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a b s t r a c t

In this paper, we investigate theoretically and numerically a 2-D spatio-temporal dynamics of

a predator-prey mathematical model which incorporates the Holling type II and a modified

Leslie–Gower functional response and logistic growth of the prey. This system is modeled

by a reaction diffusion equations defined on a disc domain {(x, y) ∈ R
2/x2 + y2 < R2} with

Dirichlet initial conditions and Neumann boundary conditions. We study the local and global

stability of the positive equilibrium point. We show that the diffusion can induce instability

of the uniform equilibrium point which is stable with respect to a constant perturbation as

shown by Turing in 1950s and derive the conditions for Hopf and Turing bifurcation in the

spatial domain. Numerical results are given in order to illustrate how biological processes

affect spatiotemporal pattern formation in a spatial domain. We perform the computations

and generalize, on a circular domain, the results presented in Camara and Aziz-Alaoui [6].

© 2015 Elsevier Inc. All rights reserved.
1. Introduction and mathematical model

Most natural phenomena are modeled by a reaction diffusion systems which are special cases of systems of parabolic partial

differential equations [13]. These systems of reaction–diffusion equations describe how the concentration or density distributed

in space varies under the influence of two processes: local interactions of species, and diffusion that causes the spread of species

in the space. These systems of equations can describe the dynamic processes in biology, physics and ecology. Predator prey

dynamics are a classic and relatively well-studied example of interactions. The simplest reaction–diffusion models for cyclic

populations involve two interacting species, with densities u and v:⎧⎪⎪⎨
⎪⎪⎩

∂

∂t
u(t, x) = Du

∂2

∂x2
u(t, x)+ f (u(t, x), v(t, x))

∂

dt
v(t, x) = Dv

∂2

∂x2
v(t, x)+ g(u(t, x), v(t, x))

(1.1)
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where f (u, v) and g(u, v) model the local activity (absence of diffusion), the densities u and v may represent the predator and

prey, host and parasite, herbivore and grazer, etc. Here x is the spatial coordinate and t denotes the time. Our focus on cyclic

populations means that we assume that the local dynamics f and g are such that the spatially uniform equations du
dt

= f (u, v);
dv
dt

= g(u, v) have a stable periodic solution (limit cycle), which oscillates around the unstable coexistence steady state.

The model under consideration is a 2-D reaction diffusion model which based on the predator prey system and integrates the

Holling-type-II and a modified Leslie–Gower functional responses.⎧⎪⎪⎨
⎪⎪⎩

∂U(T, x, y)

∂T
= D1�U(T, x, y)+

(
a1 − b1U(T, x, y)− r1V(T, x, y)

U(T, x, y)+ K1

)
U(T, x, y),

∂V(T, x, y)

∂T
= D2�V(T, x, y)+

(
a2 − r2V(T, x, y)

U(T, x, y)+ K2

)
V(T, x, y).

(1.2)

This two species food chain model describes a prey population U which serves as food for a predator V . U(T, x, y) and V(T, x, y)
represent population densities at time T and space (x, y) defined on a disc domain with radius R (i.e. � = {(x, y) ∈ R

2/x2 + y2 <

R2}). � = ∂2

∂x2 + ∂2

∂y2 is the Laplacian operator. The model parameters r1, a1, b1, k1, r2, a2 and k2 are assuming positive values.

These parameters are defined as follows: a1 is the growth rate of preys U, a2 describes the growth rate of predators V, b1 measures

the strength of competition among individuals of species U, r1 is the maximum value of the per capita reduction of U due to

V, r2 has a similar meaning to r1, k1 measures the extent to which environment provides protection to prey U, k2 has a similar

meaning to k1 relatively to the predator V and D1, D2 are the diffusion coefficients of the preys and the predators.

In this model (1.2) the first equation (1.2)1 is standard. By contrast, the second equation (1.2)2 is absolutely not standard. It

contains a modified Leslie–Gower term, that is the second term on the right-hand side in the second equation of (1.2)2; the last

depicts the loss in the predator population.

The Leslie–Gower type model is given by the assumption that the reduction in predator population has a reciprocal relationship

with per capita availability of its preferred food, the carrying capacity of the predator V environment is proportional to the number

of prey U, that is, it depends on the available resources. He stresses the fact that there are upper limits to the rates of increase

of both prey U and predator V, which are not recognized in the Lotka Volterra model. In the case of continuous time, it is
∂V
∂T

= a2V(1 − V
ωU ), in which the growth of predator population takes logistic form (∂V

∂T
= a2V(1 − V

K )).
It is assumed that KV = K(U) = ωU, i.e., the carrying capacity is proportional to the prey abundance, just as it is assumed in

May–Holling–Tanner model (ω is the conversion factor of prey into predators). The term V
ωU is called the Leslie–Gower term. We

will suppose that the predators have an alternative food when the quantity of prey U decreases, that is K(U) = ωU + α (modified

Leslie–Gower model). In the absence of prey U i.e. U = 0, then K(U) = α and the predator V becomes generalist since it has an

alternative food. The equation above is written as ∂V
∂T

= a2V(1 − V
ωU+α ), therefore ∂V

∂T
= V(a2 − (a2

ω )( V
(U+ α

ω )
)) which is the second

equation of system (1.2).

The first model proposed in this optic is given by an ordinary differential equations (see [2]) and reads as follows:⎧⎪⎪⎨
⎪⎪⎩

dx

dt
=

(
a1 − b1x − r1y

x + k1

)
x,

dy
dt

=
(

a2 − r2y

x + k2

)
y,

(1.3)

with initial conditions x(0) > 0 and y(0) > 0. This two species food chain model describes a prey population x which serves as

food for a predator y.

A delayed version of (1.3) (see [5]) is given by a system of two delayed differential equations as follows:⎧⎪⎪⎨
⎪⎪⎩

dx(t)

dt
=

(
a1 − b1x(t)− r1y(t)

x(t)+ k1

)
x(t),

dy(t)

dt
=

(
a2 − r2y(t − τ)

x(t − τ)+ k2

)
y(t).

(1.4)

Here, the discrete delay τ > 0 has been incorporated in the negative feedback of the predator’s density. The notion of global

stability is studied by many authors in the predator-prey systems with delay [3,15]. In [2], authors studied the boundedness and

global stability of system (1.3) and in [5] authors studied the global stability and persistence of the delayed system (1.4) by using

Lyapunov functional.

The existence of periodic solutions and their stability of Eq. (1.2) are studied in [22,23], by considering the time delay as a

parameter of bifurcation.

The spatio-temporal predator prey model without modification is given as follows (see Huang et al. [18])⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂

dt
u(t, x) = d1

∂2

∂x2
u(t, x)+ u(t, x)

(
a1 − 1

K
u(t, x)− B

v(t, x)

Eu(t, x)+ 1

)
,

∂

dt
v(t, x) = d2

∂2

∂x2
v(t, x)+ v(t, x)

(
a2 − Cv(t, x)+ D

u(t, x)

Eu(t, x)+ 1

)
,

(1.5)
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where all parameters in (1.5) are positives. For the meaning of all constants in (1.5) (see [18]), in which authors studied the

existence of traveling waves by using shooting argument method. The corresponding model in 1-D is given by:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂

dt
u(t, x) = d1

∂2

∂x2
u(t, x)+ u(t, x)

(
a1 − b1u(t, x)− r1v(t, x)

u(t, x)+ k1

)
,

∂

dt
v(t, x) = d2

∂2

∂x2
v(t, x)+ v(t, x)

(
a2 − r2v(t, x)

u(t, x)+ k2

)
,

(1.6)

This system is studied by Camara et al. [4,6], they show the dynamics and the asymptotic behavior of the system and prove the

occurrence of Turing and Hopf patterns formation, see also [20,21]. In [24], the authors show the existence of periodic traveling

waves via Hopf bifurcation theorem by considering the diffusion as a parameter of bifurcation.

Therefore, in the recent decades, a number of works have been devoted to the studies of the dynamic relationship between

predators and their prey. The local dynamics has been studied in [2,4–6,10] of two dimensional and the global dynamics has been

studied in [14]. Similar three dimensional systems with the same functional responses are studied in [1,8,11,12,16]. In [26,27], the

authors showed the conditions of Turing instability, the role of diffusion coefficients in Turing instability and the spatiotemporal

distributions of interacting species through Turing instability in two dimensional spatial domain of the predator-prey model

with ratio-dependent functional response and with sigmoid (Holling type III) ratio-dependent functional response respectively.

Our goal, in this paper, is to generalize the results presented in 1-D (see [6]) to 2-D reaction diffusion system defined on

a circular domain. We prove the local and global stability of the positive steady state and show how diffusion destabilizes

stable equilibrium and is responsible for the initiation of spatial patterns. Our theoretical results are illustrated by numerical

simulations.

This work is organized as follows: In Section 2, we recall some results on the model without diffusion with some results on

eigenvalue problem of the Laplacian operator defined on a circular model. In Section 3, we prove the existence of the equilibrium

points and the local stability of the nontrivial steady state and the boundedness of solutions. Section 4 is devoted to the global

stability of the nontrivial steady state. The Turing instability is showed in Section 5. In Section 6, we illustrate our results by

numerical simulations. In the end, we give a conclusion.

2. Preliminaries

2.1. Asymptotic behavior of ODE system

In this subsection we recall some results on the asymptotic behavior of the system without diffusion (1.3).

To simplify system (1.3) we introduce some transformations of variables. After applying the following rescaling

t = a1T, u(t) = b1

a1
x(T), v(t) = r2b1

a1a2
y(T), a = a2r1

a1r2
, b = a2

a
1

, e1 = b1k1

a
1

, e2 = b1k2

a
1

, (2.1)

system (1.3) becomes⎧⎪⎪⎨
⎪⎪⎩

du

dt
=

(
1 − u − av

u + e1

)
u,

dv

dt
=

(
b − bv

u + e2

)
v,

(2.2)

We also require that ae2 < e1 which ensures that, system (1.6) has a positive equilibrium point corresponding to constant

coexistence of the two species. System (2.2) has forth equilibrium points: E0 = (0, 0), E1 = (1, 0), E2 = (0, e2), E∗ = (u∗, v∗)which

are equilibria of the corresponding ordinary differential equation system (2.2) without diffusion, where

u∗ = 1 − a − e1 +
√

(a + e1 − 1)2 + 4(e1 − ae2)

2
, (2.3)

and

v∗ = u∗ + e2. (2.4)

Without diffusion, the equilibrium point E0 corresponding to the absence of both species is unstable, E1 corresponding to the

prey at the environment carrying capacity in the absence of predators is a saddle point. If ae2 < e1, E2 corresponding to the

predator at the environment carrying capacity in the absence of prey is also a saddle point and E∗ corresponding to coexistence

of the two species is asymptotically stable if p(u∗) > 0 and unstable if p(u∗) < 0, where

p(x) = 2x2 + (b + e1 − 1)x + be1. (2.5)

Furthermore, E∗ is asymptotically stable if b + e1 − 1 ≥ 0 or 0 < u∗ < α1 or α2 < u∗ < 1 and it is unstable if b + e1 − 1 > 0 and

α1 < u∗ < α2, where α1 and α2 are the roots of the polynomial p(x):

α1,2 = 1 − b − e1 ±
√

(b + e1 − 1)2 + 8be1

4
.

Particulary, if e1 − 1 ≥ 0, E∗ is globally asymptotically stable. If b + e1 − 1 ≥ 0 the system has no limit cycle.
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2.2. Eigenvalue problem on a circular domain

In this subsection we give some results on the Laplace operator on a circular domain, because there exist a difference between

the analysis in a rectangle domain and in a circular domain (disc).

Let us consider a disc with a radius R as follows:

D = {(r, θ) : 0 ≤ r < R, 0 ≤ θ < 2π}.
Then, the Laplace operator is defined in cartesian coordinates as �ϕ = ∂2

∂x2 ϕ + ∂2

∂y2 ϕ and in polar coordinates (r, θ) as �rθϕ =
∂2

∂r2 ϕ + 1
r

∂
∂r

ϕ + 1
r2

∂2

∂θ2 ϕ, with x = r cos(θ) and y = r sin(θ) and r =
√

x2 + y2 and tan(θ) = y
x .

To compute the eigenvectors on the circular domain, one need to separate variables using polar coordinates. Considering the

following eigenvalue problem:⎧⎪⎪⎨
⎪⎪⎩

�rθϕ = −λϕ,

ϕ(R, θ) = 0, θ ∈ [0, 2π ],

∂ϕ
∂r

= 0, on r = R and θ ∈ [0, 2π ]

(2.6)

and looking for solutions of the form ϕ(r, θ) = P(r)�(θ). By differentiation and from the Eq. (2.6) we have:⎧⎨
⎩ P′′(r)�(θ)+ 1

r
P′(r)�(θ)+ 1

r2
P(r)�′′(θ) = −λP(r)�(θ),

P(R) = P′(R) = 0.

(2.7)

Therefore

r2

P(r)

{
P′′(r)+ 1

r
P′(r)+ λP(r)

}
= −�′′(θ)

�(θ)
. (2.8)

Since the function �(θ) is 2π-periodic, there exists k such that −�′′(θ) = k2�(θ) and �(0) = �(2π),�′(0) = �′(2π). The

solution is given by:

�n(θ) = an sin(nθ)+ bn cos(nθ) for integers k = n ≥ 0

where an and bn are constants.

Then we have the following second order differential equation

P′′(r)+ 1

r
P′(r)+

(
λ − k2

r2

)
P(r) = 0, such that P′(R) = 0, P(R) = 0. (2.9)

Let x =
√

λr and P(r) = P( x√
λ
) = J(x). Then, we have

J′′(x)+ 1

x
J′(x)+

(
1 − k2

x2

)
J(x) = 0 (called Bessel equation). (2.10)

The solution for it is the nth Bessel function

Jn(x) =
+∞∑
l=0

(−1)l

l!(n + l)!
(

x

2
)n+2l.

Since P(r) = Jn(
√

λr), we get:

φλ
n (r, θ) = �n(θ)Jn(

√
λr) (2.11)

are eigenfunctions of the Laplacian operator in polar coordinates.

The eigenvalues λ associated to the eigenvector φλ
n are determined from the boundary conditions.

From Dirichlet boundary conditions defined as follows φλ
n (R, θ) = 0,∀θ ∈ [0, 2π ] which imply that: Jn(

√
λR) = 0. This means

that
√

λR is a root of Jn.

From the Neumann boundary conditions: ∂rφλ
n (R, θ) = 0,∀θ ∈ [0, 2π ] which imply that: J′n(

√
λR) = 0. This means that

√
λR

is a root of J′n.

We note these roots by αnm and we assume they are indexed in increasing order:

Jn(αnm) = 0, αn1 < αn2 < αn3 < · · ·
Therefore

√
λR = αnm for some index m and the eigenvalues will be written in the following form:

λnm =
(αnm

R

)2

where n is the index of Bessel function and m is the index number of their roots.

If R = 1, then the eigenvalues of the equations �ϕ = −λϕ are the square of zero solution of Bessel functions (see Fig. 1).
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3. Equilibrium points and stability

Let us now consider the reaction diffusion system defined on a circular domain with Neumann boundary conditions (which

means there are no flux of species of both the predator and prey on the boundary of the circular domain) and Dirichlet initial

conditions as follow:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂U(T, x, y)

∂T
= δ1�U(T, x, y)+ (a1 − b1U(T, x, y)− c1V(T, x, y)

U(T, x, y)+ K1
)U(T, x, y), for T ∈ [0,+∞[, (x, y) ∈ �,

∂V(T, x, y)

∂T
= δ2�V(T, x, y)+ (a1 − c2V(T, x, y)

U(T, x, y)+ K2
)V(T, x, y), for T ∈ [0,+∞[, (x, y) ∈ �,

∇U(·, x, y) · η = ∇V(·, x, y) · η = 0; on ∂� Neumann boundary conditions,

U(0, ·, ·) = U0(·, ·) and V(0, ·, ·) = V0(·, ·); Dirichlet initial conditions,

(3.1)

where � = {(x, y) ∈ R
2/x2 + y2 < R2}.

By the following dimensionless:

t = a1T, u(t) = b1

a1
U(T), v(t) = c2b1

a1a2
V(T), r

′ = r

(
a1

δ1

) 1
2

, θ
′ = θ

(
a1

δ1

) 1
2

, (3.2)

a = a2c1

a1c2
, b = a2

a
1

, e1 = b1k1

a
1

, e2 = b1k2

a
1

, δ = δ2

δ1
, (3.3)

system (3.1) reads as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u(t, x, y)

∂t
= �u(t, x, y)+ u(t, x, y)(1 − u(t, x, y))− av(t, x, y)

u(t, x, y)+ e1
u(t, x, y); for t ∈ [0,+∞[, (x, y) ∈ �,

∂v(t, x, y)

∂t
= δ�v(t, x, y)+ b(1 − v(t, x, y)

u(t, x, y)+ e2
)v(t, x, y), for t ∈ [0,+∞[, (x, y) ∈ �,

∇u(·, x, y).η = ∇v(·, x, y).η = 0 on ∂�; Neumann boundary conditions,

u(0, ·, ·) = u0(·, ·) and v(0, ·, ·) = v0(·, ·) Dirichlet initial conditions.

(3.4)

Remark 3.1. The well posedness of the problem (3.4) is established in [24] for 1-D reaction diffusion system, we have the same

result for 2-D system, and we have:

For each ϕ ∈ X�, (3.4) has a unique mild solution z(t) = z(ϕ, t) ∈ X� and a classical solution U(t, x, y) = [z(t)](x, y). Moreover,

the set X� is positively invariant under the flow �t(ϕ) = z(ϕ, t) induced by (3.4), where

X� =
{
ϕ ∈ X : ϕ(x, y) ∈ �, (x, y) ∈ �

}
,

� =
{

U = (u, v) ∈ R
2 : u ≥ 0, v ≥ 0

}
and X is the Banach space X1 × X2 (X1 = X2 = C(�)) and the associated norm is defined by

|ϕ| = |ϕ1| + |ϕ2|
for ϕ = (ϕ1, ϕ2) ∈ X.

Since (x, y) ∈ � = {(x, y) : x2 + y2 < R2}, we can write x and y in polar coordinates as follow x = r cos(θ) and y = r sin(θ)
and the domain of definition becomes D = {(r, θ) : 0 < r < R, 0 ≤ θ < 2π}, where r =

√
x2 + y2 and tan(θ) = y

x . Without loss of

generalities we also denote u(t, x, y) = u(t, r cos(θ), r sin(θ)) = u(t, r, θ)and v(t, x, y) = v(t, r cos(θ), r sin(θ)) = v(t, r, θ) which are

the densities of prey and predators respectively in polar coordinates. Therefore the Laplacian operator in polar coordinates is

given by:

�rθ = ∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂θ2
.

Then the spatio-temporal system (3.4) in polar coordinates is written as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u(t, r, θ)

∂t
= �rθ u(t, r, θ)+ f (u(t, r, θ), v(t, r, θ)) for (r, θ) ∈ D and t > 0,

∂v(t, r, θ)

∂t
= δ�rθ v(t, r, θ)+ g(u(t, r, θ), v(t, r, θ)) for (r, θ) ∈ D and t > 0,

∂ru(·, r, θ) = ∂rv(·, r, θ) = 0 for r = R Radial derivative,

u(0, ·, ·) = u0(·, ·) and v(0, ·, ·) = v0(·, ·) Dirichlet initial conditions,

(3.5)

where f (u, v) = u(1 − u)− av
u+e1

u and g(u, v) = b(1 − v
u+e2

)v.
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Next, we will try to determine the possible steady states of the spatio-temporal reaction diffusion system (3.5).

A steady state (ue, ve) of Eq. (3.5) is a solution of the following system⎧⎪⎪⎨
⎪⎪⎩

�rθ ue + ue(1 − ue)− ave

ue + e1
ue = 0,

δ�rθ ve + b

(
1 − ve

ue + e2

)
ve = 0,

(3.6)

then (ue, ve) is also an equilibrium point for (1.4).

By a simple computation, the trivial steady states are in the following forms: E0 = (0, 0), E1 = (1, 0) and E2 = (0, e2).
Let R

2+ = {(u, v) ∈ R
2, u0 ≥ 0, v0 ≥ 0}. The following result gives the positivity of solutions starting in the positive cone

int(R2+) = {(u, v) ∈ R
2, u0 > 0, v0 > 0}.

Theorem 3.1. Let � be the set defined by

� = {(u, v) ∈ R
2
+, 0 ≤ u ≤ 1, 0 ≤ v ≤ 1 + e2}.

(i) The set � is positively invariant region.

(ii) All solutions of (3.4) initiating in � are ultimately bounded with respect to R
2+ and eventually enter the attracting set �.

Proof.

(i) Let (u(0), v(0)) ∈ �, since int(R2+) is invariant for the system (2.2) (see Lemma 5 [17]), then the solution (u(t), v(t)) with

initial condition (u(0), v(0)) remains positive and for all t ≥ 0, u(t) ≤ 1 and v(t) ≤ 1 + e2 and � is invariant. For more details

see [17].

(ii) From Eq. (3.4)1, we have⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂u(t, r, θ)

∂t
= �rθ u + u(1 − u),

∂u(·, R, θ)

∂r
= 0,

u(0, r, θ) = u0(r, θ) ≤ u01 = max
(r,θ)∈D

u0(r, θ).

(3.7)

By the comparison principe, we have u(t, x, y) ≤ u1 ≤ 1 where u1(t) = u01
u01+(1−u01)e−t is a solution of the following ODE:⎧⎪⎨

⎪⎩
du1

∂t
= u1(1 − u1)

u1(0) = u01 ≤ 1

(3.8)

Then

lim sup
t→+∞

u1(t) ≤ 1

From Eq. (3.4)2 and as u(t, r, θ) ≤ 1, we have⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂v(t, r, θ)

∂t
= δ�rθ v + b

(
1 − v

u + e2

)
v ≤ δ�v + b

(
1 − v

1 + e2

)
v,

∂v(·, r, θ)

∂η
= 0 on ∂D,

v(0, r, θ) = v0(r, θ) ≤ v01 = max
(r,θ)D

v0(r, θ).

(3.9)

By the comparison principe, we have v(t, r, θ) ≤ v1 ≤ 1 where v1(t) = (1+e2)v01

v01+(1+e2−v01)e−bt is a solution of the following ODE:⎧⎪⎨
⎪⎩

du1

∂t
= b

(
1 − v1

1 + e2

)
v1,

v1(0) = v01 ≤ 1.

(3.10)

Then, we deduce that

lim sup
t→+∞

v1(t) ≤ 1 + e2,

which completes the proof. �
Theorem 3.2.

(i) The equilibrium point E0 = (0, 0) is unstable.

(ii) The equilibrium point E1 = (1, 0) is unstable.

(iii) If e > ae , then E = (0, e ) is unstable and if e < ae , then E = (0, e ) is asymptotically stable.
1 2 2 2 1 2 2 2
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Fig. 1. Curves of Bessel functions of the first kind Ji(x), i = 0, 1, 2, 3 and their roots in red circle. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)
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Fig. 2. Nullclines and possible equilibrium points of system (1.3) with a = 0.1; e1 = 0.1; e2 = 0.56 for subfigure (a) and a = 0.5; e1 = 0.1; e2 = 0.56 for subfigure

(b).
Proof. See [9] (the existence of equilibrium points is illustrated in Fig. 2). �

Theorem 3.3. Suppose e1 > ae2, then, system (3.5) have a unique non-trivial positive steady state E∗ = (u∗, v∗), where u∗ is given in

Eq. (2.3).

If a > 1
2(1+e2) and 0 ≤ e1 ≤ e1+are satisfied, then, the non-trivial equilibrium point E∗ is asymptotically stable.

Where

e1+ = −(a + 1)+
√

(a + 1)2 − 1 + 2a(1 + e2).

Proof. To study the asymptotic stability of the non-trivial steady state E∗, one needs to linearize system (3.5) around it. Let

(u(r, θ , t), v(r, θ , t)) = E∗ + W(t, r, θ) = E∗ + (W1(t, r, θ), W2(t, r, θ))
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and the linearized system is as follows:

∂W

∂t
= D�rθ W + MW (3.11)

where D = (
1 0

0 δ
) and M = (

1 − 2u∗ − e1(1−u∗)
u∗+e1

− au∗
u∗+e1

b −b
).

From the spectral problem presented in the Section 2.2, the solutions of Eq. (3.11) take the following form

W(t, r, θ) =
+∞∑
n=0

hn(t)φ
λnm
n (r, θ)

where φλnm
n (r, θ) is the eigenfunction of �rθ of λnm defined in (2.11) and hn(t) ∈ R

2.

From Eq. (3.11), we have

dhn(t)

dt
= Nnhn(t)

where Nn = M − λnmD and the characteristic equations associated to Nn is given by:

det(γ I − Nn) =
(
γ − 1 + 2u∗ + e1(1 − u∗)

u∗ + e1
− λnm

)
(γ + b + λnmδ)+ b

au∗

u∗ + e1
,

= γ 2 + γ

(
−1 + 2u∗ + e1(1 − u∗)

u∗ + e1
+ λnm + b + λnmδ

)

+ (b + λnmδ)

(
−1 + 2u∗ + e1(1 − u∗)

u∗ + e1
+ λnm

)
+ b

au∗

u∗ + e1
,

= γ 2 + γ G + H,

where

G = −1 + 2u∗ + e1(1 − u∗)
u∗ + e1

+ λnm + b + λnmδ

and

H = (b + λnmδ)

(
−1 + 2u∗ + e1(1 − u∗)

u∗ + e1
+ λnm

)
+ b

au∗

u∗ + e1
.

Then

γ± = −G ± √
G2 − 4H

2
.

Therefore, Re(γ±) is negative if G > 0 and H > 0. As λnm = (αnm
R )2 > 0 (see Section 2.2), δ > 0 and b > 0, we need only to have

−1 + 2u∗ + e1(1−u∗)
u∗+e1

> 0 which imply that 2u∗ − 1 + e1 ≥ 0. From formula of u∗ given in (2.3), we have a >
√

� where � is defined

by � = (a + e1 − 1)2 + 4(e1 − ae2). A simple computation gives us

� − a2 = e2
1 + e1(2a + 2)− 2a(1 + e2)+ 1

which is negative if e1 ≤ e1+ = −(a + 1)+
√

(a + 1)2 − 1 + 2a(1 + e2), and we must have e1+ > 0 which is satisfied if a > 1
2(1+e2) .

Then, Re(γ±) < 0 for e1 ≤ e1+ and we deduce the results. �

4. Global stability of the non-trivial steady state

In this section, we study the global stability of the homogeneous non-trivial steady state E∗ = (u∗, v∗).

Theorem 4.1. Let

(i) 0 < a < 1 ≤ e1 ≤ e2 and ae2 < e1.

If (i) is satisfied, then the steady state E∗ is globally asymptotically stable for system (3.5).

Proof. The proof is based on a positive definite Lyapunov function.

The hypothesis 0 < a < 1 ensures that ae2 < e2 and ae2 < e1 ensures the existence of the non-trivial positive steady state E∗.

Since D = {(r, θ) : 0 < r < R, 0 < θ < 2π}, we denote
∫
D f (ρ)dρ = ∫ R

0

∫ 2π
0 f (r, θ)dθdr and V(u, v) = h1(u)+ h2(v),

where h1(u) = ∫ u
u∗

(η−u∗)(η+e1)
aη(η+e2) dη and h2(v) = u∗+e2

bv∗
∫ v

v∗
η−v∗

η dη. �

Remark 4.1. Note that V is a Lyapunov function associated to system (3.5) without diffusion see [2,8], in this case its demonstrated

that the steady state E∗ is globally asymptotically stable under the condition e1 ≥ 1. Also in 1-D reaction diffusion system its

proved that the steady state E∗ of system (3.5) is globally asymptotically stable under the condition e2 ≥ e1 ≥ 1 (see [4]). In the



300 W. Abid et al. / Applied Mathematics and Computation 260 (2015) 292–313
next we will prove the global stability of E∗ in 2-D reaction diffusion system (3.5) by adapting the method presented in [7] to our

situation.

Let

W(u, v) =
∫
D

V(u(t, ρ), v(t, ρ))dρ,

=
∫
D

h1(u(t, ρ))dρ +
∫
D

h2(u(t, ρ))dρ.

W is positive for all (u, v) ∈ R
2∗+ and W(u∗, v∗) = 0. By differentiating W with respect to time t, we have:

dW

dt
=

∫
D

(
∂V

∂u

∂u

∂t
+ ∂V

∂v

∂v

∂t

)
dρ,

=
∫
D

(
∂V

∂u

(
�u + f (u, v)

) + ∂V

∂v

(
δ�v + g(u, v)

))
dρ,

=
∫
D

(
∂V

∂u
�u + δ

∂V

∂v
�v

)
dρ +

∫
D

(
∂V

∂u
f (u, v)+ ∂V

∂v
g(u, v)

)
dρ,

=
∫
D

(
∂V

∂u
�u + δ

∂V

∂v
�v

)
dρ +

∫
D

V̇dρ,

where V̇ = ∂V
∂t

.

From Green’s identity we get:∫
D

∂V

∂u
�udρ =

∫
∂D

∂V

∂u

∂u

∂η
−

∫
D

∇ ∂V

∂u
∇udρ,

= −
∫
D

∇ ∂V

∂u
∇udρ

and ∫
D

∂V

∂v
�vdρ =

∫
∂D

∂V

∂v

∂v

∂η
−

∫
D

∇ ∂V

∂v
∇vdρ,

= −
∫
D

∇ ∂V

∂v
∇vdρ,

where ∇rθ u =
(

∂u
∂r

, 1
r

∂u
∂θ

)
.

As V(u, v) = h1(u)+ h2(v) is written in a separable form and

h′′
1(u) = 1

a

(
(u∗ + e2 − e1)u

2 + 2e1u∗u + e1e2u∗
)

and

h′′
2(v) = u∗ + e2

bv∗ .
v∗

v2
≥ 0.

Then, under the condition e2 > e1 we have h′′
1 ≥ 0.

Therefore the matrix⎛
⎜⎜⎜⎝

∂2V

(∂u)2

∂2V

∂u∂v

∂2V

∂v∂u

∂2V

(∂v)2

⎞
⎟⎟⎟⎠

is positive definite and we have∫
D

(
∂V

∂u
�u + δ

∂V

∂v
�v

)
dρ ≤ 0.

As V̇ ≤ 0 for e1 ≥ 1, we deduce that

dW

dt
≤ 0 for 0 < a < 1 ≤ e1 ≤ e2.

Then, we have the result.
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5. Diffusion driven instability

By setting

Z =
(

u − u∗

v − v∗

)
ϕ(r, θ)eλt+ikr,

where k is the wave number and ϕ(r, θ) is a eigenfunction of the Laplacian operator on a disc domain defined in Section 2.2 with

zero flux boundary, i.e.:{
�rθϕ = −k2ϕ,

ϕr(R, θ) = 0.

Then by linearizing around (u∗, v∗), we have the following equation:

dZ

dt
= AZ + D�Z (5.1)

where

A =
(

fu fv

gu gv

)
=

⎛
⎝ 1 − 2u∗ − e1(1 − u∗)

e1 + u∗ − au∗

e1 + u∗
b −b

⎞
⎠ , D =

(
1 0
0 δ

)

and
fu = ∂

∂u
f (u∗, v∗), fv = ∂

∂v
f (u∗, v∗), gu = ∂

∂u
g(u∗, v∗), gv = ∂

∂v
g(u∗, v∗).

Theorem 5.1. Suppose that δ < δc b + e1 > 1 or 0 < u∗ < α1 orα2 < u∗, so that E∗ = (u∗, v∗) is asymptotically stable for system (3.5)

without diffusion.

Then, E∗ = (u∗, v∗) is unstable for system (3.5) if δ > δc where

δc = −(2fvgu − fugv)+ 2
√

fvgu(fvgu − fugv)

f 2
u

.

If we consider the ODE system of (3.5) (without diffusion), the stability of E∗ = (u∗, v∗) is recalled in Section 3.

Consider now the system with diffusion (3.5). By substituting Z by ϕeλt in Eq. (5.1) and canceling eλt, we get:

λϕ = (A − Dk2ϕ) (5.2)

Since we require ϕ to be a non trivial solution of Eq. (5.2), therefore λ is a zero of the following characteristic equation defined
by

�(k2) = det(λI2 − A + k2D) = 0 (5.3)

and the solution λ is a function of the numberwave k in this case we write λ = λ(k).
By computation, we have the expression of the characteristic equation �(k2):

�(k2) = λ2 + B(k2)λ + C(k2), (5.4)

where

B(k2) = k2(1 + δ)− tr(A)

and

C(k2) = δk4 − (δfu + gv)k
2 + det(A).

Remark 5.1. For k2 = 0, the characteristic equation is written as: �(k2 = 0) = � = λ2 + B(0)λ + C(0), where B(k2 = 0) = −tr(A)
and C(k2 = 0) = det(A). Which coincides with the characteristic equation of the Eq. (5.1) without diffusion and the stability of

(u∗, v∗) is studied in [2].

The corresponding eigenvalues of the characteristic Eq. (5.4) are:

λ±(k) = −B(k2)±
√

(B(k2))2 − 4C(K2)

2
.

Next, we will work under the conditions of Turing instability which are as follows (see [19]):

B(0) = −tr(A) = −(fu + gv) < 0, (5.5)

C(0) = det(A) = fugv − fvgu > 0, (5.6)

δfu + gv > 0, (5.7)

(δfu + gv)
2 − 4δ det(A) > 0. (5.8)
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The imaginary part of λ(k) is also important, because it allows the perturbation to be periodic in time.

The case when Im(λ(kc)) = 0 is called Turing instability and corresponds to the onset of patterns periodic in space and

stationary in time.

On the other hand, for Im(λ(kc)) �= 0 the instability is Hopf type. This corresponds to instability leading to a limit cycle

oscillations in time.

Remark 5.2. Two cases of Hopf instability:

- kc = 0 (and Im(λ(0)) �= 0), the homogenous Hopf instability case. The instability leads to (spatially homogenous) time oscil-

lations.

- kc �= 0 (and Im(λ(kc)) �= 0), the wave instability. The instability leading to traveling waves happens.

Since A(k) = A(−k) that imply symmetry that is λ(k) = λ(−k) and if the kc exits also −kc exists.

As A(k) is 2 × 2 matrix, there exist two different eigenvalues λ(k) for each wave number k.

Remark 5.3. If det(A(k)) > 0 and tr(A(k)) < 0, we have Re(λ±(k)) < 0 ∀k, which imply the nontrivial equilibrium point is stable.

1. There exits kc such that det(A(kc)) = C(k2
c ) = 0 and tr(A(kc)) = −B(k2

c ) < 0 whereas det(A(k)) > 0 and tr(A(k)) < 0∀k �= kc.

2. There exits kc such that det(A(kc)) > 0 and tr(A(kc)) = 0 whereas det(A(k)) > 0 and tr(A(k)) < 0∀k �= kc.

We call the two conditions instability threshold conditions. At these threshold conditions the system is critical and one or

more eigenvalues with zero real part called critical eigenvalues.

In case 1: both eigenvalues are real. λ+(kc) = 0 and λ−(kc) < 0 imply Turing instability and denote kc by kT .

In case 2: λ+(kc) = iwc and λ−(kc) = −iwc where wc =
√

det(A(kc)) imply Hopf instability with critical wavenumber kc and

critical frequency wc.

Remark 5.4. If kc = 0, an homogenous Hopf instability appears.

If kc �= 0, a wave instability arises, denote kc = kW .

For the steady state E∗ to be unstable to spatial disturbances, we need Re(λ(k)) to be strictly positive for some k �= 0. Then,

we have Re(λ(k)) > 0 if B(k2) < 0 or C(k2) < 0 for some k �= 0. As tr(A) = fu + gv < 0 and k2(1 + δ) > 0, we have B(k2) > 0 for all

k (see Fig. 3) and the only choice for Re(λ(k)) > 0 is C(k2) < 0 for some k �= 0 (see Fig. 4).

To know the sign of C(k2), we need to study their variations with respect to the wavenumber k2. By differentiation

C′(k2) = 2δk2 − (δfu + gv)

and

C′(k2) = 0 ⇐⇒ k = kmin =
√

δfu + gv

2δ
.

Then,

Cmin = C(k2
min) = det(A)− (δfu + gv)2

4δ
.

If det(A) <
(δfu+gv)2

4δ
, by continuity property there exists k2 �= 0 such that C(k2) < 0.

To obtain bifurcation in which Cmin = 0 that is det(A) = (δfu+gv)2

4δ
, there exists a critical value δc of the diffusion coefficient

delta which is a solution of the equation:

δ2f 2
u + 2δ(2fvgu − fugv)+ g2

v = 0. (5.9)

If we consider δ as a parameter of bifurcation from Eq. (5.9), we compute the values of δc:

δc1,2 =
−(2fvgu − fugv)±

√
(2fvgu − fugv)2 − f 2

u g2
v

f 2
u

. (5.10)

We note δc by δT (see Fig. 5) given by

δT = b
−(2fv + fu)±

√
(2fv + fu)2 − f 2

u

f 2
u

. (5.11)

As C(k2
c ) = 0, B(k2

c ) < 0, C(k2) < 0 and B(k2) < 0 for all k2 �= k2
c (see Remark 5.3). Then the critical value kc of the wavenumber k

is given as:

k2
T = δT fu − b

2δT
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Fig. 3. Surfaces in 3-D representing the positivity of the function B(k)with respect to variables k and blue surface in subfigure (a) is the vanishing plane. Subfigure

(a) is a zoom of the subfigure (b). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. C(k2) function (a) and Re(λ(k)) (b) with respect to the wavenumber k2. From Fig. 4, we observe that there exist two values k2
i
, i = 1, 2 of k2 such that

C(k2) < 0 and Re(λ(k)) > 0 for k2
1 < k2 < k2

2 we call ]k2
1, k2

2[ the region of wavenumbers of unstable modes. Blue curves are plotted for δ > δT and the red curves

for δ = δT and green lines for δ < δT . (c) is plotted for comparison we see that C(k2) = Re(λ(k)) = 0 at k2
i
, i = 1, 2. (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)
and the wavelength is given by

wT = 2π

kT
= 2π

√
2δT

δT fu − b
.

To define the region of wavenumbers of unstable modes one needs to solve the equation C(k2) = 0 (see Fig. 4). Then, we have

k2
1 = 1

2δ

(
(δfu + gv)−

√
(δfu + gv)2 − 4δ det(A)

)
,

k2
2 = 1

2δ

(
(δfu + gv)+

√
(δfu + gv)2 − 4δ det(A)

)
.

Remark 5.5.

(i) The first condition of Turing ensures that B(k2) < 0, the second allows us to solve the equations det(A) = (δfu+gv)2

4δ
, the

third one gives us the positivity of k2
T = δcfu−b

2δc
. The last conditions ensure the positivity of k2

i
; i = 1, 2.

(ii) If we consider b (see Fig. 5) as a parameter of bifurcation, from Eq. (5.9) we have

δ2f 2
u + 2δ(2fvgu − fugv)+ g2

v = b2 + 2bδ(2fv + fu)+ δ2f 2
u = 0 (5.12)

and

bT = δ

(
−(2fv + fu)±

√
(2fv + fu)2 − f 2

u

)
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Fig. 5. Curves of maximal and minimal critical values of δ vs b (a), (b) and b vs δ (c), (d) and the curve which gives the critical value bH of homogeneous Hopf (e).
and

k2
T = δfu − bT

2δ

and wavelength is:

wT = 2π

kT
= 2π

√
2δ

δfu − bT
.

The region of Turing instability and of homogeneous Hopf are illustrated in Fig. 5.

The violation of the first Turing conditions leads to the Hopf bifurcation, i.e., the onset of Hopf instability is (see Remarks 5.1

and 5.2)

tr(A) = fu − b ≥ 0,

which gives us the Hopf critical value (which corresponds to the case when k = 0)

bH = fu = 1 − 2u∗ − e1(1 − u∗)
e1 + u∗ (5.13)

and the region of the Hopf instability is given by b > bH and the frequency of oscillations is

μH =
√

det(A) =
√

bH(fu + fv) =
√

bHu∗ 2u∗ + a + e1 − 1

u∗ + e1
(5.14)

and the wavelength is

wH = 2π

μH
= 2π

√
1

bHu∗
u∗ + e1

2u∗ + a + e1 − 1
. (5.15)

Proposition 5.1. If

δ = δ± =
−(2fv + fu)±

√
(2fv + fu)2 − f 2

u

fu

Then bT = bH.
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Proof. As bH = fu and bT = δ(−(2fv + fu)±
√

(2fv + fu)2 − f 2
u ), a simple computation leads to solve the second order equation in

δ

fuδ
2 + 2δ(2fv + fu)+ fu = 0.

Therefore, we deduce the result.

This result coincide with the numerical simulation given in Fig. 5(c)–(e), we observe that the horizontal line which present

the critical value bH of Hopf bifurcation in Fig. 5(d) intersect the lines which present the maximal and the minimal values of bT

at δ±. �

6. Numerical analysis

6.1. Numerical method

Eq. (3.5) is not defined at the origin r = 0, to avoid this singularity and to have the desired regularity the finite difference

scheme [25] uses a uniform grid with some steady at the origin. This poles condition play the role as a boundary condition which

is a necessary condition in the finite difference scheme. By discretization, the associated approximation of problem (3.5) takes

the following form:

For n = 1, . . . , N, with N = T
�t

, i = 1, . . . , P + 1, and j = 1, . . . , M + 1 find {un
i,j

, vn
i,j
} such that⎧⎪⎨

⎪⎩
∂nun

i,j
= �riθj

un
i,j

+ f (
−→
un

i,j
,
−−→
un−1

i,j
),

∂nvn
i,j

= δ�riθj
vn

i,j
+ g(

−→
un

i,j
,
−−→
un−1

i,j
),

(6.1)

with ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f (
−→
un

i,j
,
−−→
un−1

i,j
) = un−1

i,j
− un−1

i,j
|un−1

i,j
| −

avn−1
i,j

|un−1
i,j

| + e1

un−1
i,j

,

g(
−→
un

i,j
,
−−→
un−1

i,j
) = bvn−1

i,j
−

bvn−1
i,j

|un−1
i,j

| + e2

vn−1
i,j

,

(6.2)

where
−→
un

i,j
= (un

i,j
, vn

i,j
)T denotes the two-dimensional approximation at the point (ri, θj, tn) with tn = n�t. The approximations of

the initial conditions are given as:

u0
i,j = u0(ri, θj), v0

i,j = v0(ri, θj).

We choose a grid which the grid points are integers in azimuthal direction and half-integer in radial direction and, that is

ri =
(

i − 1

2

)
�r, θj = (j − 1)�θ, (6.3)

where

�r = 2

2P + 1
, �θ = 2π

M
,

using the centered difference method to discretize the Laplacian operator, for i = 2, . . . , P and j = 1, . . . , M we have

�riθj
un

i,j ≈
un

i+1,j
+ un

i−1,j
− 2un

i,j

�r2
+

un
i+1,j

− un
i−1,j

2ri�r
+

un
i,j+1

+ un
i,j−1

− 2un
i,j

r2
i
�θ2

, (6.4)

from the Neumann boundary conditions (the flow is zero on the edge)

un
P+1,j

− un
P,j

�r
= 0, (6.5)

so the numerical boundary values at r = 1, un
P+1,j

can be approximated by un
P,j

, and un
i,0

= un
i,M

, un
i,1

= un
i,M+1

since u is 2π periodic

in θ . At i = 1, Eq. (6.4) becomes

�r1θj
un

1,j ≈
un

2,j
+ un

0,j
− 2un

1,j

�r2
+

un
2,j

− un
0,j

2r1�r
+

un
1,j+1

+ un
1,j−1

− 2un
1,j

r2
1�θ2

, (6.6)

since r1 = �r
2 , the term un

0,j
is simplified and the Eq. (6.6) becomes

�r1θj
un

1,j ≈
2(un

2,j
− un

1,j
)

�r2
+

un
1,j+1

+ un
1,j−1

− 2un
1,j

r2�θ2
. (6.7)
1
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We find the linear system is(
B1 0
0 B2

) ⎛
⎝

−→
Un

−→
Vn

⎞
⎠ =

⎛
⎜⎝

−−→
Un−1 + �tF
−−→
Vn−1 + �tG

⎞
⎟⎠ , where

(
B1 = I + �tL

B2 = I + δ�tL

)
.

I is the identity matrix and L is the matrix of coefficients in polar coordinates, F and G are associated to the system (6.2).

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A − 2D D 0 . . . 0 D

D
. . .

. . .
. . .

. . . 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0
. . .

. . .
. . .

. . . D

D 0 . . . 0 D A − 2D

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 1 + λ1 0 . . . . . . 0

1 − λ2

. . .
. . .

. . .
. . .

...

0
. . .

. . . 1 + λi

. . .
...

...
. . . 1 − λi

. . .
. . .

...
...

. . .
. . .

. . . −2 1 + λP−1

0 . . . . . . 0 1 − λP 1 + λP

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β1 0 . . . . . . . . . 0

0
. . .

. . .
. . .

. . .
...

...
. . . βi

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

0 . . . . . . . . . 0 βP

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with

βi = 1

(i − 0.5)2�θ2
, λi = 1

(i − 0.5)
, i = 1, . . . , P.

6.2. Numerical simulations

It is known that, the analytical solution of the coupled reaction diffusion system of predator prey type is not always possible.

Thus we have to perform numerical simulations to solve them. The spatiotemporal system (3.5) is solved numerically in the disk

� = {(x, y) ∈ R
2 : x2 + y2 < 400}. with x=rcos(θ) and y = rsin(θ). The Laplacian describing diffusion is calculated using finite

difference schemes, that is, the derivatives are approached by differences over space steps (�r) and an explicit Euler’s method

for the time integration with a time step size (�t) with the zero-flux boundary conditions (homogeneous Neumann boundary

conditions). In order to avoid numerical artifacts, the values of the time (�t) and space steps (�r and �θ) have been chosen

sufficiently small. Satisfying the CFL (Courant–Friedrichs–Levy) stability criterion for diffusion equation, we introduce for (3.5)1

(Resp. (3.5)2):

�t ≤ r2
i
�r2�θ2

2r2
i
�θ2 + ri�r�θ2 + 2�r2

(
Resp. �t ≤ r2

i
�r2�θ2

δ(2r2
i
�θ2 + ri�r�θ2 + 2�r2)

)
.
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Fig. 6. Spatial spiral waves type distribution of species for fixed δ = 1.

Fig. 7. Spatial distribution of species for fixed δ = 1 and time varying.
The initial condition is a small perturbation in the vicinity of equilibrium point (u∗, v∗). These initial conditions have been chosen

as,

u0(ri, θj) = u∗((ricos(θj))
2 + (risin(θj))

2) = u∗r2
i < 400, (6.8)

v0(ri, θj) = v∗((ricos(θj))
2 + (risin(θj))

2) = v∗r2
i < 400. (6.9)

Remark 6.1. From the conditions (6.8) and (6.9), it is clear that the disk center is (0, 0)and radius R = 400. Our initial perturbation

can be improved to avoid confusion ((cos(θ))2 + (sin(θ))2 = 1). Via numerical simulation, we found that these conditions (6.8)

and (6.9) are similar for these conditions (6.10) and (6.11) and the centre of the disk becomes (400, 400) and radius R = 400.

u0(ri, θj) = u∗(((ricos(θj))− 400)2 + ((risin(θj))− 400)2) < 800 (6.10)

v0(ri, θj) = v∗(((ricos(θj))− 400)2 + ((risin(θj))− 400)2) < 800 (6.11)

In the proposed model (3.5) through numerical simulations, different types of dynamics are observed. Firstly in Fig. 6, we

observe the spatial distribution of spiral waves types for system (3.5) for time t = 8000. Next, we stop the simulation when

the numerical solutions either reach a stationary state or show oscillatory behavior. The following time evolution of spatial

distributions are observed (Figs. 7–9). The left figures are the evolution of the prey spatial distribution and the right ones are of

the predators. After a while, the patterns show a behavior that does not seem to change its characteristics anymore, the stripes
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Fig. 8. Spatial distribution of species for fixed δ = 1 and time varying.

Fig. 9. Spatial distribution of species for δ = 1.

Table 1

The values of parameters model, and the corresponding pictures of patterns are shown (Figs. 6–9).

Values of a Values of b Values of e1 Values of e2 Values of δ Values of t Contour pictures

1 0.002 0.2 0.1 1 8000 Fig. 6

1 0.01 0.2 0.1 1 500 Fig. 7(a)

1 0.01 0.2 0.1 1 4000 Fig. 7(b)

1 0.01 0.2 0.1 1 5000 Fig. 7(c)

1 0.01 0.2 0.1 1 6000 Fig. 7(d)

1 0.01 0.2 0.1 1 6500 Fig. 8(a)

1 0.01 0.2 0.1 1 7000 Fig. 8(b)

1 0.01 0.2 0.1 1 8000 Fig. 8(c)

1 0.01 0.2 0.1 1 10,000 Fig. 8(d)

1 0.01 0.2 0.1 1 20,000 Fig. 9(a)

1 0.01 0.2 0.1 1 30,000 Fig. 9(b)
spatial pattern arise. They grow with time and stripes pattern prevail over the whole domain at last (see Fig. 9(b)) and the

dynamics of the system does not undergo any further changes. All values of the used parameters are summarized in Table 1.

In order to illustrate the phenomena caused by Hopf bifurcation numerically, we choose parameter values in system (3.5) as

a = 1, e1 = 0.3, e2 = 0.1, δ = 1 with small random perturbation of the stationary solution u∗ and v∗ of the spatially homogeneous

system. We know that Hopf bifurcation occurs when b > bH = 0.0293 (from (5.13)). Figs. 10 and 11, show snapshots of contour

pictures of the time evolution of prey population in system (3.5) b = 0.0295 > bH . However, it is a little bit hard to observe an

oscillatory phenomenon arising from Hopf bifurcation from these snapshots. In addition, we can calculate numerically that the

frequency of the periodic oscillations in time μH = 0.12 and the corresponding wave length ωH = 52.35. Also, it follows from

(5.14) and (5.15) that the theoretical frequency of the periodic oscillations in time is μH = 0.1196 and the corresponding wave

length ωH = 52.54.

The Turing instability is dependent only upon the reaction rates (local interaction of species) and populations diffusion and

not upon the geometry of the system. It cannot be expected if the diffusion term is absent. It can occur only if prey population
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Fig. 10. Spatial distribution of prey predator species at t = 50,000 and b = 0.0295.

Fig. 11. Spatial distribution of prey predator species at t = 70,000 and b = 0.0295.

Table 2

The values of parameters model, and the corresponding pictures of patterns are shown (Fig. 12).

Values of a Values of b Values of e1 Values of e2 Values of δ Values of t Contour pictures

1 0.01 0.2 0.1 1.01 8000 Fig. 12(a)

1 0.01 0.2 0.1 1.1 8000 Fig. 12(b)

1 0.01 0.2 0.1 1.5 8000 Fig. 12(c)

1 0.01 0.2 0.1 1.52 8000 Fig. 12(d)

1 0.01 0.2 0.1 1.54 8000 Fig. 12(e)

1 0.01 0.2 0.1 1.55 8000 Fig. 12(f)

1 0.01 0.2 0.1 2.5 8000 Fig. 12(g)

1 0.01 0.2 0.1 5 8000 Fig. 12(h)
diffuses more slowly than predator one. We have studied numerically the effect of the diffusion coefficient δ on the pattern

formation. All values of the used parameters are summarized in Table 2. The left column is the evolution of the prey spatial

pattern and the right one is the predators. Fig. 12(a) (Resp. (b)–(e)) shows the evolution of the spatial pattern of the prey and

predator at t = 8000 with small random perturbation of the stationary solution u∗ and v∗ of the spatially homogeneous system

with δ = 1.01 (Resp. δ = 1.1, δ = 1.5, δ = 1.52, δ = 1.54,). We see from these figures that the spotted and labyrinth patterns

prevail in the whole domain. If we increase the diffusion coefficient δ = 1.55 (Fig. 12(f)), the number of the spotted area in the
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Fig. 12. Spatial distribution for fixed b and varying δ.

Fig. 13. Spatial distribution for fixed δ and varying b.

Table 3

The values of parameters model, and the corresponding pictures of patterns are shown (Fig. 13).

Values of a Values of b Values of e1 Values of e2 Values of δ Values of t Contour pictures

1 0.005 0.2 0.1 1.5 10,000 Fig. 13(a)

1 0.01 0.2 0.1 1.5 10,000 Fig. 13(b)

1 0.02 0.2 0.1 1.5 10,000 Fig. 13(c)

1 0.04 0.2 0.1 1.5 10,000 Fig. 13(d)

1 0.06 0.2 0.1 1.5 10,000 Fig. 13(e)
space domain is also increased and the number of labyrinth is decreased. The same for the Fig. 12(h) for δ = 5, the number of

the spotted area in the space domain is increased. Finally, if we increase the diffusion coefficient, system (3.5) exhibits a pattern

transition from labyrinth pattern to spotted pattern.

We will choose b as a parameter of bifurcation since it determines the ratio of two factors which are the birth rates of the

prey and the predator. In Fig. 13, we show the effect of the bifurcation parameter on the formation of patterns for the two species

predator prey at time t = 10, 000. All values of the used parameters are summarized in Table 3. The left column is the evolution

of the prey spatial pattern and the right one is the predators. We see from these figures (Fig. 13(a) and (b)), that the labyrinth
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Fig. 14. Solution curves of prey-predator populations when the bifurcation parameter b varies.

Table 4

The values of parameters model, and the corresponding pictures of patterns are shown (Figs. 14 and 15).

Values of a Values of b Values of e1 Values of e2 Values of δ Values of t Contour pictures

1 0.001 0.2 0.1 1 150 Fig. 14(a)

1 0.04 0.2 0.1 1 150 Fig. 14(b)

1 0.075 0.2 0.1 1 150 Fig. 14(c)

1 0.001 0.2 0.1 1 550 Fig. 15(a)

1 0.0037 0.2 0.1 1 550 Fig. 15(b)

1 0.02 0.2 0.1 1 550 Fig. 15(c)

1 0.065 0.2 0.1 1 550 Fig. 15(d)
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Fig. 15. Phase plane trajectories (U, V)of prey-predator populations, for system (3.5), for different values of b, b = 0.001 (a), b = 0.0037 (b), b = 0.02 (c), b = 0.065

(d).
patterns prevail in the whole domain. From Fig. 13(c), we see that the spotted and labyrinth patterns prevail in the whole domain

if we increase the bifurcation parameter b = 0.02 and spotted pattern prevail over the whole domain at last (Fig. 13(d) and (e))

at b = 0.04 and b = 0.06.

In Fig. 14, we plot the curves of densities of prey and predator with respect to time t when the bifurcation parameter b varies.

All values of the used parameters are summarized in Table 4. We observe from this Figure that populations of prey-predator

converge to their steady states with the passage of time and E∗ = (u∗, v∗) is locally asymptotically stable for system (3.5). If we

increase the value of the bifurcation parameter b = 0.075 the equilibrium E∗ = (u∗, v∗) loses its stability and becomes unstable

Fig. 14(c).

For better studying the properties of the population dynamics as a whole, we estimate the species size of prey and predator

by

U(t) =
∫ R

0

∫ 2π

0

u(t, r, θ)drdθ and V(t) =
∫ R

0

∫ 2π

0

v(t, r, θ)drdθ . (6.12)

In what follows, we will study the properties of the oscillations of the dynamics of the populations when one varies the bifurcation

parameter. Therefore, while b varies between 0.001 and 0.065 and the other parameters are fixed as in Table 4, we leave a rather

large transitory time. We start with b = 0.001, then the equilibrium is globally stable see Fig. 15(a). If we increase the bifurcation

parameter we have a bifurcation when this ratio is equals to b = 0.0037. When b belongs to [0.0037, 0.02] the system exhibits

periodic trajectory, see Fig. 15(b) and (c). Finally, the chaotic dynamic takes place Fig. 15(d). Fig. 16 shows the evolution of the

spatial pattern of prey and predator at δ = 1.5 at different time steps, with small random perturbation of the stationary solution

u∗ and v∗ of the spatially homogeneous systems, other parameters are fixed as in Table 5. One can see from this figure that the

labyrinth patterns prevail over the whole domain and this labyrinth is almost stable over time.
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Fig. 16. Spatial distribution for fixed δ, b and time varying.

Table 5

The values of parameters model, and the corresponding pictures of patterns are shown (Fig. 16).

Values of a Values of b Values of e1 Values of e2 Values of δ Values of t Contour pictures

1 0.01 0.2 0.1 1.5 8000 Fig. 16(a)

1 0.01 0.2 0.1 1.5 10,000 Fig. 16(b)

1 0.01 0.2 0.1 1.5 12,000 Fig. 16(c)

1 0.01 0.2 0.1 1.5 15,000 Fig. 16(d)
7. Conclusion

In this paper, we present the analysis of two developed predator-prey systems in the last decades in ecology. For this, we have

presented a spatio-temporal prey-predator system given by a reaction–diffusion equations which is based on a Holling-type II

modified functional responses. We assumed that the two populations diffuse in a disc domain {(x, y) ∈ R
2/x2 + y2 < R2}. Initially,

we presented the model on the circular domain (i.e. polar coordinate D = {(r, θ) : 0 < r < R, 0 ≤ θ < 2π} and analyzing the

nature of the eigenvalues of the Laplacian on a circular domain. The local and global stabilities of the interior steady state are

studied as well as bifurcations which lead to the instability of this equilibrium.

The numerical simulations indicate that the effect of the diffusion coefficient and the bifurcation parameter for pattern

formation is remarkable. From the patterns exhibited through Figs.–9 one can see that the stripe patterns prevail over the whole

domain at last and the dynamics of the system does not undergo any further changes.

We found that if we increase the diffusion coefficient, system (3.5) exhibits a pattern transition from labyrinth pattern to

spotted pattern (Fig. 12). Therefore, one can predict that the effect of diffusion coefficient can be considered as an important

mechanism for the appearance of complex spatio temporal patterns in spatial predator prey model.

Our aim in the next paper is to show the theoretically the results observed via numerical simulations such spatio-temporal

chaos, patterns induced by Turing instability and Hopf instability of the system (3.5).
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