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This paper is devoted to the study of food chain predator–prey model. This model is given
by a reaction–diffusion system defined on a circular spatial domain, which includes three-state
variables namely, prey and intermediate predator and top predator and incorporates the Holling
type II and a modified Leslie–Gower functional response. The aim of this paper is to investigate
theoretically and numerically the asymptotic behavior of the interior equilibrium of the model.
The local and global stabilities of the positive steady-state solution and the conditions that
enable the occurrence of Hopf bifurcation and Turing instability in the circular spatial domain
are proved. In the end, we carry out numerical simulations to illustrate how biological processes
can affect spatiotemporal pattern formation in a disc spatial domain and different types of spatial
patterns with respect to different time steps and diffusion coefficients are obtained.
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1. Introduction

In the last decades, the dynamical problems of preys
and predators associated with mathematical mod-
eling have become an important area of research
in ecology. One of the oldest and well known
mathematical model which describes the interac-
tion between two species of predator and prey was
introduced by Lotka [1925] and Volterra [1927],
this model is well known as Lotka–Volterra math-
ematical model. It consists of two differential
equations with a simple correspondence between
prey consumption and predator production. The
link between the dynamics of the two species in
predator–prey models is based on the trophic func-
tion, which describes the number of prey consumed
per predator per unit time for given number of preys
and predators.

The mathematical modeling of species inter-
actions has been extensively investigated for two
species in food chains, based on systems with

a modified version of the Leslie–Gower scheme.
The necessary and sufficient conditions for diffu-
sion driven instability which leads to the forma-
tion of spatial patterns, have been derived and
very interesting patterns have also been observed
from the numerical simulations see [Nindjin et al.,
2006; Nindjin & Aziz-Alaoui, 2008; Letellier & Aziz-
Alaoui, 2002; Jia & Jiang, 2011; Aziz-Alaoui &
Daher, 2003; Yafia et al., 2008; Wang & Wu, 2008;
Letellier et al., 2002] and references therein.

In [Nindjin et al., 2006; Camara & Aziz-Alaoui,
2008], the authors studied a prey–predator model
given by a reaction–diffusion system incorporating
Holling type II and a modified Leslie–Gower func-
tional response defined in a square domain. They
have demonstrated the qualitative analysis in terms
of local and global stability, bifurcations and pat-
terns formation.

In [Abid et al., 2014], the authors considered
the same model defined on a circular domain which
is given by:



∂u

∂t
= ∆rθu + u(1 − u) − av

u + e1
u = ∆rθu + f(u, v) (r, θ) ∈ Ω, t > 0

∂v

∂t
= δ∆rθv + b

(
1 − v

u + e2

)
v = δrθ∆v + g(u, v) (r, θ) ∈ Ω, t > 0

∂u

∂η
=

∂v

∂η
= 0

(1)

where f(u, v) and g(u, v) model the local activity
(absence of diffusion), with Ω being a disk domain
and ∆rθ the Laplacian operator in polar coordi-
nates. The model parameters a, b, e1 and e2 are
assumed to be positive values. These parameters are
defined as follows: a is the maximum value of the
per capita reduction of u due to v, b describes the
growth rate of predators v, e1 measures the extent
to which the environment provides protection to
prey u, e2 has a similar meaning to e1 relatively
to the predator v and δ is the diffusion coefficient
of predator. ∂u

∂η and ∂v
∂η are respectively the normal

derivatives of u and v on ∂Ω. The local and global
stabilities, the conditions for Hopf and Turing bifur-
cation in the spatial domain and the patterns for-
mation are studied.

Recently many researchers have studied the for-
mation of patterns for different three-species inter-
acting discrete or continuous systems and most of
the authors have considered a food chain model
with diffusion and investigated the diffusion driven

instability in the spatial system defined on a rectan-
gular domain, see [Hong & Murray, 2003; Maionchi
et al., 2006; Wu et al., 2010; Zhao & Lv, 2009;
Shen & You, 2010; Baghel & Dhar, 2012a, 2012b;
Araujo & de Aguiar, 2007; Wang, 2004].

In this paper, we consider a reaction–diffusion
model with three species, prey, intermediate preda-
tor and top-predator. One of the well known meth-
ods in biology or ecology which plays a crucial role
in regulating the balance of the ecosystem and also
control the dynamics of species, is the introduc-
tion of a further population called “top predator”.
However, the impact of this introduction should
be previously studied in order to minimize adverse
effects. Mathematical modeling provides a reason-
able solution at this step. The first species denoted
U is the only food source of the second V , and
the intermediate predator V is the only prey of a
top-predator W . Local interactions between species
U and V are modeled by the Lotka–Volterra type
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scheme (the predator population dies out exponen-
tially in the absence of its prey), the interaction
between species W and its prey V has been modeled
by the Leslie–Gower scheme [Leslie & Gower, 1960;
Leslie, 1948] (the loss in predator population is pro-
portional to the reciprocal of per capita availability

of its most favorite food). While the model stud-
ied here is mainly based on a modified version of
Leslie–Gower regime. The diffusion term describes
the ability to move in a domain of R

2 and the model
is given by a system of three differential equations
with diffusion as follows:



∂U(T, x, y)
∂T

= D1∆U(T, x, y) +
(

a0 − b0U(T, x, y) − v0V (T, x, y)
U(T, x, y) + d0

)
U(T, x, y),

∂V (T, x, y)
∂T

= D2∆V (T, x, y) +
(
−a1 +

v1U(T, x, y)
U(T, x, y) + d0

− v2W (T, x, y)
V (T, x, y) + d2

)
V (T, x, y),

∂W (T, x, y)
∂T

= D3∆W (T, x, y) +
(

c3 − v3W (T, x, y)
V (T, x, y) + d3

)
W (T, x, y),

∂U

∂n
=

∂V

∂n
=

∂W

∂n
= 0,

U(0, x, y) = U0(x, y) ≥ 0, V (0, x, y) = V0(x, y) ≥ 0, W (0, x, y) = W0(x, y) ≥ 0,

(2)

U(T, x, y) is the density of prey species, V (T, x, y)
the density of intermediate predator species and
W (T, x, y) the density of top-predator species at
time T and position (x, y) defined on a circular
domain (or disc domain) with radius R (i.e. Ω =
{(x, y) ∈ R2/x2 + y2 < R2}). ∆ is the Lapla-
cian operator. ∂U

∂η , ∂V
∂η and ∂W

∂η are respectively the
normal derivatives of U , V and W on ∂Ω. The
three species are assumed to diffuse at rates Di

(i = 1, 2, 3). a0, b0, v0, d0, a1, v1, v2, d2, c3, v3

and d3 are assumed to be positives and are defined
as follows: a0 is the rate of growth of the prey U ,
b0 measure mortality due to competition between
individuals of the species U , v0 is the maximum
extent that the rate of reduction by individual U
can reach, d0 measures protection that prey U and
intermediate predator V benefit through the envi-
ronment, a1 represents the mortality rate V in the
absence of U , v1 is the maximum value that the
rate of reduction by the individual U can reach, v2

is the maximum value that the rate of reduction
by the individual V can reach, v3 is the maximum
value that the rate of reduction by the individual
W can reach, d2 is the value of V for which the
rate of elimination by individual V becomes v2

2 , c3

describes the growth rate of W , assuming that there
are the same number of males and females and d3

represents the residual loss caused by high scarcity
of prey V of the species W .

The initial data U0(x, y), V0(x, y) and W0(x, y)
are non-negative continuous functions on Ω. The
vector η is an outward unit normal vector to the
smooth boundary ∂Ω. The homogeneous Neumann
boundary condition signifies that the system is self-
contained and there is no population flux across the
boundary ∂Ω.

The first model proposed in this topic is given
by ordinary differential equations [Aziz-Alaoui,
2002] and read as:



∂U

∂T
= a0U − b0U

2 − v0V U

U + d0
,

∂V

∂T
= −a1V +

v1UV

U + d1
− v2WV

V + d2
,

∂W

∂T
= c3W − v3W

2

V + d3
,

(3)

where U, V and W represent the population densi-
ties at time T . a0, b0, v0, d0, a1, v1, d1, v2, d2, c3,
v3 and d3 are assumed to be positive. d0 measures
the extent to which the environment provides pro-
tection to prey U , d1 has a similar meaning as d0,
d2 is the value of V at which the per capita removal
rate of V becomes v2

2 , d3 represents the residual loss
in species W due to severe scarcity of its favorite
food V ; the second term on the right-hand side in
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the third equation of (3) depicts the loss in the top-
predator population. Other parameters are defined
as parameters of system (2). The boundedness, exis-
tence of an attracting set, local and global stability
of equilibria are proved.

The delayed model of (3) (see [Nindjin & Aziz-
Alaoui, 2008]) is given by a system of three-delayed
differential equations:



∂u(t)
∂t

= u(t)
(

a1 − b1u(t − r1) − v0v(t)
u(t) + d0

)

∂v(t)
∂t

= v(t)
(
−a2 +

v1u(t − r12)
u(t − r12) + d0

− b2v(t − r2) − v2w(t)
v(t) + d2

)

∂w(t)
∂t

= w(t)
(

a3 − v3w(t − r3)
v(t − r23) + d3

)
.

(4)

In system (4), r1, r2, r3, r12 and r23 are non-negative
constant. r1 denotes the delay in the negative feed-
back. The authors assume that the prey growth
rate response to resources limitations involves delay
r12, due to gestation of intermediate predator V ,
that is, delay in time for prey biomass increasing
predator numbers. r23 can be regarded as a ges-
tation period. Furthermore, they assume that the
top predator growth rate response to resources lim-
itations involves also a delay, so, r3 has the same
meaning as r1. In addition, they have included the
term −b2V (t − r2) in the dynamics of predator V ,
to incorporate the negative feedback of intermedi-
ate predator crowding. The global stability and per-
sistence properties are studied by using Lyapunov
functional.

In [Zhou et al., 2009], the authors considered
a three-dimensional eco-epidemiological model with
delay. The stability of the equilibria, existence of
Hopf bifurcation and permanence are investigated.

Our goal, in this paper is to generalize the
results presented in (see [Nindjin et al., 2006; Nind-
jin & Aziz-Alaoui, 2008]) to a reaction–diffusion sys-
tem defined on a circular domain and those pre-
sented in [Abid et al., 2014] for two species. We
study the local/global stability and the occurrence
of Turing instability. In the end, we give some
numerical simulations illustrating our results.

The current work is organized as follows. In
Sec. 2, we give the spatiotemporal mathematical
model. Section 3 presents the local/global stability

analysis and Hopf bifurcation for the temporal sys-
tem. In Sec. 4, we derive the analytical conditions
for diffusion driven instability and we perform the
conditions of pattern formation. In Sec. 5, we illus-
trate our results by numerical simulations. In the
last section, a conclusion is given.

2. Mathematical Model and
Preliminaries

In this section, we present some preliminary results
on the boundedness of solution for system (2) on
the disc domain.

Firstly, we reconsider system (2) defined on
the circular domain Ω, then we can write x and
y in polar coordinates as follows x = r cos θ and
y = r sin θ. By applying the polar coordinate trans-
formation, we find Γ = {(r, θ) : 0 < r < R, 0 ≤
θ < 2π}. R is the radius of the disk Γ, with
r =

√
x2 + y2 and θ = tan−1( y

x). Without loss of
generalities we denote also

u(t, x, y) = u(t, r cos(θ), r sin(θ)) = u(t, r, θ),

v(t, x, y) = v(t, r cos(θ), r sin(θ)) = v(t, r, θ) and

w(t, x, y) = w(t, r cos(θ), r sin(θ)) = w(t, r, θ)

are the densities of prey, predators and top preda-
tors respectively in polar coordinates.

Therefore, the Laplacian operator in polar coor-
dinates is given by:

∆rθu =
∂2u

∂r2
+

1
r

∂u

∂r
+

1
r2

∂2u

∂θ2
. (5)

To simplify system (2) we introduce some transfor-
mations of variables:

U =
a0

b0
u, V =

a2
0

b0v0
v, W =

a3
0

b0v0v2
w,

T =
t

a0
, r =

r′

a0
, θ = θ′

and

a =
b0d0

a0
, b =

a1

a0
, c =

v1

a0
, d =

d2v0b0

a2
0

,

p =
c3a

2
0

v0b0v2
, q =

v3

v2
, s =

d3v0b0

a2
0

,

δ1 =
D1

a0
, δ2 =

D2

a0
, δ3 =

D3

a0
.
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Then the spatiotemporal system (2) in polar coordinates is written as follows:


∂u(t, r, θ)
∂t

= δ1∆rθu(t, r, θ) + f(u(t, r, θ), v(t, r, θ), w(t, r, θ)) ∀(r, θ) ∈ Γ, t > 0

∂v(t, r, θ)
∂t

= δ2∆rθv(t, r, θ) + g(u(t, r, θ), v(t, r, θ), w(t, r, θ)) ∀(r, θ) ∈ Γ, t > 0

∂w(t, r, θ)
∂t

= δ3∆rθw(t, r, θ) + h(u(t, r, θ), v(t, r, θ), w(t, r, θ)) ∀(r, θ) ∈ Γ, t > 0

∂u(t, r, θ)
∂n

=
∂v(t, r, θ)

∂n
=

∂w(t, r, θ)
∂n

= 0, ∀(r, θ) ∈ ∂Γ

u(0, r, θ) = u0(r, θ) ≥ 0, v(0, r, θ) = v0(r, θ) ≥ 0, w(0, r, θ) = w0(r, θ) ≥ 0

(6)

where 


f(u(t, r, θ), v(t, r, θ), w(t, r, θ)) =
(

1 − u(t, r, θ) − v(t, r, θ)
u(t, r, θ) + a

)
u(t, r, θ),

g(u(t, r, θ), v(t, r, θ), w(t, r, θ)) =
(
−b +

cu(t, r, θ)
u(t, r, θ) + a

− w(t, r, θ)
v(t, r, θ) + d

)
v(t, r, θ),

h(u(t, r, θ), v(t, r, θ), w(t, r, θ)) =
(

p − qw(t, r, θ)
v(t, r, θ) + s

)
w(t, r, θ).

(7)

Without diffusion, system (6) becomes


∂u(t, r, θ)
∂t

=
(

1 − u(t, r, θ) − v(t, r, θ)
u(t, r, θ) + a

)
u(t, r, θ),

∂v(t, r, θ)
∂t

=
(
−b +

cu(t, r, θ)
u(t, r, θ) + a

− w(t, r, θ)
v(t, r, θ) + d

)
v(t, r, θ),

∂w(t, r, θ)
∂t

=
(

p − qw(t, r, θ)
v(t, r, θ) + s

)
w(t, r, θ).

(8)

A steady state (ue, ve, we) of (8) is an equilibrium point of (6) which is a solution of the following system


δ1∆rθue(t, r, θ) + f(ue(t, r, θ), ve(t, r, θ), we(t, r, θ)) = 0,

δ2∆rθve(t, r, θ) + g(ue(t, r, θ), ve(t, r, θ), we(t, r, θ)) = 0,

δ3∆rθwe(t, r, θ) + h(ue(t, r, θ), ve(t, r, θ), we(t, r, θ)) = 0.

(9)

Then, we denote E = (u, v, w)T and

L(E) =




f(u, v, w)

g(u, v, w)

h(u, v, w)


 =




(
1 − u − v

u + a

)
u

(
−b +

cu

u + a
− w

v + d

)
v

(
p − qw

v + s

)
w




.
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Then, problem (8) can be written as:

dE

dt
= L(E). (10)

It is obvious that, problem (10) has a positive
steady state if and only

qc > bq + p and qc − bq − p > a(bq + p). (11)

The positive steady state is uniquely given by

u∗ =
a(bq + p)

qc − bq − p
, v∗ = (1 − u∗)(u∗ + a)

and w∗ =
p(v∗ + s)

q
.

(12)

The conditions (11) ensure that the system (6) has
a positive equilibrium point corresponding to con-
stant coexistence of the three species. We need to
know the flow on the boundaries of R

3
+, system (10)

has four trivial boundary equilibria E0 = (0, 0, 0),
E1 = (1, 0, 0), E2 = (0, 0, sp

q ) and E3 = (1, 0, sp
q )

and the nontrivial one is E∗ = (u∗, v∗, w∗).

Remark 2.1. Biologically, if u = 0 or v = 0 (i.e. when
one of the populations of prey or predator dies),
the introduction of top predators is not necessary.
Using only the first two equations of system (10)
and removing the last term of the second member
of the second equation of (10), this system is written
on the uv-plane as follows:



du

dt
=

(
1 − u − v

u + a

)
u,

dv

dt
=

(
−b +

cu

u + a

)
v.

(13)

The behaviors of solutions of system (13) are stud-
ied in [Aziz-Alaoui & Daher, 2003]. The system has
two equilibria on the boundaries of R

2
+, E00 = (0, 0),

E11 = (1, 0). Obviously, these points are restrictions
of E0, E1 in the uv-plane. The existence of an inte-
rior equilibrium of (13) in the positive first quadrant
IntR+

uv is proved and the local stability of equilib-
ria of (13) is determined by computing the eigenval-
ues of the Jacobian matrix about each equilibrium
(see [Aziz-Alaoui & Daher, 2003; Camara & Aziz-
Alaoui, 2008])

J(E00)=
(

1 0
0 −b

)
, J(E11)=



−1

−1
1+ a

0
c− b− ab

1+ a


.

It is easy to verify that E00 = (0, 0) is unsta-
ble if b > 0 and it is a hyperbolic saddle point
which attracts in the v-direction and repels in the
u-direction. For E11 = (1, 0), the eigenvalues of the
Jacobian matrix J(E11) are

−1,
c − b − ab

1 + a
. (14)

If c − b > ab, then E11 = (1, 0) is also a hyperbolic
saddle point. If c − b < ab, then both eigenvalues
are negative and E11 is locally asymptotically stable
and if c < b, E11 is globally asymptotically stable
(see [Aziz-Alaoui, 2002]). If c − b > ab, the corre-
sponding instantaneous system of (10) is uniformly
persistent which implies that system (10) must have
a positive equilibrium.

Using the second and the third equations of sys-
tem (10) and removing the second term of the sec-
ond equation of (10), this system becomes restricted
to the vw-plane R+

vw:


dv

dt
=

(
−b − w

v + d

)
v,

dw

dt
=

(
p − qw

v + s

)
w.

(15)

We can also compute explicitly E22 = (0, sp
q ) is

the restriction of the boundary equilibrium E2 =
(0, 0, sp

q ) of system (10) in the vw-plan and the Jaco-
bian matrix is

J(E22) =



−b − sp

qd
0

s2p2

qa
−2sp

d


.

As 2sp
d > 0 and b + sp

qd > 0, the two eigenvalues are
negative and E22 has a stable manifold of at least
two dimensions.

For the equilibrium E33, using the first and the
third equations of system (10) and removing the
last term of the second member of the second equa-
tion of (10) and the term v in the second member
of the third equation of (10), this system becomes
restricted to the uw-plane R+

uw as follows:


du

dt
= (1 − u)u,

dw

dt
=

(
p − qw

s

)
w.

(16)
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We can also see that E33 = (1, sp
q ) is the restriction

of the boundary equilibrium E3 = (1, 0, sp
q ) of sys-

tem (10) in the uw-plan and the Jacobian matrix
is

J(E33) =



−1 0

0 −2sp
d


.

As 2sp
d > 0, the eigenvalues are negative and E33

has a stable manifold of at least two dimensions.

Next from the standpoint of biology, we are
only interested in the dynamics of model (10) in
the closed first quadrant R

3
+. We denote R

3
+ = {(u,

v,w) ∈ R
3, u0 ≥ 0, v0 ≥ 0, w0 ≥ 0}. We will inves-

tigate the asymptotic behavior of orbits starting in
the positive cone int R

3
+ = {(u, v, w) ∈ R

3, u0 > 0,
v0 > 0, w0 > 0}.

Throughout this paper, by saying that E =
(u, v, w) is positive, we mean that u > 0, v > 0 and
w > 0. Concerning the boundedness of the solution
for the model system (10), we state the following
theorem:

Theorem 1. If the condition (11) is satisfied, the
assembly defined by

Θ ≡ [0, 1] × [0, 1 + a] ×
[
0,

p

q
(1 + a + s)

]
(17)

(i) is positively invariant region.
(ii) All solutions of (10) initiating in Θ are ulti-

mately bounded with respect to R
3
+ and eventu-

ally enter the attracting set Θ.

Proof. From Eq. (6)1, we have




∂u(t, r, θ)
∂t

= δ1∆rθu(t, r, θ)

+ (1 − u(t, r, θ)u(t, r, θ)),

∂u(0, r, θ)
∂n

= 0,

u(0, r, θ) = u0(r, θ) ≤ u01 = max
(r,θ)∈Γ

u0(r, θ).

(18)

By the comparison principle, we have u(t, r, θ) ≤
u1 ≤ 1 with u1(t) = u01

u01+(1−u01)e−t being a solution

of the following ODE:


du(t, r, θ)
dt

= (1 − u1)u1,

u1(0) = u01 ≤ 1.

(19)

Then

lim sup
t→+∞

u1(t) = 1, (20)

from Eq. (6)2, we have


∂v(t, r, θ)
∂t

= δ2∆rθv +
(
−b +

cu

u + a
− w

v + d

)
v

≤ δ2∆rθv +
(

c

1 + a
− b

)
v,

∂v(0, r, θ)
∂n

= 0,

v(0, r, θ) = v0(r, θ) ≤ v01 = max
(r,θ)∈Γ

v0(r, θ).

(21)

By the comparison principle, we have v(t, r, θ) ≤
v1 ≤ 1 with v1(t) = (1+a)v01

v01+e−(c−b(1+a))t being a solu-
tion of the following ODE:


dv(t, r, θ)

dt
=

(
c

1 + a
− b

)
v1,

v1(0) = v01 ≤ 1.

(22)

Then

lim sup
t→+∞

v1(t) = 1 + a. (23)

From Eq. (6)3, we have


∂w(t, r, θ)
∂t

= δ3∆rθw +
(

p − qw

v + s

)
w

≤ δ3∆rθw + p


1 − w

p

q
(1 + a + s)


w,

∂w(0, r, θ)
∂n

= 0,

w(0, r, θ) = w0(r, θ) ≤ w01 = max
(r,θ)∈Γ

w0(r, θ).

(24)

By the comparison principle, we have w(t, r, θ) ≤
w1 ≤ 1 with w1(t) =

p
q
(1+a+s)w01

w01+( p
q
(1+a+s)−w01)e−pt being a
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solution of the ODE:


dw(t, r, θ)
dt

= p


1 − w

p

q
(1 + a + s)


w,

w1(0) = w01 ≤ 1.

(25)

Then

lim sup
t→+∞

w1(t) =
p

q
(1 + a + s). (26)

�

3. Analysis of Temporal System
on a Disk

In this section, we will study the dynamical behav-
ior of system (6) in the absence of diffusion, (i.e. tak-
ing diffusion coefficients δ1, δ2 and δ3 equal to zero),

in terms of local/global stability of the positive
steady state E∗ = (u∗, v∗, w∗) and the conditions
in which the strictly positive interior equilibrium
enters into Hopf bifurcation.

3.1. Equilibria and local stability

The steady states are determined analytically by
setting dE

dt = 0, by a simple computation, the triv-
ial steady states are

E0 = (0, 0, 0), E1 = (1, 0, 0),

E2 =
(

0, 0,
sp

q

)
and E3 =

(
1, 0,

sp

q

)

and a unique interior one E∗ = (u∗, v∗, w∗).
The dynamical behavior of equilibrium points

can be studied by computing the eigenvalues of the
Jacobian matrix J of system (10) where

J(E∗) =




1 − 2u∗ − av∗

(u∗ + a)2
− u∗

u∗ + a
0

acv∗

(u∗ + a)2
cu∗

u∗ + a
− b − dw∗

(v∗ + d)2
− v∗

v∗ + d

0
q(w∗)2

u∗ + a
− b − dw∗

(v∗ + d)2
− 2qw∗

v∗ + d




. (27)

Then, the Jacobian matrix evaluated at E0 = (0,
0, 0) and E1 = (1, 0, 0) are respectively

J(E0) =




0

J(E00) 0

0 −b 0


,

J(E1) =




0

J(E11) 0

0 −b 0


.

(28)

The eigenvalues of J(E0) are 1, −b and 0, then E0

is nonhyperbolic. Furthermore, as one eigenvalue is
a positive real, and another one is a negative real,
E0 is always unstable. Thus, for each orbit start-
ing in int(R3

+), the number of prey u and specialist
predator v will not tend to zero.

The eigenvalues of J(E1) are 1, c−b−ab
1+a and 0.

If ab > c− b, two of the eigenvalues are negative, so
E1 has a stable manifold of at least two dimensions
and if ab < c − b, E1 is nonhyperbolic and E1 is
unstable.

For the equilibrium E2 the Jacobian matrix
evaluated at this equilibrium is

J(E2) =




1 0 0

0

0 J(E22)


 (29)

The eigenvalues of J(E2) are 1, −b − sp
qd and −2sp

d .
Hence the equilibrium E2 = (0, 0, sp

q ) is a saddle
with dim W s(E2) = 2 and dimW u(E2) = 1. For
the equilibrium E3 the Jacobian matrix evaluated
at this equilibrium is

J(E3) =




−1
−1

1 + a
0

0
c

1 + a
− b − sp

qd
0

0
s2p2

q(1 + a)
−2sp

d




. (30)
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The eigenvalues of J(E3) are −1, c
1+a −b− sp

qd , −2sp
d

respectively. Hence if b + sp
qd > c

1+a , the equilibrium
E3 = (1, 0, sp

q ) is locally asymptotically stable. If
b + sp

qd < c
1+a the equilibrium E3 = (1, 0, sp

q ) is a
saddle with dim W s(E3) = 2 and dimW u(E3) = 1.

In the following, we shall discuss the local sta-
bility of the positive steady state E∗ = (u∗, v∗, w∗)
for the ODE system (10).

Theorem 2. If condition (11) is satisfied and

a + 1
qc

>
2a

qc − bq − p

and

b +
dp((1 − u∗)(u∗ + a) + s)
q((1 − u∗)(u∗ + a) + d)2

>
cu∗

u∗ + a
(31)

and

p2((1 − u∗)(u∗ + a) + s)2

q(u∗ + a)

> b +
dp((1 − u∗)(u∗ + a) + s)
q((1 − u∗)(u∗ + a) + d)2

.

Then, the equilibrium solution E∗ = (u∗, v∗, w∗) is
locally asymptotically stable.

Proof. Define LE(E∗) by

LE(E∗) =




a11 a12 a13

a21 a22 a23

a31 a32 a33




according to (12), a direct calculation yields


a11 = 1 − 2u∗ − a(1 − u∗)
(u∗ + a)

, a12 = − u∗

u∗ + a
, a13 = 0,

a21 =
ac(1 − u∗)
(u∗ + a)

, a22 =
cu∗

u∗ + a
− b −

dp

q
((1 − u∗)(u∗ + a) + s)

((1 − u∗)(u∗ + a) + d)2
, a23 = − (1 − u∗)(u∗ + a)

(1 − u∗)(u∗ + a) + d
,

a31 = 0, a32 =

p2

q
((1 − u∗)(u∗ + a) + s)2

u∗ + a
− b −

dp

q
((1 − u∗)(u∗ + a) + s)

((1 − u∗)(u∗ + a) + d)2
,

a33 = −2p((1 − u∗)(u∗ + a) + s)
(1 − u∗)(u∗ + a) + d

,

(32)

where
u∗ =

a(bq + p)
qc − bq − p

.

The characteristic polynomial of LE(E∗) can be written as

ϕ(λ) = λ3 + B1λ
2 + B2λ + B3, (33)

where

(1 − u∗)(u∗ + a) =
aqc(qc − (bq + p)(a + 1))

(qc − bq − p)2
,

(1 − u∗)
(u∗ + a)

=
qc − (bq + p)(a + 1)

aqc
,

u∗

(u∗ + a)
=

bq + p

qc
.

Hence

B1 = −tr(LE(E∗)) = −(a11 + a22 + a33)

= u∗
(

2 − a

u∗ + a

)
+ b +

dp(qc − bq − p)2(aqc(qc − (bq + p)(a + 1)) + s(qc − bq − p)2)
q(aqc(qc − (bq + p)(a + 1)) + d(qc − bq − p)2)

+
2paqc(qc − (bq + p)(a + 1))

aqc(qc − (bq + p)(a + 1)) + d(qc − bq − p)2
> 0,
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B2 = a11a22 + a11a33 + a22a33 − a23a32 − a12a21

=


− cu∗

u∗ + a
+ b +

dp

q
((1 − u∗)(u∗ + a) + s)

((1 − u∗)(u∗ + a) + d)2




(
2u∗ − (bq + p)(a + 1)

qc
+

2p((1 − u∗)(u∗ + a) + s)
(1 − u∗)(u∗ + a) + d

)

+
(

2p((1 − u∗)(u∗ + a) + s)
(1 − u∗)(u∗ + a) + d

)(
2u∗ − (bq + p)(a + 1)

qc

)
+

(
ac(1 − u∗)u∗

(u∗ + a)2

)

+


 p2

q
((1 − u∗)(u∗ + a) + s)2

u∗ + a
− b −

dp

q
((1 − u∗)(u∗ + a) + s)

((1 − u∗)(u∗ + a) + d)2




(
(1 − u∗)(u∗ + a)

(1 − u∗)(u∗ + a) + d

)

> 0,

B3 = −det(LE(E∗))

= a12a21a33 + a11a23a32 − a11a22a33

=
(

ac(1 − u∗)u∗

(u∗ + a)2

)(
2p((1 − u∗)(u∗ + a) + s)

(1 − u∗)(u∗ + a) + d

)

+


 p2

q
((1 − u∗)(u∗ + a) + s)2

u∗ + a
− b −

dp

q
((1 − u∗)(u∗ + a) + s)

((1 − u∗)(u∗ + a) + d)2


 (

2u∗ − (bq + p)(a + 1)
qc

)

×
(

(1 − u∗)(u∗ + a)
(1 − u∗)(u∗ + a) + d

)
+


− cu∗

u∗ + a
+ b +

dp

q
((1 − u∗)(u∗ + a) + s)

((1 − u∗)(u∗ + a) + d)2




(
2u∗ − (bq + p)(a + 1)

qc

)

×
(

2p((1 − u∗)(u∗ + a) + s)
(1 − u∗)(u∗ + a) + d

)

> 0,

B1B2 − B3

= a2
11(−a22 − a33) + a2

22(−a11 − a33)

+ a2
33(−a11 − a22) + a12a21(a11 + a22) + a32a23(a33 + a22) − 2a11a22a33

= [a2
11 − a32a23](−a22 − a33) + [a2

33 − a12a21](−a11 − a22) + a2
22(−a11 − a33) − 2a11a22a33

=


− cu∗

u∗ + a
+ b +

dp

q
((1 − u∗)(u∗ + a) + s)

((1 − u∗)(u∗ + a) + d)2
+

2p((1 − u∗)(u∗ + a) + s)
(1 − u∗)(u∗ + a) + d




×


a2

11 +
(

(1 − u∗)(u∗ + a)
(1 − u∗)(u∗ + a) + d

)
 p2

q
((1 − u∗)(u∗ + a) + s)2

u∗ + a
− b −

dp

q
((1 − u∗)(u∗ + a) + s)

((1 − u∗)(u∗ + a) + d)2







+ a2
22

(
2u∗ − (bq + p)(a + 1)

qc
+

2p((1 − u∗)(u∗ + a) + s)
(1 − u∗)(u∗ + a) + d

)
+

[
a2

33 +
(

acu∗(1 − u∗)
(u∗ + a)2

)]
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×


2u∗ − (bq + p)(a + 1)

qc
− cu∗

u∗ + a
+ b +

dp

q
((1 − u∗)(u∗ + a) + s)

((1 − u∗)(u∗ + a) + d)2


 + 2

(
2u∗ − (bq + p)(a + 1)

qc

)

×


− cu∗

u∗ + a
+ b +

dp

q
((1 − u∗)(u∗ + a) + s)

((1 − u∗)(u∗ + a) + d)2




(
2p((1 − u∗)(u∗ + a) + s)

(1 − u∗)(u∗ + a) + d

)

> 0.

Using the conditions (31) we see that B1B2 −
B3 > 0. From the Routh–Hurwitz criterion, E∗ =
(u∗, v∗, w∗) is local asymptotically stable. �

Next, we will study the conditions under which
the positive interior equilibrium enters into Hopf
bifurcation.

3.2. Hopf bifurcation

We consider p as a parameter of bifurcation and
pcr the critical value or the bifurcating value of the
concerned parameters. Recall that the characteris-
tic equation (33) of (10) at E∗ = (u∗, v∗, w∗) is given
by

ϕ(λ) = λ3 + B1λ
2 + B2λ + B3. (34)

Theorem 3. The necessary and sufficient condi-
tions for occurrence of Hopf bifurcation at p = pcr

are the following

(i) Bi(pcr) > 0, i = 1, 2, 3,
(ii) B1(pcr)B2(pcr) − B3(pcr) = 0,
(iii) Re[dλi

dp ]p=pcr �= 0, i = 1, 2, 3.

Proof. From the condition B1B2 − B3, we get

B1B2 − B3 = [a2
11 − a32a23](−a22 − a33)

+ [a2
33 − a12a21](−a11 − a22)

+ a2
22(−a11 − a33) − 2a11a22a33

= 0.

Since B2 > 0 at p = pcr, there exists an interval
containing p in (pcr − ε, pcr + ε), for every ε > 0.
Therefore, for p ∈ (pcr− ε, pcr + ε) the characteristic
equation cannot have roots containing negative real
parts. For p = pcr, we have

(λ2 + B2)(λ + B1) = 0 (35)

which has three roots λ1 = i
√

B2, λ2 = −i
√

B2 and
λ3 = −B1. For p ∈ (pcr − ε, pcr + ε), the roots are in
general of the following form

λ1(p) = α1(p) + iα2(p),

λ2(p) = α1(p) − iα2(p),

λ3(p) = −B1(p).

In what follows, we verify the transversality con-
dition Re[dλi

dp ]p=pcr �= 0, i = 1, 2, 3. Substituting
λ1(p) = α1(p) + iα2(p) in (35) and calculating the
derivative, we get

Ω1(p)α′
1(p) − Ω2(p)α′

2(p) + M1(p) = 0,

Ω2(p)α′
1(p) + Ω1(p)α′

2(p) + M2(p) = 0,

where

Ω1(p) = 3α2
1(p) + 2B1(p)α1(p) + β2(p) − 3α2

2(p),

Ω2(p) = 6α1(p)α2(p) + 2B1(p)α2(p),

M1(p) = α2
1(p)B′

1(p) + β′
2(p)α1(p)

+ B′
3(p) − α2

2(p)B′
1(p),

M2(p) = 2α1(p)α2(p)B′
1(p) + B′

2(p)α2(p).

Since Ω2(pcr)M2(pcr)+Ω1(pcr)M1(pcr) �= 0, we have
Re[dλi

dp ]p=pcr = Ω2M2Ω1M1

Ω2
2+Ω2

1
|p=pcr �= 0, i = 1, 2, 3 and

λ3(pcr) = −B1(pcr).
Hence the proof of the Theorem. �

In the next paragraph, we establish the global
stability of E∗ = (u∗, v∗, w∗) for some reasonable
conditions on the parameters.

3.3. Global stability of the
nontrivial steady state

In this subsection, we study the global stability of
the homogeneous nontrivial equilibrium E∗ = (u∗,
v∗, w∗) by using a suitable Lyapunov function.
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Theorem 4. If the condition (11) and the following
conditions are verified

v∗

a2
<

1
2(u∗ + a)

+
u∗

2a2
+

1
2

and

(u∗ + a)
2cd

+
v∗(u∗ + a)

2cd2

<
s

c(1 + a + s)
v∗

c(1 + a + s)

and

w∗(u∗ + a)
cd2

+
1
2

+
(u∗ + a)

2cd
+

v∗(u∗ + a)
2cd2

<
1

2(u∗ + a)
+

u∗

2a2
.

Then the homogeneous nontrivial steady state
(u∗, v∗, w∗) of system (8) is globally asymptotically
stable.

Proof. Let us consider the following Lyapunov
function,

V (t) =
(
u − u∗ − u∗ ln

( u

u∗
))

+
(u∗ + a)

c

(
v − v∗ − v∗ ln

( v

v∗
))

+
c(v∗ + s)

q

(
w − w∗ − w∗ ln

( w

w∗
))

.

Calculating the derivative of V along the solution
of system, we have

dV

dt
= (u − u∗)

(
1 − u − v

u + a

)

+
(u∗ + a)

c
(v − v∗)

(
−b +

cu

u + a
− w

v + d

)

+
c(v∗ + s)

q
(w − w∗)

(
p − qw

v + s

)
.

Using the following results

1 = u∗ +
v∗

u∗ + a
, b =

cu∗

u∗ + a
− w∗

v∗ + d

and p =
qw∗

v∗ + s

we have

dV

dt
= (u − u∗)

(
u∗ +

v∗

u∗ + a
− u − v

u + a

)
+

(u∗ + a)
c

(v − v∗)
(
− cu∗

u∗ + a
+

w∗

v∗ + d
+

cu

u + a
− w

v + d

)

+
c(v∗ + s)

q
(w − w∗)

(
qw∗

v∗ + s
− qw

v + s

)

= −(u − u∗)2 + (u − u∗)
(

v∗(u − u∗) − a(v − v∗) − u∗(v − v∗)
(u∗ + a)(u + a)

)
+ (v − v∗)

(
a(u − u∗)
(u + a)

)

+
(u∗ + a)

c
(v − v∗)

(−d(w − w∗) − v∗(w − w∗) + w∗(v − v∗)
(v∗ + d)(v + d)

)

+ (w − w∗)
(−s(w − w∗) + w∗(v − v∗) − v∗(w − w∗)

c(v + s)

)

= (u − u∗)2
[
−1 +

v∗

(u∗ + a)(u + a)

]
+ (v − v∗)2

w∗(u∗ + a)
c(v∗ + d)(v + d)

+ (w − w∗)2
[
− s

c(v + s)
− v∗

c(v + s)

]

+ (v − v∗)(u − u∗)
[
− a

(u∗ + a)(u + a)
− u∗

(u∗ + a)(u + a)
+

a

u + a

]

+ (v − v∗)(w − w∗)
[
− d(u∗ + a)

c(v∗ + d)(v + d)
− v∗(u∗ + a)

c(v∗ + d)(v + d)

]
.

Then
dV

dt
≤ (u − u∗)2

[
−1 +

v∗

(u∗ + a)(u + a)

]
+ (v − v∗)2

w∗(u∗ + a)
c(v∗ + d)(v + d)
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+ (w − w∗)2
[
− s

c(v + s)
− v∗

c(v + s)

]
+

(v − v∗)2 + (u − u∗)2

2

×
[
− u∗

(u∗ + a)(u + a)
+

a

u + a

(
1 − 1

(u∗ + a)

)
+

d(u∗ + a)
c(v∗ + d)(v + d)

+
v∗(u∗ + a)

c(v∗ + d)(v + d)

]

≤ (u − u∗)2
[
−1 +

v∗

a2

]
+ (v − v∗)2

w∗(u∗ + a)
cd2

+ (w − w∗)2
[
− s

c(v + s)
− v∗

c(v + s)

]

+
(v − v∗)2 + (u − u∗)2

2

[
−u∗

a2
+ 1 − 1

(u∗ + a)

]
+

(v − v∗)2 + (w − w∗)2

2

[
(u∗ + a)

cd
+

v∗(u∗ + a)
cd2

]

= (u − u∗)2
[
−1 +

v∗

a2
− 1

2(u∗ + a)
− u∗

2a2
+

1
2

]

+ (v − v∗)2
[
w∗(u∗ + a)

cd2
− 1

2(u∗ + a)
− u∗

2a2
+

1
2

+
(u∗ + a)

2cd
+

v∗(u∗ + a)
2cd2

]

+ (w − w∗)2
[
− s

c(v + s)
− v∗

c(v + s)
+

(u∗ + a)
2cd

+
v∗(u∗ + a)

2cd2

]
.

From Theorem 1, we observe that v(t) ≤ 1 + a for all time t. So, − 1
c(v+s) ≤ − 1

c(1+a+s) . Substituting we get

dV

dt
≤ (u − u∗)2

[
v∗

a2
− 1

2(u∗ + a)
− u∗

2a2
− 1

2

]

+ (v − v∗)2
[
w∗(u∗ + a)

cd2
− 1

2(u∗ + a)
− u∗

2a2
+

1
2

+
(u∗ + a)

2cd
+

v∗(u∗ + a)
2cd2

]

+ (w − w∗)2
[
− s

c(1 + a + s)
− v∗

c(1 + a + s)
+

(u∗ + a)
2cd

+
v∗(u∗ + a)

2cd2

]
,

if
v∗

a2
<

1
2(u∗ + a)

+
u∗

2a2
+

1
2
,

w∗(u∗ + a)
cd2

+
1
2

+
(u∗ + a)

2cd
+

v∗(u∗ + a)
2cd2

<
1

2(u∗ + a)
+

u∗

2a2
and

(u∗ + a)
2cd

+
v∗(u∗ + a)

2cd2
<

s

c(1 + a + s)
v∗

c(1 + a + s)
.

Then we deduce that dV
dt < 0 and by LaSalle’s

theorem, E∗ = (u∗, v∗, w∗) is globally asymptoti-
cally stable in the uvw-space, which completes the
proof. �

In biological terms, the system without diffu-
sion has been studied in the preceding subsection.
In what follows, the model with diffusion on the
disk domain which is relevant to the real world, will
be investigated.

4. Analysis of the Spatiotemporal
Model on a Disk Domain

Our result implies that the constant positive
steady state is globally asymptotically stable in the

absence of the diffusion but may be unstable in the
presence of the diffusion. In the next section, we will
discuss the conditions that enable the occurrence of
Turing instability.

4.1. Diffusion driven instability

In the reaction–diffusion system, the Turing insta-
bility occurs from a finite number of wave vectors
producing stable spatial patterns depending essen-
tially on the initial condition.

By setting

W =


 u − u∗

v − v∗

w − w∗


 ϕ(r, θ)eλt+ikr (36)
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where k is the wave number and ϕ(r, θ) is an eigenfunction of the Laplacian operator on a disc domain
with zero flux on the boundary, i.e. {

∆rθϕ = −k2ϕ,

ϕr(R, θ) = 0.

Then by linearizing around (u∗, v∗, w∗), we have the following equation:

dW

dt
= D∆W + LE(E∗)W. (37)

Consider now the system with diffusion (6) and substituting W by ϕeλt in Eq. (37) and canceling eλt,
we get:

λϕ = LE(E∗) − Dk2ϕ. (38)

We obtain the characteristic equation for the growth rate λ as a determinant of

det(λI3 − LE(E∗) + K2D) = 0 ⇔ det




λ − a11 + δ1k
2 −a12 −a13

−a21 λ − a22 + δ2k
2 −a23

−a31 −a32 λ − a33 + δ3k
2


 = 0. (39)

The characteristic polynomial from (39) is as follows

H(k2) = λ3 + Φ1(k2)λ2 + Φ2(k2)λ + Φ3(k2)

= 0, (40)

with

Φ1(k2) = k2(δ1 + δ2 + δ3) + B1,

Φ2(k2) = k4(δ1δ2 + δ1δ3 + δ2δ3) − k2(δ1(a22 + a33)

+ δ2(a11 + a33) + δ3(a11 + a22)) + B2,

Φ3(k2) = k6δ1δ2δ3 − k4(δ1δ2a33 + δ1δ3a22

+ δ2δ3a11) + k2(δ3(a11a22 − a12a21)

+ δ2a11a33) + B3.

For the stability of the equilibrium point, according
to the Routh–Hurwitz criteria, Re(λ) < 0 if

Φ1(k2) > 0, (41)

Φ2(k2) > 0, (42)

Φ1(k2)Φ2(k2) − Φ3(k2) > 0. (43)

The Turing instability requires that the stable
homogeneous equilibrium becomes unstable due to
the interaction and diffusion of species.

Under the following conditions (of Turing):

Re(λ(k2 = 0)) < 0,

Re(λ(k2 > 0)) > 0,
for a k2 > 0. (44)

We will study the sign of (41)–(43). Therefore, we
get the following theorem.

Theorem 5. If one of the following conditions is
true:

Φ1(k2) < 0,

Φ2(k2) < 0,

Φ1(k2)Φ2(k2) − Φ3(k2) < 0.

Then, the positive equilibrium E∗ = (u∗, v∗, w∗) of
system (6) is driven to instability.

Remark 4.1

• If the parameter λ is real, the spatial patterns are
stable over time and in the case where λ is com-
plex, spatial patterns vary over time. In either
case, the sign of the real part of λ determines
the patterns’ growth: if Re(λ) > 0 the linearized
system (36) increases, there is currently pattern
formation. By cons, if Re(λ) < 0, the linear per-
turbation decreases with time and the solution
of the perturbed system tends to homogeneous
initial equilibrium (u∗, v∗, w∗).

• If k2 is complex, one can observe complex spatial
structures.

• For k2 = 0, the characteristic equation is written
as

λ3 + Φ1(0)λ2 + Φ2(0)λ + Φ3(0),

where

Φ1(0) = B1 = −a11 − a22 − a33 = −tr(LE(E∗)),
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if at least a11, a22 or a33 is negative and Φ1(0) =
−tr(LE(E∗)) > 0 and Φ2(0) = B2 = a11a22 +
a11a33 + a22a33 − a23a32 − a12a21 > 0, if a11a22 +
a11a33 + a22a33 > a23a32 + a12a21, and Φ3(0) =
B3 = −det(LE(E∗)) = a12a21a33 + a11a23a32 −
a11a22a33, if a12a21a33 + a11a23a32 > a11a22a33,
and Φ3(0) = −det(LE(E∗)) > 0.

Φ1(0)Φ2(0) − Φ3(0)

= −(a2
11a22 + a2

11a33 + 2a11a22a33

+ a11a
2
33 + a11a

2
22 + a2

22a33 + a22a
2
33)

+ a12a12a22 + a22a23a32

Φ1(0)Φ2(0) − Φ3(0) > 0 if

a2
11a22 + a2

11a33 + 2a11a22a33 + a11a
2
33

+ a11a
2
22 + a2

22a33 + a22a
2
33

< a12a12a22 + a22a23a32. (45)

Proof. For k2 �= 0, we have Φ1(k2) = −(a11 +a22 +
a33) + k2(δ1 + δ2 + δ3). If a11 + a22 + a33 < 0, then
Φ1(k2) > 0 and instability of Turing does not occur.

Thereafter, we suppose in Eq. (42) ρ = k2 > 0
we get:

Φ2(ρ) = ρ2p1 − ρp2 + p3, (46)

where

p1 = δ1δ2 + δ1δ3 + δ2δ3,

p2 = δ1a22 + δ1a33 + δ2a11 + δ2a33 + δ3a11 + δ3a22,

p3 = a11a22 + a11a33 + a22a33 − a12a11 − a23a23,

a necessary condition for E∗ = (u∗, v∗, w∗) of (6)
becomes unstable in that

Φ2(ρ) = ρ2p1 − ρp2 + p3 < 0. (47)

For the instability, we need that p2 > 0 and p2
2 −

4p1p3 > 0 for some ρ. The equation p1ρ
2 − p2ρ + p3

has two positive roots given by:

ρ1 =
p2 −

√
p2
2 − 4p1p3

2p1
and

ρ2 =
p2 −

√
p2
2 + 4p1p3

2p1
.

(48)

The constant positive steady state E∗ = (u∗, v∗, w∗)
of (6) is unstable and so (6) experiences Turing
instability provided that ρ1 < ρ < ρ2.

The expressions Φ3(k2) and Φ1(k2)Φ2(k2) −
Φ3(k2) are a cubic function of k2 of the form

Φ3(k2) = q1(k2)3 + q2(k2)2 + q3k
2 + q4, (49)

q1 = δ1δ2δ3,

q2 = −(δ1δ2a33 + δ1δ3a22 + δ2δ3a11),

q3 = δ1a22hw + δ2a11a33 + δ3a11a22

− δ1a23a32 − δ3a22a21

= δ1(a22a33 − a23a32) + δ2a11a33

+ δ3(a11a22 − a12a21),

q4 = Φ3(0)

= a12a21a33 + a11a23a32 − a11a22a33,

with q1 = det(D) ≥ 0 and q4 = −det(LE(E∗)) > 0.
If Φ3 has a minimum, one finds by simple cal-

culation that
dΦ3

d(k2)
= 3q1(k2)2 + 2q2(k2) + q3 = 0 (50)

and d2Φ3
d2(k2)

> 0, this minimum is reached for the
solution of (50) at

k2
inf =

−q2 +
√

q2
2 − 3q1q3

3q1
(51)

for q2 expression if a11 > 0, a22 > 0 and a33 > 0
and for expression q3, if a22a33 < a23a32, a11a33 < 0
and a11a22 < a12a21 or a22a33 < 0, a11a33 < 0 and
a11a22 < 0 (i.e. (a22, a33) has different signs, the
same applies to (a22, a33) and (a11, a33)). Then

q2 < 0 and q3 < 0. (52)

For condition (43)

Ψ(k2) = Φ1(k2)Φ2(k2) − Φ3(k2)

= r1(k2)3 + r2(k2)2 + r3k
2 + r4, (53)

where

r1 = 2δ1δ2δ3 + δ2
1δ3 + δ2

1δ2 + δ1δ
2
2 + δ1δ

2
3

+ δ3δ
2
2 + δ2δ

2
3

= (δ2 + δ3)(δ2
1 + δ2δ3 + δ1δ2 + δ1δ3),

r2 = −(δ2
1a22 + δ2

1a33 + δ2
2a11 + δ2

2a33 + δ2
3a11

+ δ2
3a22 + 2δ1δ2a11 + 2δ1δ2a33 + 2δ1δ3a11

+ 2δ1δ3a22 + 2δ1δ2a22 + 2δ1δ3a33

+ 2δ2δ3a11 + 2δ2δ3a22 + 2δ2δ3a33)
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= −a11(δ3 + δ2)(2δ1 + δ2 + δ3)

− a22(δ3 + δ1)(δ1 + 2δ2 + δ3)

− a33(δ1 + δ2)(δ1 + δ2 + 2δ3),

r3 = δ1a
2
22 + δ1a

2
33 + δ2a

2
11 + δ2a

2
33 + δ3a

2
11

+ δ3a
2
22 + 2δ1a11a22 + 2δ1a11a33

+ 2δ1a22a33 − δ1fvgu − δ1fwhu + 2δ2fugv

+ 2δ2a11a33 + 2δ2a22a33 − δ2a12a21

− δ2a23a32 + 2δ3a11a22 + 2δ3a11a33

+ 2δ1a22a33 − δ3a23a32

= δ1a
2
22 + δ1a

2
33 + δ2a

2
11 + δ2a

2
33 + δ3a

2
11

+ δ3a
2
22 + 2(δ1 + δ2 + δ3)(a11a22 + a11a33

+ 2a33a22) − δ1a12a21 − δ2(a12a21 + a23a32)

− δ3a23a32,

r4 = Ψ(0) = −(a2
11a22 + a2

11a33 + 2a11a22a33

+ a11a
2
33 + a11a

2
22 + a2

22a33 + a22a
2
33)

+ a12a21a22 + a22a23a32.

With r1 ≥ 0 and r4 > 0, when

a2
11a22 + a2

11a33 + 2a11a22a33 + a11a
2
33

+ a11a
2
22 + a2

22a33 + a22a
2
33

< a12a12a22 + a22a23a32.

If Ψ has a minimum, by simple calculation one finds

dΨ
d(k2)

= 3r1(k2)2 + 2r2(k2) + r3 = 0 (54)

and d2Ψ
d2(k2)

> 0, this minimum is reached for the
solution of (54) at

k2
1inf = k2

inf =
−r2 +

√
r2
2 − 3r1r3

3r1
(55)

for r2 expression if a11 > 0, a22 > 0 and a33 > 0 and
for expression r3 if a12a21 > 0, (a12a21+a23a32) > 0,
a23a32 > 0 and δ1a

2
22 + δ1a

2
33 + δ2a

2
11 + δ2a

2
33 +

δ3a
2
11 + δ3a

2
22 + 2(δ1 + δ2 + δ3)(a11a22 + a11a33 +

2a33a22) < δ1a12a21+δ2(a12a21+a23a32)+δ3a23a32.
Then

r2 < 0 and r3 < 0. (56)

By using the conditions of the homogeneous sta-
ble equilibrium of the system without diffusion
(Φ1(0) > 0,Φ2(0) > 0,Φ3(0) > 0, Φ1(0)Φ2(0) −
Φ3(0) > 0) and the necessary condition of the sys-
tem with diffusion. (That is to say, at least one of
the following conditions, (Φ1(k2) < 0,Φ2(k2) < 0,
Φ3(k2) < 0,Φ1(k2)Φ2(k2) − Φ3(k2) < 0) for a cer-
tain k2 �= 0.)

The following proposition gives us a neces-
sary condition, not sufficient for instability to the
reaction–diffusion system with three species. �

Proposition 1. If these following conditions (i)
and (ii) are satisfied :

(i) If one condition of (52) is verified and q2
2 −

3q1q3 > 0, then k2
inf is a positive real. If each

condition of (52) and (56) is verified and q2
2 −

3q1q3 > 0, (resp., r2
2 − 3r1r3 > 0), then k2

inf is
a positive real (resp., k2

1inf is a positive real).
(ii) Let

Φ3(k2
inf)

=
2q3

2 − 9q1q2q3 + 27q2
1q4 − 2(q2

2 − 3q1q3)
3
2

27q3
1

and

Ψ(k2
1inf)

=
2r3

2 − 9r1r2r3 + 27r2
1r4 − 2(r2

2 − 3r1r3)
3
2

27r3
1

,

if 2q3
2 − 9q1q2q3 + 27q2

1q4 − 2(q2
2 − 3q1q3)

3
2 < 0,

(resp., 2r3
2−9r1r2r3+27r2

1r4−2(r2
2−3r1r3)

3
2 <

0), then Φ3(k2
inf) < 0 (resp., Ψ(k2

1inf) < 0).

Then we observe the emergence of Turing instability
for system (6).

4.2. Pattern formation

In this section, we assume that λ is complex, which
involves the formation of spatiotemporal patterns.
We assume that λ = x+iy by direct computation in
Eq. (40), we obtained the following two equations

x3 − 3xy2 + Φ1(x2 − y2) + Φ2x + Φ3 = 0 (57)

and

−y3 + 3x2y + 2Φ1xy + Φ2y = 0. (58)

For Eq. (58)

−y3 + 3x2y + 2Φ1xy + Φ2y

= y(−y2 + 3x2 + 2Φ1x + Φ2) = 0.
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Therefore y = 0 or y2 = 3x2 + 2Φ1x + Φ2, this
implies that λ is real. By substituting y2 in (57), we
obtain

H(x) ≡ 8x3 + 8Φ1x
2 + 2x(Φ2

1 + Φ2) + Φ1Φ2 − Φ3

= 0. (59)

If the condition (53) is negative, then H(0) =
(Φ1Φ2 − Φ3)(k2) < 0, this implies that Eq. (59)
has a positive real solution and there is formation
of spatiotemporal patterns.

Remark 4.2

• If Φ3(k2) < 0 and Φ2(k2) > 0, then H(0) > 0 and
there are temporally stable patterns.

• If Φ3(k2) > 0, Φ2(k2) > 0 and H(0) > 0 this
implies that there is no formation of spatiotem-
poral patterns.

Otherwise, we also show after the extremum
method that Eq. (59) admits a real positive solu-
tion.

dH(x)
dx

= 24x2 + 16Φ1x + 2(Φ2
1 + Φ2) = 0.

Then

x = x1 =
−2Φ1 +

√
4Φ2

1 − 3(Φ2
1 + Φ2)

6
If (Φ2

1 + Φ2) < 0, then x1 > 0. Thus H(x) admits
an extremum at x1 such that H(x1) < 0.

If Φ2(k2) > 0, then x = x1 > 0 because y is
a positive real value and we deduce the formation
of spatiotemporal patterns. However, there are cur-
rently more restriction if Φ2(k2) < 0, for which q is
a positive real value.

x2 ≡ −Φ1 +
√

4Φ2
1 − 3(Φ2

1 + Φ2)
3

> x1.

Then

• If Φ2(k2) < 0,Φ1Φ2 − Φ3(k2) < 0, Φ3(k2) < 0
or Φ3(k2) > 0 and if x > x2, we deduce the for-
mation of spatiotemporal patterns. By cons, if
x < x2 then the patterns are temporally stable.

Remark 4.3. Assume that

Φ2(k2) < 0, Φ3(k2) < 0,

Φ1Φ2 − Φ3(k2) > 0 and

Φ1Φ2 − Φ3(k2) > 0.

(60)

• If the condition (60) is verified, then the patterns
are temporally stable,

• If the condition (60) is verified and if H(x) > 0,
then the patterns are temporally stable,

• If the condition (60) is verified and if H(x) < 0
and x ≤ x < x2, then the patterns are temporally
stable,

• If the condition (60) is verified and if H(x) < 0
and x > x2, then the patterns are temporally
stable,

where x is the on-solution for x.

5. Numerical Analysis

It is clear that the analytical solution of the coupled
reaction–diffusion system of predator–prey type is
not always possible. Thus, we have to perform
numerical simulations to solve them. The spa-
tiotemporal system (6) is solved numerically in the
disk Γ = {(r, θ) : 0 < r < R, 0 ≤ θ < 2π}, by using
a finite difference scheme for the spatial derivatives
with the zero-flux boundary conditions. In order to
avoid numerical artifacts, the values of time (∆t)
and space steps (∆r and ∆θ) have been chosen suf-
ficiently small. For the numerical simulations, the
initial condition is a small perturbation in the vicin-
ity of equilibrium point (u∗, v∗, w∗). These initial
conditions have been chosen as,

u(0, r, θ) = u∗((r cos θ)2 + (r sin θ)2) < 50,

v(0, r, θ) = v∗((r cos θ)2 + (r sin θ)2) < 50,

w(0, r, θ) = w∗((r cos θ)2 + (r sin θ)2) < 50.

(61)

The parametric values are

a0 = 0.5, a1 = 0.4, b0 = 0.36, c3 = 0.2,

d0 = 0.3, d2 = 0.4, d3 = 0.4, v0 = 0.4,

v1 = 0.8, v2 = 0.4, v3 = 0.6.

(62)

In Fig. 1, the left figures are the evolution of the
prey spatial distribution, the right are the top
predators and the center are the predators. Initially
we observe two waves of burst center of the disk,
then these spirals burst leading to an aperiodic spa-
tial distribution of some domain and this aperiod-
icity spreads throughout the area and remains in
time. We then obtain the spatiotemporal chaos.

Next, we study the evolution of top predator
density into functions of predator and prey densi-
ties for different values of time t (see Fig. 2).

We study the properties of the oscillations
of populations in the UV -plane when the control
parameter varies. For better studying the properties
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(a)

(b)

(c)

(d)

(e)

Fig. 1. Spatial distributions of prey (first column), predator (second column) and top predator (third column) are population
densities of the spatial system (6). Spatial patterns are obtained with diffusivity coefficients δ1 = 0.02, δ2 = 0.01 and δ3 = 0.05,
at different time levels: for (a) t = 0, (b) t = 1000, (c) t = 2000, (d) t = 4000 and (e) t = 20 000.
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Fig. 2. Top predator density as a function of density of prey and predator with diffusivity coefficients δ1 = 0.02, δ2 = 0.01
and δ3 = 0.05, at different time levels for (a) t = 30, (b) t = 60, (c) t = 100 and (d) t = 1000.

of the population dynamics as a whole, we estimate
the species size of prey and predator by

U(t) =
∫ R

0

∫ 2π

0
u(t, r, θ)drdθ and

V (t) =
∫ R

0

∫ 2π

0
v(t, r, θ)drdθ.

(63)

We have considered p as a parameter of bifurcation
with p = c3a2

0
v0b0v2

where c3 describes the growth rate
of W . We plot the phase portraits in the UV -plane,
thus we vary c3 between 0.18 and 0.26. For each
value of c3, the system (6) is solved with the ini-
tial condition (61), the other parameters are fixed
in (62). We consider a transition time as fairly

large so that the quantities V and U fall within
the domain of attraction. First, we start by taking
c3 = 0.255 and then we decrease the values of c3. For
values of c3 belonging to the interval ]0.245, 0.255[
and for c3 = 0.255, the solution of the system (6)
is a hearth [Fig. 3(a)]. We observe for c3 = 0.245
the first bifurcation [Fig. 3(b)], for the values of c3

belonging to the interval ]0.2, 0.245[ the system (6)
exhibits quasiperiodic attractor solutions that are
quasiperiodic in the phase plane (U, V ) [Figs. 3(c)–
3(e)]. Finally, for c3 < 0.2, the solutions of (6)
become chaotic [Fig. 3(f)].

Then, we show the effect of the bifurcation
parameter on the formation of patterns for the dif-
ferent species for a fixed time, the other parameters
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Fig. 3. Phase portraits in the uv-plane for system (6) for t = 800, showing the transition to chaos at different bifurcation
parameters for (a) c3 = 0.255, (b) c3 = 0.245, (c) c3 = 0.238, (d) c3 = 0.235, (e) c3 = 0.2 and (f) c3 = 0.18. With diffusivity
coefficients δ1 = 0.02, δ2 = 0.01 and δ3 = 0.05.
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(a)

(b)

(c)

Fig. 4. Spatial distributions of prey (first column), predator (second column) and top predator (third column) are population
densities of the spatial system (6). Spatial patterns are obtained with diffusivity coefficients δ1 = 0.02, δ2 = 0.01 and δ3 = 0.05,
for fixed time t = 12 000 at different bifurcation parameters for (a) c3 = 0.23, (b) c3 = 0.22 and (c) c3 = 0.15.
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Fig. 5. Stable behavior of prey–predator populations and
top predator for c3 = 0.26 with diffusivity coefficients δ1 =
0.02, δ2 = 0.01 and δ3 = 0.05 and t = 500, the other param-
eters are fixed in (62).
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Fig. 6. Solution curves of prey–predator populations and
top predator with time and c3 = 0.23 with diffusivity coeffi-
cients δ1 = 0.02, δ2 = 0.01 and δ3 = 0.05 and t = 500, the
other parameters are fixed in (62).
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(a)

(b)

Fig. 7. Spatial distributions of prey (first column), predator (second column) and top predator (third column) are population
densities of the spatial system 6. Spatial patterns are obtained with diffusivity coefficients δ1 = 0.02, δ2 = 0.01 and δ3 = 0.05,
at different time levels: (a) t = 1000 and (b) t = 4000.

(a)

(b)

Fig. 8. Spatial distributions of prey (first column), predator (second column) and top predator (third column) are population
densities of the spatial system (6). Spatial patterns are obtained with diffusivity coefficients δ1 = 0.2, δ2 = 0.1 and δ3 = 0.5,
at different time levels: (a) t = 1000 and (b) t = 4000.
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(a)

(b)

(c)

Fig. 9. Spatial distributions of prey (first column), predator (second column) and top predator (third column) are population
densities of the spatial system (6). Spatial patterns are obtained with diffusivity coefficients δ1 = 2.5, δ2 = 1.25 and δ3 = 6,
at different time levels: (a) t = 1000, (b) t = 3000 and (c) t = 4000.

are fixed in (62) and the initial conditions are given
in (61).

In what follows, we plot for different values of
c3 the curves of densities of prey, predator and top
predator with respect to time. The initial condition
is given by (61). From Fig. 5, we observe that popu-
lations of prey, predator and top predator converge
to their steady state and E∗ = (u∗, v∗, w∗) is locally
asymptotically stable for system (3). If we decrease
the value of the control parameter c3 = 0.03, the
equilibrium E∗ = (u∗, v∗, w∗) loses its stability and
becomes unstable (Fig. 6). Now, we show the pat-
tern formation with different time steps and diffu-
sion coefficients. The initial condition given by (61)
and the other parameters are fixed in (62). By
varying the diffusivity coefficients parameters, we
observed that the spatial structure changes over the

times of the spatial system. In Fig. 7, we conclude
that the labyrinth patterns prevail in the whole
domain. If we increase the diffusion coefficients, we
obtain the mixtures “labyrinth-spots” (see Fig. 8).
In Fig. 9, with an increase of the diffusion coeffi-
cients, we conclude that the spot patterns of spa-
tial are over the whole domain. From this figure,
it is observed that the higher diffusivity coefficients
stabilized the spatial system.

6. Conclusion

We have examined the dynamic behavior of a three-
species food chain namely prey, predator and top
predator. We have considered the response func-
tion as the modified Leslie–Gower Holling-type
II schemes. We have obtained the boundedness
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conditions for the solutions, local stability by
employing Routh–Hurwitz criteria, global analysis
by constructing Lyapunov function. Furthermore,
we have observed that the positive equilibrium
enters a Hopf type bifurcation under the condi-
tions of Theorem 3. We have proved the conditions
that enable the occurrence of Hopf bifurcation and
Turing instability in the circular spatial domain.

Finally, we carried out numerical simulations to
substantiate the analytical findings. Our numerical
analysis showed that the dynamics of a population
may dramatically be affected by small changes in
the value of the parameter c3, at the same time we
can see in Fig. 3 by plotting the phase portraits
with different parameter sets and we have shown
the transition to chaos. The nature of spatial pat-
terns with respect to time (see Fig. 1) which leads to
the formation of spatiotemporal chaos and the effect
of the bifurcation parameter c3 on the nature of
the pattern (see Fig. 4) have been observed. Firstly,
for c3 = 0.23 the spot patterns of spatial over the
whole domain [see Fig. 4(a)] are demonstrated, if
we increase the parameter bifurcation for c3 = 0.15,
we find a mixture of stripe-spots patterns of spatial
over the whole domain [see Fig. 4(b)]. Also, we have
shown that if a diffusivity coefficient increases, then
the population densities become uniform and spot
pattern is observed (see Fig. 9).

Our result analytically and numerically show
that the modeling by reaction–diffusion equation
is a suitable tool for studying basic mechanisms
of spatiotemporal dynamics in the real world food
chain system.
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