution when the
control parameter varies.

Therefore, the advantages of this method are: the simplicity of implementation, effectiveness, ability to
construct approximations to high orders. Other methods such as finite element and finite volume can often be
interpreted as finite difference schemes in the case of regular mesh.
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(a)

(b)

(c)

Fig. 3 Spatial distribution of prey (first column), predator (second column) and top predator (third column) are population
densities of system (25). Spatial patterns are obtained with diffusivity coefficients δ1 = 0.02, δ2 = 0.01 and δ3 = 0.05,
for fixed time t = 12000 at different bifurcation parameter c3 = 0.23 (a), c3=0.22 (b), c3 = 0.15 (c)
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