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Abstract
We present an innovative complex network of reaction–diffusion systems set in
distinct domains, with boundary couplings. The complex network models the
evolution of interacting populations living in a heterogeneous and fragmented
habitat, whose biological individuals migrate from one patch to another. In
our model, the displacements of individuals are described by mixed boundary
couplings, involving both the Neumann and Robin boundary conditions, which
improve the modeling of migrations by point-wise couplings. We investigate
the cases of diffusion in isotropic and anisotropic habitats and establish ori-
ginal sufficient conditions of synchronization in this complex network model,
for complete graphs, cyclic graphs and rings of nearest neighbors. In parallel,
we apply our theoretical framework to a nonlinear predator–prey model with
Leslie–Gower-type functional response and explore numerically the emergence
of synchronization on heterogeneous Turing patterns.
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1. Introduction

In this paper, we propose to study the dynamics of complex networks of reaction–diffusion
systems of the form

∂Ui

∂t
= Di∆ΩiUi + f(Ui) , (t,xi) ∈ (0,∞)×Ωi, (1)

∂Ui

∂νi
= 0, (t,xi) ∈ (0,∞)×ΓNi , (2)

∂Ui

∂νi
=−µi (xi)

∑
j∈Ni

(Ui −Uj) , (t,xi) ∈ (0,∞)×ΓRi , (3)

Ui (0,xi) = Ui,0 (xi) , xi ∈ Ωi, (4)

with i ∈ {1, . . . ,n}. Here, n is a positive integer; the domains (Ωi)1⩽i⩽n are open, bounded
and connected sets included in RM with M⩾ 1. For each i ∈ {1, . . . ,n}, we assume that the
boundary ∂Ωi of Ωi is regular and can be split into two disjoint boundaries:

∂Ωi = ΓNi ∪ΓRi , ΓNi ∩ΓRi =∅.

The outward unit normal vector at point xi of ∂Ωi is denoted by νi(xi) or simply ν i. The bound-
aries ΓNi and ΓRi are associated with the boundary conditions (2) of Neumann type and (3) of
Robin type, respectively. The unknown functions (Ui)1⩽i⩽n are defined in (0,+∞)×Ω1, . . . ,
(0,+∞)×Ωn, respectively, with values in Rm, where m is a positive integer; the functions
(Ui)1⩽i⩽n model population densities of interacting biological individuals; each domain Ωi,
1⩽ i ⩽ n, models the habitat of the interacting speciesUi = (Ui,1, . . . ,Ui,m)

⊤. These interact-
ing species are subject to spatial mobility within the domains (Ωi)1⩽i⩽n and between those
domains, as will be soon explained. The matrices (Di)1⩽i⩽n are diagonal and we assume that
their diagonal coefficientsDi,k, 1⩽ k⩽ m, are positive. The operators (∆Ωi)1⩽i⩽n are multiple
instances of the Laplace operator, defined as

∆Ωi =
∂2

∂x2i,1
+ · · ·+ ∂2

∂x2i,M
, 1⩽ i ⩽ n, (5)

where the space variable inΩi is denoted by xi = (xi,1, . . . ,xi,M)⊤. In equation (1), the diffusion
term Di∆ΩiUi models the spatial diffusion of Ui in the interior of the domain Ωi (1⩽ i ⩽ n).
In addition, the domains (Ωi)1⩽i⩽n are coupled in such a way that each domain Ωi, 1⩽ i ⩽ n,
admits a finite number of neighbors; we denote byNi the set of indices j ∈ {1, . . . ,n} such that
Ωi is coupled withΩj. The connections between the domains (Ωi)1⩽i⩽n are symmetric, that is,
j ∈Ni if and only if i ∈Nj (1⩽ i, j ⩽ n); those connections determine the edges of a graph G ,
whose vertices are the domains (Ωi)1⩽i⩽n (see figure 1 below). If a domain Ωi is coupled with
another domain Ωj (1⩽ i, j ⩽ n), then we introduce a boundary coupling function µi, defined
on the boundary ΓRi . In equation (3), each boundary term −µi(xi)(Ui −Uj) of the sum over
Ni models the spatial mobilities of species Ui and Uj between Ωi and Ωj. We emphasize that
if a domain Ωi is connected to two distinct domains Ωj and Ωj ′ (j, j ′ ∈Ni, j 6= j ′), then the
mobilities from Ωi to Ωj and from Ωi to Ωj ′ start from the same boundary ΓRi , although they
could start from distinct boundaries ΓRi,j, Γ

R
i,j ′ . We suppose that there exists a positive constant

µ0 such that µi(xi)⩾ µ0 for all xi ∈ ΓRi and all i ∈ {1, . . . ,n}. We also suppose that there exists
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a homeomorphism ϕi,j that maps ΓRi onto ΓRj , so that the boundary coupling is defined by the
Robin boundary condition (3), with the convention

Uj (xi) = Uj (ϕi,j (xi)) , xi ∈ ΓRi , 1⩽ i, j ⩽ n. (6)

We emphasize that the latter equation models the conservation of population during the mobil-
ity between two domains Ωi and Ωj. In other words, we assume that biological individuals
moving from a given patch Ωi necessarily reach some other patch Ωj, hence do not leave the
whole habitat. Furthermore, we assume that the mobilities between two domains are instant-
aneous, although a time delay could be introduced at this stage. However, for simplicity, we
do not focus on this point in the present paper. Next, the function f involved in the reaction–
diffusion system (1) is a nonlinear operator with values in Rm, which models the interactions
between the biological speciesUi,1, . . . ,Ui,m living on domainΩi (1⩽ i ⩽ n); the regularity of
the function f will be detailed below. Finally, the functions (Ui,0)1⩽i⩽n are initial conditions
defined in Ω1, . . . , Ωn, respectively.

1.1. Related works

Although complex networks of dynamical systems determined by ordinary differential
equations have been studied for more than two decades (see for instance [16, 19, 22, 23] or [38]
and the references therein), the study of complex networks of dynamical systems determined
by partial differential equations is very recent. It has encountered a rapidly growing interest,
due to the rich dynamics of their trajectories and to the great number of real-world applications.
Indeed, various forms of synchronization, such as identical synchronization, have been stud-
ied in [3, 27, 35] or [37] for complex networks determined by reaction–diffusion systems. The
stability of persistence or extinction equilibria in meta-population models have been studied
in [9] for a panic model, in [8] for a competing species system or in [34] for an epidemi-
ological model. In [11], it has been proved that the spatial diffusion of individuals in such
meta-population models acts as a combination of short and long range diffusion. In paral-
lel, the dynamics of chemical reactions networks have been studied in [14, 15] via the entropy
framework; synchronization of unstable patterns in other chemical reactions networks has been
investigated in [25]. It is observed that the main research axis which motivates these works
is very often related to the synchronization phenomenon. Although innovative, these works
however suffer several limitations. Notably, the modeling of the couplings is often reduct-
ive. For instance, displacements of individuals are roughly modeled by point-wise couplings
in [8, 9], whose adequateness with biological observations can legitimately be criticized (see
figure 1(a)). Furthermore, the local dynamics of the complex networks studied in these papers
are often described by identical systems defined in identical domains; the equations of these
complex networks can be written in the following form:

∂Ui

∂t
= Di∆Ui + f(Ui)−µ

∑
j∈Ni

(Ui −Uj) (t,x) ∈ (0,∞)×Ω, (7)

∂Ui

∂νi
= 0, (t,x) ∈ (0,∞)× ∂Ω, (8)

Ui (0,x) = Ui,0 (x) , x ∈ Ω, (9)

where Ω denotes a single bounded domain included in RM. Compared with the model determ-
ined by (1)–(4), we observe that the couplings are here integrated into the reaction–diffusion
equation (7), whereas they are defined by the Robin boundary condition (3) in our new model.
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Figure 1. Complex networks modeling a fragmented habitat with migrations of indi-
viduals between patches. (a) Identical domains and simple point-wise couplings: indi-
viduals at point x ∈ Ω migrate towards the same point x of a copy of Ω. (b) and (c)
Distinct domains and realistic boundary couplings: individuals migrate from one patch
to another through their boundary by crossing a corridor. The graph topology underlying
the complex network can be weakly dense (b) or complete (c).

Furthermore, the boundary condition (8) of Neumann type is seen as incompatible with natural
displacements of biological individuals through the boundary of their habitat. Thus it appears
highly relevant to study the dynamics of complex networks for which a refined modeling of
the couplings is expected.

1.2. Contributions

The model studied in this paper, which results from the latter observations, represents the first
contribution of our work: by improving themodeling of the geometry of the domains and of the
couplings, this new model better takes into account the heterogeneity of the biological habitat
and the complexity of the interactions occurring between distinct patches of the environment.
Indeed, the domains Ω1, . . . , Ωn involved in the complex network (1)–(4) are fully distinct,
in the sense that they can admit distinct sizes and distinct shapes. Furthermore, the couplings
between those domains are defined along their boundaries, which significantly improves the
modeling of individuals displacements, which were so far modeled by point-wise couplings
in the interior of the domains. Our second contribution corresponds to the mathematical ana-
lysis of this new model. Indeed, our aim is to establish sufficient conditions on the numerous
parameters involved in equations (1)–(4), in order to guaranty the global synchronization of the
local dynamics on each domainΩi, 1⩽ i ⩽ n. Reaching a synchronization state for interacting
species systems is relevant, since the dynamics of such systems are usually characterized by the
coexistence of extinction and persistence equilibria. Hence, a global synchronization state in
the whole system is viewed as a control strategy to avoid extinction, and can be set in place by
setting ecological corridors, so as to increase the connectivity of natural habitats and to avoid
local extinction of several wildlife species. Indeed, from the ecological point of view, this topic
represents a major challenge, since it is observed that anthropic activities exert a high pressure
on the habitat of numerous wildlife species (see notably [17, 26, 28, 29, 32, 39]). In particu-
lar, urban growth and extension of agricultural land profoundly modify the landscape and the

4



Nonlinearity 37 (2024) 025011 M A Aziz-Alaoui et al

Figure 2. The setting of ecological corridors can help restore biodiversity in an eco-
system whose habitat is fragmented. (a) Ecological corridor connecting both sides of
a road. Source: https://the-abc-ecological-corridor.html. (b) Dense implementation of
ecological corridors in a fragmented environment. Source: [39].

geometry of ecological habitats. One relevant strategy for mitigating the effects of anthropiz-
ation of natural spaces is to implement ecological corridors. We show in figure 2(a) a picture
of such an ecological corridor, that connects both sides of a road. Furthermore, a high density
of ecological corridors in a fragmented habitat can help restore wildlife (see figure 2(b)).

To achieve our study of this innovative complex network model, we shall employ original
methods, involving a Poincaré-type inequality for mixed Neumann-Robin boundary condi-
tions. Up to our knowledge, such inequalities have never been used in previous related works.
Furthermore, in researching sufficient conditions of synchronization for the complex network
model (1)–(4), we bring out that the diffusion in an isotropic habitat described by the Laplace
operator is not compatible with the distinct geometries of the domains Ω1, . . . , Ωn. To over-
come this delicate issue, we also address in this paper the case of diffusion in an anisotropic
habitat, by replacing the standard reaction–diffusion equation (1) by the system of semi-linear
equations

∂Ui

∂t
= Di∇Ωi ·Ai∇ΩiUi + f(Ui) , (t,xi) ∈ (0,∞)×Ωi, (10)

where the matrices Ai, 1⩽ i ⩽ n, are square matrices of order M with real coefficients.
Afterwards, we apply our theoretical approach to a nonlinear predator–preymodel with Leslie–
Gower-type functional response, given by

∂u
∂t

= d1∆u+ u(1− u)− Quv
u+A

,
∂v
∂t

= d2∆v+ Sv

(
1− v

u+C

)
, (11)

where u, v denote the densities of competing species and d1, d2, A, C S and Q denote positive
constants. This competing species model has been studied on a single domain in numerous
papers (see for instance [1, 2, 4, 5, 7, 20, 21, 33]). The dynamics of such competing species
models have also been studied in non-convex domains admitting a ‘dumbbell’ shape [12, 24],
which resembles a simple two-nodes network. However, to the best of our knowledge, the
dynamics of the nonlinear predator–prey model (11) have never been studied in a complex
network with boundary couplings of the form (3). In the numerical part of our paper, we focus
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on the synchronization of heterogeneous Turing patterns, which have been proved to appear in
the Leslie–Gower model, in a diffusion-driven instability process. We exhibit various forms of
these patterns, mainly labyrinths and spots, and show how to synchronize them.We emphasize
that several other applications could be considered (including neural networks, epidemiolo-
gical networks, behavioral networks as cited before), which shows the wide potential of our
approach.

1.3. Outline

Our paper is organized as follows. In section 2, after brief preliminaries for recalling important
lemmas, we expose the functional context which guarantees the existence and uniqueness of
global solutions to the complex network problem (1)–(4). Next, we establish sufficient condi-
tions of synchronization for the case of homothetic domains (theorem 2), which are applied
to complete graph topologies (corollary 1), simple two-nodes networks (corollary 2), cyclic
graphs and rings of nearest neighbors topologies. We also investigate the situation of diffu-
sion in an anisotropic habitat, described by equation (10), which covers for instance the case
of ellipsoid domains of distinct eccentricities (theorem 4). In section 3, we present several
numerical simulations of the Leslie–Gower predator prey model, in order to supplement our
qualitative statements by quantitative experiments, which suggest that synchronization of com-
plex networks with boundary couplings might be more delicate to reach than with point-wise
couplings.

2. Complex networks of reaction–diffusion systems with boundary couplings

In this section, we consider the complex network of reaction–diffusion systems determined by
(1)–(4). As presented in the introduction, each domain Ωi, 1⩽ i ⩽ n, of this complex network
admits a finite setNi of neighbors. We denote by G = (V ,E ) the underlying graph: the set V
of its vertices corresponds to the domains Ω1, . . . , Ωn, and the set E of its edges is determined
by the sets of neighbors N1, . . . , Nn. An example of such a graph is illustrated in figure 1(b).

2.1. Preliminaries

Let us here briefly present two important lemmas which shall be useful in the sequel of the
paper. We first recall a Poincaré-type inequality for mixed Neumann–Robin boundary condi-
tions (see [31], inequality (11.13) in theorem 11.11).

Lemma 1. Let Ω be a bounded domain in RM with regular boundary ∂Ω. Assume that ∂Ω=
Γ1 ∪Γ2, where Γ2 has a positive measure, with Γ1 ∩Γ2 =∅. Let µ ∈ L∞(Γ2) be such that
µ(x)⩾ µ0 for all x ∈ Γ2, where µ0 denotes a positive constant. Then there exists a positive
constant λP(Ω,µ) such thatˆ

Ω

|∇u|2 dx⩾ λP (Ω,µ)

ˆ
Ω

|u|2 dx, (12)

for all u ∈W1,2(Ω) satisfying

∂u
∂ν

= 0 on Γ1,
∂u
∂ν

=−µ(x)u on Γ2.

In the latter lemma, the positive constant λP is called the Poincaré constant; it depends on
the domain Ω and on the function µ (see remark 3 below).
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Next, recall that a complete graph is a graph in which every pair of distinct vertices is con-
nected by a unique edge. The following lemma establishes a necessary and sufficient condition
for a connected graph to be complete. Since its proof is elementary, we may omit it.

Lemma 2. Let G = (V ,E ) be a connected graph with a finite set V of n vertices (n⩾ 3)
and a finite set E of edges. For each i ∈ V , we denote by Ni the subset of vertices which are
neighbors of i. Then G is complete if and only if

Ni \ {j}=Nj \ {i}, (13)

for all i, j ∈ V such that i and j are neighbors.

2.2. Global solutions of the complex network problem

Before establishing sufficient conditions of synchronization in the complex network determ-
ined by problem (1)–(4), we intend to prove the existence and uniqueness of global solutions.
To that aim, we consider the Banach space

Y= (Lp (Ω1)× ·· ·× Lp (Ωn))
m
,

equipped with the usual product norm. Following [12] (theorem 1.11), we require that the
Lebesgue exponent p satisfies p>M, where M denotes the dimension space of the domains
Ω1, . . . , Ωn. We then introduce the linear operator A defined by

A= diag{−Di∆Ωi , 1⩽ i ⩽ n} , (14)

with the mixed boundary conditions (2) and (3). The domain D(A) of the linear operator A is
included in the space X defined as

X=

{
U= (Ui)1⩽i⩽n ∈

(
W2,p (Ω1)× ·· ·×W2,p (Ωn)

)m
;

∂Ui

∂νi
= 0 on ΓNi ,

∂Ui

∂νi
=−µi (xi)

∑
j∈Ni

(Ui −Uj) on ΓRi

}
.

Next, we consider the function F defined for U ∈ X by

F(U) = ( fk (Ui))
⊤
1⩽i⩽n,1⩽k⩽m . (15)

The abstract formulation of the complex network problem (1)–(4) is written
dU
dt

+AU= F(U) , t> 0,

U(0) = U0,
(16)

with U0 = (Ui,0)1⩽i⩽n ∈ X. Assuming that the function F is locally Lipschitz continuous on
any bounded set of Rn×m, we can apply theorem 1.11 in [12] and conclude that the complex
network problem (1)–(4) admits global solutions.

7
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Theorem 1. Assume that the function F given by (15) is locally Lipschitz continuous on any
bounded set of Rn×m. Then there exists γ ∈ (0,1) such that the complex network problem
(1)–(4) admits global solutions in the space Xγ ⊂ Y generated by the fractional power Aγ ,
and determines a dynamical system S (t), defined for all U0 ∈ Xγ and all t⩾ 0 by

S (t)U0 = U(t,U0) , (17)

where U(t,U0) denotes the unique solution of the Cauchy problem (16) in Xγ .

Here, we assume moreover that the continuous dynamical system S (t) admits a compact
phase space Φ ⊂ Y, which is bounded in D(A). We emphasize that this compactness require-
ment is fulfilled for a wide class of reaction–diffusion systems (see for instance [36]) and often
follows from some dissipative estimations of the solutions. Along with the latter assumptions
on the phase space Φ, we easily verify that the functions ( fk)1⩽k⩽m satisfy the following glob-
ally Lipschitz condition:

‖ fk (v)− fk (w)‖L2(Ω) ⩽ Lk ‖v−w‖L2(Ω) , 1⩽ k⩽ m, (18)

for all v, w in Φ, with Lk > 0. This globally Lispchitz condition shall be very useful in the rest
of the paper, for establishing sufficient conditions of synchronization of the complex network
problem (1)–(4).

2.3. Sufficient conditions of synchronization

In this section, we investigate sufficient conditions for the complex networkmodel with bound-
ary couplings (1)–(4) to synchronize. Let us first specify the definition of synchronization for
complex networks of reaction–diffusion systems. We distinguish partial synchronization of a
subset of nodes in the network, and global synchronization in the whole network. Since the
domains Ω1, . . . , Ωn underlying the complex network model (1)–(4) are non-identical, we are
led to transport the solutions in a common arbitrary domain, hence the following definition
differs from the identical synchronization studied for instance in [8].

Definition 1. Let Ω be a bounded domain in RM. We say that two nodes i and j synchronize in
Ω if there exist two homeomorphisms ϕi and ϕj mapping Ω onto Ωi and Ωj, respectively, such
that for any U0 ∈ X, the solution U(t,U0) of the complex network problem (1)–(4) satisfies

lim
t→+∞

∥∥Ũi (t,x)− Ũj (t,x)
∥∥
L2(Ω)m

= 0,

where Ũi(t,x) = Ui
(
t,ϕi(x)

)
and Ũj(t,x) = Uj

(
t,ϕj(x)

)
for all x ∈ Ω and all t> 0.

We say that the complex network partially synchronizes in Ω if there exist at least one pair
of nodes (i, j) that synchronizes in Ω.

We say that the complex network globally synchronizes in Ω if every pair of nodes
synchronizes.

Note that the homeomorphism ϕi,j defined in (6), that maps ΓRi onto ΓRj , can be defined as

the continuation of the composition ϕj ◦ϕ−1
i that maps Ωi onto Ωj.

We are now ready to investigate sufficient conditions of synchronization in the complex
network (1)–(4). In the sequel, we focus on two situations: first, we establish a theorem
for the synchronization of two nodes in a network of homothetic domains; we deduce sev-
eral statements of global synchronization for complete graph topologies, cyclic graphs and

8



Nonlinearity 37 (2024) 025011 M A Aziz-Alaoui et al

rings of nearest neighbors graph topologies. Next, we consider the more general case of non-
homothetic domains, for which we are led to replace the diffusion operator in an isotropic
habitat by a generalized diffusion operator for an anisotropic habitat.

2.3.1. Synchronization conditions for a complex network of homothetic domains. We first
investigate the case where the domains Ω1, . . . , Ωn of the complex network problem (1)–(4)
are homothetic, that is, admit the same shape, with possibly distinct sizes. To that aim, we fix

Ω= Ω1, ΓR = ΓR1 , ΓN = ΓN1 , (19)

and consider n− 1 homothetiesH2, . . . , Hn mapping Ω1 onto Ω2, . . . , Ωn, respectively:

Ωi =Hi (Ω1) , 2⩽ i ⩽ n. (20)

Examples of such homothetic domains can be viewed in figures 8 and 10 below. For each
i ∈ {2, . . . ,n}, the homothety factor of Hi is positive and denoted by hi. We assume that the
homotheties preserve the splitting of the boundaries of each domain Ωi, that is

ΓNi =Hi
(
ΓN1

)
, ΓRi =Hi

(
ΓR1

)
, 2⩽ i ⩽ n. (21)

Given an initial condition U0 ∈ Xγ , we denote by

U(t,x) = (U1 (t,x) , . . . ,Un (t,Hn (x)))
⊤

the solution of problem (1)–(4) starting from U0. For all x ∈ Ω and all t> 0, we set

Ũ1 (t,x) = U1 (t,x) , Ũi (t,x) = Ui (t,Hi (x)) , 2⩽ i ⩽ n. (22)

In addition, we assume that the functions ( fk)1⩽i⩽n,1⩽k⩽m satisfy the global Lipschitz condi-
tion (18), with Lk > 0. The following theorem establishes sufficient conditions on the para-
meters involved in the complex network (1)–(4) for two nodes to synchronize.

Theorem 2. Let assumptions (18) and (20) hold. Suppose that two neighbor nodes i and j of
the complex network (1)–(4) satisfy

Di,k

h2i
=
Dj,k

h2j
, (23)

Di,k

hi
µi (Hi (x)) =

Dj,k

hj
µj (Hj (x)) , (24)

for each k ∈ {1, . . . ,m} and for all x ∈ ΓR. Suppose moreover that

Ni \ {j}=Nj \ {i}. (25)

Finally, suppose that

Di,kλP (Ω,µi)

h2i
>

1+Lk
2

2
, (26)

for each k ∈ {1, . . . ,m}, where λP(Ω,µi) is the Poincaré constant determined by lemma 1.
Then the two nodes i and j of the complex network synchronize in Ω.

9
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Figure 3. Particular graph topologies guaranteeing partial synchronization or global
synchronization. (a) In an arbitrary graph topology, two nodes admitting the same neigh-
bors (depicted in red) synchronize. (b) Complete graph. (c) Cyclic graph. (d) Ring of
4-nearest neighbors. (e) Ring of 6-nearest neighbors.

The proof of theorem 2 relies of the following technical lemma, which establishes an estim-
ate of the boundary terms modeling the migrations of individuals between two neighbor nodes.

Lemma 3. Let assumption (20) hold. Suppose that two neighbor nodes i and j of the complex
network (1)–(4) satisfy (23) and (24) for each k ∈ {1, . . . ,m} and for all x ∈ ΓR. Then we have

Di,k

h2i

(
∂Ũi,k

∂ν
(t,x)−

∂Ũj,k

∂ν
(t,x)

)[
Ũi,k (t,x)− Ũj,k (t,x)

]
=−(2+ |Si,j|)

Di,k

hi
µi (Hi (x))

∣∣Ũi,k (t,x)− Ũj,k (t,x)
∣∣2

− Di,k

hi
µi (Hi (x))

∑
l∈Mi,j

[
Ũi,k (t,x)− Ũl,k (t,x)

][
Ũi,k (t,x)− Ũj,k (t,x)

]
+
Di,k

hi
µi (Hi (x))

∑
l∈Mj,i

[
Ũj,k (t,x)− Ũl,k (t,x)

][
Ũi,k (t,x)− Ũj,k (t,x)

]
(27)

for all t⩾ 0 and all x ∈ ΓR, whereMi,j denotes the set of neighbors of i which are not neighbors
of j, Mj,i denotes the set of neighbors of j which are not neighbors of i, Si,j denotes the set of
common neighbors of i and j and |Si,j| its cardinal.

Proof of lemma 3. Let k ∈ {1, . . . ,m} and i, j ∈ {1, . . . ,n}. For short, we denote

u(t,xi) = Ui,k (t,xi) , (t,xi) ∈ (0,+∞)×Ωi,

v(t,xj) = Uj,k (t,xj) , (t,xj) ∈ (0,+∞)×Ωj

and

ũ(t,x) = Ũi,k (t,x) , ṽ(t,x) = Ũj,k (t,x) , (t,x) ∈ (0,+∞)×Ω.

We examine the boundary terms of Robin type on ΓR. We have:

∂ũ
∂ν

(t,x) = ν (x) ·∇Ωũ(t,x)

= hi × νi (Hi (x)) ·∇Ωiu(t,Hi (x))

= hi ×
∂u
∂νi

(t,Hi (x))

=−hi µi (Hi (x))
∑
l∈Ni

[u(t,Hi (x))−Ul,k (t,Hi (x))] ,

10
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which leads to

∂ũ
∂ν

(t,x) =−hi µ̃i (x)
∑
l∈Ni

[ũ(t,x)−Ul,k (t,Hi (x))] , (28)

where µ̃i is defined on ΓR by µ̃i(x) = µi
(
Hi(x)

)
; similarly, we have

∂ṽ
∂ν

(t,x) =−hj µ̃j (x)
∑
l∈Nj

[ṽ(t,x)−Ul,k (t,Hj (x))] .

We obtain, applying assumption (23):

Di,k

h2i

[
∂ũ
∂ν

(t,x)− ∂ṽ
∂ν

(t,x)

]
=
Di,k

h2i

∂ũ
∂ν

(t,x)−
Dj,k

h2j

∂ṽ
∂ν

(t,x)

=−Di,k

hi
µ̃i (x)

∑
l∈Ni

[ũ(t,x)−Ul,k (t,Hi (x))]

+
Dj,k

hj
µ̃j (x)

∑
l∈Nj

[ṽ(t,x)−Ul,k (t,Hj (x))]

=−Di,k

hi
µ̃i (x)(ũ(t,x)− ṽ(t,x))

− Di,k

hi
µ̃i (x)

∑
l∈Ni \{j}

[ũ(t,x)−Ul,k (t,Hi (x))]

+
Dj,k

hj
µ̃j (x)(ṽ(t,x)− ũ(t,x))

+
Dj,k

hj
µ̃j(x)

∑
l∈Nj\{i}

[
ṽ(t,x)−Ul,k

(
t,Hj(x)

)]
.

Now, the boundary convention (6) guarantees that

∑
l∈Ni \{j}

Uk,l (t,Hi (x)) =
∑

l∈Ni \{j}

Uk,l (t,Hl (x)) ,

and analogously

∑
l∈Nj\{i}

Uk,l (t,Hj (x)) =
∑

l∈Nj\{i}

Uk,l (t,Hl (x)) .

11
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Next, by virtue of assumption (24), we obtain:

Di,k

h2i

[
∂ũ
∂ν

(t,x)− ∂ṽ
∂ν

(t,x)

]
=−2

Di,k

hi
µ̃i (x)(ũ(t,x)− ṽ(t,x))− Di,k

hi
µ̃i (x)

∑
l∈Si,j

(ũ(t,x)− ṽ(t,x))

− Di,k

hi
µ̃i (x)

∑
l∈Mi,j

[
ũ(t,x)− Ũl,k (t,x)

]
+
Di,k

hi
µ̃i (x)

∑
l∈Mj,i

[
ṽ(t,x)− Ũl,k (t,x)

]
=−(2+ |Si,j|)

Di,k

hi
µ̃i (x)(ũ(t,x)− ṽ(t,x))

− Di,k

hi
µ̃i (x)

∑
l∈Mi,j

[
ũ(t,x)− Ũl,k (t,x)

]
+
Di,k

hi
µ̃i(x)

∑
l∈Mj,i

[
ṽ(t,x)− Ũl,k(t,x)

]
,

where |Si,j| denotes the cardinal of the set Si,j. Multiplying both sides of the latter equality
by

(
ũ(t,x)− ṽ(t,x)

)
leads to (27), which completes the proof of lemma 3.

We are now ready to present the proof of theorem 2.

Proof of theorem 2. We use the same notations as in the proof of lemma 3 and consider the
energy functional defined by

Ei,j,k (t) =
1
2

ˆ
Ω

|ũ(t,x)− ṽ(t,x)|2 dx. (29)

We easily compute its derivative:

dEi,j,k
dt

(t) =
ˆ
Ω

∂ (ũ− ṽ)
∂t

(ũ− ṽ)dx

=

ˆ
Ω

(
∂ũ
∂t

− ∂ṽ
∂t

)
(ũ− ṽ)dx,

where we omit the variables t and x under the integral symbol in order to lighten our notations.
Elementary computations show that

∇Ωũ(t,x) = hi∇Ωiu(t,Hi (x)) , (t,x) ∈ (0,+∞)×Ω, (30)

from which it follows that

∆Ωũ(t,x) = h2i∆Ωiu(t,Hi (x)) , (t,x) ∈ (0,+∞)×Ω. (31)

We can deduce that

∂ũ
∂t

(t,x) =
∂u
∂t

(t,Hi (x))

= Di,k∆Ωiu(t,Hi (x))+ fk (u(t,Hi (x)))

=
Di,k

h2i
∆Ωũ(t,x)+ fk (ũ(t,x)) ,

12
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for all (t,x) ∈ (0,+∞)×Ω. Similarly, we have

∂ṽ
∂t

(t,x) =
Dj,k

h2j
∆Ωṽ(t,x)+ fk (ṽ(t,x)) , (t,x) ∈ (0,+∞)×Ω.

We obtain, by virtue of assumption (23):

dEi,j,k
dt

(t) =
Di,k

h2i

ˆ
Ω

∆Ω (ũ− ṽ)(ũ− ṽ)dx+
ˆ
Ω

( fk (ũ)− fk (ṽ))(ũ− ṽ)dx. (32)

Since ũ and ṽ satisfy a mixed Neumann-Robin boundary condition, we have, by virtue of
Green’s formula:
ˆ
Ω

∆Ω (ũ− ṽ)(ũ− ṽ)dx=−
ˆ
Ω

|∇Ω (ũ− ṽ)|2 dx+
ˆ
ΓR

∂ (ũ− ṽ)
∂ν

(ũ− ṽ)ds

=−
ˆ
Ω

|∇Ω (ũ− ṽ)|2 dx+
ˆ
ΓR

(
∂ũ
∂ν

− ∂ṽ
∂ν

)
(ũ− ṽ)ds,

where ν = ν1 denotes the outward unit normal vector of ∂Ω= ∂Ω1.
Next, assumption (25) means that the nodes i and j admit only common neighbors, which

implies that Mi,j = Mj,i =∅ and Si,j =Ni \ {j}=Nj \ {i}, where the sets Mi,j, Mj,i and
Si,j are defined in lemma 3. Therefore, we can apply lemma 3 and we obtain

Di,k

h2i

(
∂ũ
∂ν

− ∂ṽ
∂ν

)
(ũ− ṽ) =−(2+ |Si,j|)

Di,k

hi
µ̃i (x) |ũ− ṽ|2 ⩽ 0

on ΓR, from which we deduce
ˆ
Ω

∆Ω (ũ− ṽ)(ũ− ṽ)dx⩽−
ˆ
Ω

|∇Ω (ũ− ṽ)|2 dx.

Now, we use the Poincaré inequality (see lemma 1) to write

ˆ
Ω

|∇Ω (ũ− ṽ)|2 dx⩾ λP (Ω,µi)

ˆ
Ω

|ũ− ṽ|2 dx,

with λP(Ω,µi)> 0, which leads to

Di,k

h2i

ˆ
Ω

∆Ω (ũ− ṽ)(ũ− ṽ)dx⩽−Di,kλP (Ω,µi)

h2i

ˆ
Ω

|ũ− ṽ|2 dx. (33)

In parallel, we apply the Young inequality ab⩽ a2

2 + b2

2 , which is valid for all a, b inR, and
assumption (18) to obtain

ˆ
Ω

( fk (ũ)− fk (ṽ))(ũ− ṽ)dx⩽ 1
2
‖ fk (ũ)− fk (ṽ)‖2L2(Ω) +

1
2
‖ũ− ṽ‖2L2(Ω) ,

which leads to
ˆ
Ω

( fk (ũ)− fk (ṽ))(ũ− ṽ)dx⩽
(
1+Lk

2
)
Ei,j,k (t) . (34)

13
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Combining the inequalities (33) and (34), equation (32) becomes

dEi,j,k
dt

(t)⩽−2
Di,kλP (Ω,µi)

h2i
Ei,j,k (t)+

(
1+L2k

)
Ei,j,k (t) . (35)

Applying Gronwall lemma leads to

Ei,j,k (t)⩽ Ei,j,k (0)exp

{
−
(
2
Di,kλP (Ω,µi)

h2i
−
(
1+L2k

))
t

}
,

for each k ∈ {1, . . . ,m} and for all t⩾ 0, which guarantees that

lim
t→+∞

∥∥Ũi (t)− Ũj (t)
∥∥
L2(Ω)m

= 0,

provided (26) holds. The proof is complete.

Remark 1 (Non-identical internal dynamics and near-synchronization). Weemphasize that
the function f involved in the reaction–diffusion system (1) is the same on all the domains
Ω1, . . . , Ωn, which means that the internal dynamics of the complex network are identical on
each patch of the fragmented environment. The case of non-identical dynamics can be studied
by replacing equation (1) by

∂Ui

∂t
= Di∆ΩiUi + fi (Ui) , (t,xi) ∈ (0,∞)×Ωi,

where the function fi now depends on the index i of the domain Ωi (1⩽ i ⩽ n). In particular,
this dependence can model local variations of internal parameters, and fi can be written under
the form

fi (Ui) = f(Ui,λi) , 1⩽ i ⩽ n,

with λi ∈ Rp. In this case, the Lipschitz condition (18) becomes

‖ fi,k (v)− fj,k (w)‖L2(Ω) ⩽ Li,j,k
(
‖v−w‖L2(Ω) + ‖λi −λj‖Rp

)
,

with Li,j,k > 0. Recently, it has been proved in [10] that this situation leads to near-
synchronization, which is a relaxed form of synchronization.

Remark 2 (Interpretation of assumption (23)). If the domains Ωi and Ωj in theorem 2 are
isometric, then the homothety factors hi and hj are both equal to 1. In that case, condition (23)
simply becomes

Di,k = Dj,k,

for all k ∈ {1, . . . ,m}. The latter condition means that for each k, the species Ui,k and Uj,k

living in the domainsΩi andΩj, respectively, should diffuse at the same rate in their respective
habitat, in order to synchronize, which is conform to intuition. However, it does not imply that
two distinct speciesUi,k1 andUi,k2 of the same domainΩi should diffuse at the same rate. Since
spatial heterogeneity patterns such as Turing patterns usually appear as the diffusion rates are
very distinct, then assumption (23) seems to be compatible with the emergence of Turing
patterns. This compatibility will be experimented with a numerical approach in section 3.

14
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Next, if the domains Ωi and Ωj in theorem 2 are not isometric, then assumption (23) means
that synchronization can occur if the species which live in a large domain diffuse at a greater
rate than the species which live in a small domain; this interpretation is also conform to
intuition.

Remark 3 (Interpretation of assumption (26)). As mentioned previously, we emphasize that
the Poincaré constant λ(Ω,µi) in the synchronization condition (26) depends on the domain
Ω and on the boundary coupling function µi. More specifically, according to corollaries 2.2
and 2.3 in [12] (see also [13] or [30]), λ(Ω,µi) decreases if the size of Ω increases, whereas it
increases if µi increases (in the sense that µ1

i ⩽ µ2
i if µ

1
i (x)⩽ µ2

i (x) for all x ∈ ΓRi ). Therefore,
the synchronization condition (26) is more likely to be fulfilled in small domains, connec-
ted with strong boundary couplings. It is worth noting that the synchronization of complex
networks with point-wise couplings of the form (7)–(9) is not influenced by the size of the
domains, as proved in [8] for instance. Roughly speaking, boundary couplings of the form (3)
are able to synchronize the local dynamics in a neighborhood of the boundaries; if the domains
are small, this boundary synchronization can extend to the whole domain.

As a direct consequence of theorem 2 and lemma 2, we obtain the following corollary, which
establishes sufficient conditions for a complex network, whose underlying graph is complete,
to globally synchronize.

Corollary 1. Let assumptions (18) and (20) hold. Suppose furthermore that the graphG under-
lying the complex network problem (1)–(4) is a complete graph, and that assumptions (23),
(24) and (26) hold for each i, j ∈ {1, . . . ,n} and each k ∈ {1, . . . ,m}. Then the complex network
globally synchronizes in Ω.

In the case of two-nodes network, the following corollary is also directly obtained from
theorem 2.

Corollary 2. Let assumptions (18) and (20) hold with n= 2. Suppose furthermore that assump-
tions (23), (24) and (26) hold for i= 1, j= 2 and for each k ∈ {1, . . . ,m}. Then the two-nodes
network globally synchronizes in Ω.

2.3.2. Synchronization conditions for cyclic graphs and rings of nearest neighbors.
Corollaries 1 and 2 describe the global synchronization of a complex network whose underly-
ing graph is complete. However, the complete graph topology requirement is rather restrictive.
Indeed, from the ecological point of view, fragmented habitats are rarely densely connected, so
that the corresponding graph topology is often far from the complete graph topology. Hence,
it is important to investigate the dynamics of a complex network whose underlying graph is
not complete. In this section, we analyze two other important configurations. The first config-
uration corresponds to a cyclic graph. We recall that a cyclic graph is a graph with n vertices,
that can be numbered in such a way that node i is connected only to nodes i− 1 mod(n) and
i+ 1 mod(n) (see figure 3(c)). The second configuration corresponds to a ring of 2K-nearest
neighbors [6]. If K is an integer such that 1⩽ K⩽ n

2 , we say that the graph G is a ring of 2K-
nearest neighbors if it admits n vertices that can be numbered in such a way that i is connected
only to i ± j mod(n) for each j ∈ {1, . . . ,K} (for example, a ring of 4-nearest neighbors and a
ring of 6-nearest neighbors are depicted in figures 3(d) and (e), respectively). The following
Theorem proves that such graph topologies, although weakly densely connected, can globally
synchronize.
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Theorem 3. Let assumptions (18) and (20) hold. Suppose that the graph G underlying the
complex network (1)–(4) is a cyclic graph or a ring of 2K-nearest neighbors (with K⩾ 1).
Finally, assume that each pair (i, j) of nodes satisfies (23), (24) and (26).
Then the complex network (1)–(4) globally synchronizes in Ω.

Proof. Assume for simplicity that the graph G underlying the complex network problem (1)–
(4) is a cycle. Renumbering the vertices of the graph G if necessary, we can without loss of
generality assume that the sets of neighbors are given by

N1 = {n,2}, Ni = {i− 1, i+ 1} for 2⩽ i ⩽ n− 1, Nn = {n− 1,1}. (36)

Now, let k ∈ {1, . . . ,n}. We consider the total energy function along the cyclic graph G
defined by

Ek (t) =
n−1∑
i=1

Ei,i+1,k (t)+En,1,k (t) , (37)

where Ei,j,k(t) is defined as in (29). For 1⩽ i ⩽ n− 1, we compute as in the proof of
theorem 2:

dEi,i+1,k

dt
(t) =

ˆ
Ω

(
∂Ũi,k

∂t
− ∂Ũi+1,k

∂t

)(
Ũi,k− Ũi+1,k

)
dx

=−Di,k

h2i

ˆ
Ω

∣∣∇Ω

(
Ũi,k− Ũi+1,k

)∣∣2 dx
+
Di,k

h2i

ˆ
ΓR

∂
(
Ũi,k− Ũi+1,k

)
∂ν

(
Ũi,k− Ũi+1,k

)
ds

+

ˆ
Ω

(
fk
(
Ũi,k

)
− fk

(
Ũi+1,k

))(
Ũi,k− Ũi+1,k

)
dx.

Similarly, we have

dEn,1,k
dt

(t) =−Dn,k

h2n

ˆ
Ω

∣∣∇Ω

(
Ũn,k− Ũ1,k

)∣∣2 dx+ Dn,k

h2n

ˆ
ΓR

∂
(
Ũn,k− Ũ1,k

)
∂ν

(
Ũn,k− Ũ1,k

)
ds

+

ˆ
Ω

(
fk
(
Ũn,k

)
− fk

(
Ũ1,k

))(
Ũn,k− Ũ1,k

)
dx.

Now, we examine the sum of the integral terms

Di,k

h2i

ˆ
ΓR

∂
(
Ũi,k− Ũi+1,k

)
∂ν

(
Ũi,k− Ũi+1,k

)
ds, 1⩽ i ⩽ n− 1,

and

Dn,k

h2n

ˆ
ΓR

∂
(
Ũn,k− Ũ1,k

)
∂ν

(
Ũn,k− Ũ1,k

)
ds.
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Since (23) and (24) are satisfied for each pair (i, j) of nodes, we have:

n−1∑
i=1

Di,k

h2i

ˆ
ΓR

∂
(
Ũi,k− Ũi+1,k

)
∂ν

(
Ũi,k− Ũi+1,k

)
ds+

Dn,k

h2n

ˆ
ΓR

∂
(
Ũn,k− Ũ1,k

)
∂ν

(
Ũn,k− Ũ1,k

)
ds

=
D1,k

h21

ˆ
ΓR

{
n−1∑
i=1

∂
(
Ũi,k− Ũi+1,k

)
∂ν

(
Ũi,k− Ũi+1,k

)
+
∂
(
Ũn,k− Ũ1,k

)
∂ν

(
Ũn,k− Ũ1,k

)}
ds.

Next, since the graph G is cyclic, the neighbors of each vertex are given by (36). Hence, the
boundary condition (3) leads to:

D1,k

h21

ˆ
ΓR

{
n−1∑
i=1

∂
(
Ũi,k− Ũi+1,k

)
∂ν

(
Ũi,k− Ũi+1,k

)
+

∂
(
Ũn,k− Ũ1,k

)
∂ν

(
Ũn,k− Ũ1,k

)}
ds

=
D1,k

h1

ˆ
ΓR

µ̃1 (x)

[
− 2

(
Ũ1,k− Ũ2,k

)2 − (
Ũ1,k− Ũn,k

)(
Ũ1,k− Ũ2,k

)
+
(
Ũ2,k− Ũ3,k

)(
Ũ1,k− Ũ2,k

)
− 2

(
Ũ2,k− Ũ3,k

)2 − (
Ũ2,k− Ũ1,k

)(
Ũ2,k− Ũ3,k

)
+
(
Ũ3,k− Ũ4,k

)(
Ũ2,k− Ũ3,k

)
− 2

(
Ũ3,k− Ũ4,k

)2 − (
Ũ3,k− Ũ2,k

)(
Ũ3,k− Ũ4,k

)
+
(
Ũ4,k− Ũ5,k

)(
Ũ3,k− Ũ4,k

)
. . .

− 2
(
Ũn,k− Ũ1,k

)2 − (
Ũn,k− Ũn−1,k

)(
Ũn,k− Ũ1,k

)
+
(
Ũ1,k− Ũ2,k

)
(Ũn,k− Ũ1,k)

]
ds.

We can rearrange the terms which are contained in the brackets and write:

D1,k

h21

ˆ
ΓR

{
n−1∑
i=1

∂
(
Ũi,k− Ũi+1,k

)
∂ν

(
Ũi,k− Ũi+1,k

)
+
∂
(
Ũn,k− Ũ1,k

)
∂ν

(
Ũn,k− Ũ1,k

)}
ds

=
D1,k

h1

ˆ
ΓR

µ̃1 (x)

[
−
(
Ũ1,k− Ũ2,k

)2
+ 2

(
Ũ1,k− Ũ2,k

)(
Ũn,k− Ũ1,k

)
−
(
Ũn,k− Ũ1,k

)2
−
(
Ũ2,k− Ũ3,k

)2
+ 2

(
Ũ2,k− Ũ3,k

)(
Ũ1,k− Ũ2,k

)
−
(
Ũ1,k− Ũ2,k

)2
−
(
Ũ3,k− Ũ4,k

)2
+ 2

(
Ũ3,k− Ũ4,k

)(
Ũ2,k− Ũ3,k

)
−
(
Ũ2,k− Ũ3,k

)2
. . .

−
(
Ũn,k− Ũ1,k

)2
+ 2

(
Ũn,k− Ũ1,k

)(
Ũn,k− Ũn−1,k

)
−
(
Ũn,k− Ũn−1,k

)2 ]
ds

=
D1,k

h1

ˆ
ΓR

µ̃1 (x)

[
−
(
Ũ1,k− Ũ2,k− Ũn,k+ Ũ1,k

)2 − (
Ũ2,k− Ũ3,k− Ũ1,k+ Ũ2,k

)2
− (Ũ3,k− Ũ4,k− Ũ2,k+ Ũ3,k)

2

. . .

− (Ũn,k− Ũ1,k− Ũn,k+ Ũn−1,k)
2

]
ds.
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Therefore, we have

D1,k

h21

ˆ
ΓR

{
n−1∑
i=1

∂
(
Ũi,k− Ũi+1,k

)
∂ν

(
Ũi,k− Ũi+1,k

)
+
∂
(
Ũn,k− Ũ1,k

)
∂ν

(
Ũn,k− Ũ1,k

)}
ds⩽ 0.

It follows that the derivative of the total energy Ek given by (37) can be simplified and written

dEk
dt

(t) =
n−1∑
i=1

{
−Di,k

h2i

ˆ
Ω

∣∣∇Ω

(
Ũi,k− Ũi+1,k

)∣∣2 dx}− Dn,k

h2n

ˆ
Ω

∣∣∇Ω

(
Ũn,k− Ũ1,k

)∣∣2 dx
+

n−1∑
i=1

{ˆ
Ω

(
fk
(
Ũi,k

)
− fk

(
Ũi+1,k

))(
Ũi,k− Ũi+1,k

)
dx

}
+

ˆ
Ω

(
fk
(
Ũn,k

)
− fk

(
Ũ1,k

))(
Ũn,k− Ũ1,k

)
dx.

Hence, arguing as in the proof of theorem 2, we can write

dEk
dt

(t)⩽
n−1∑
i=1

{
−
(
2
Di,kλP (Ω,µi)

h2i
−
(
1+L2k

))
Ei,i+1,k

}
−
(
2
Dn,kλP (Ω,µn)

h2n
−
(
1+L2k

))
En,1,k,

which leads to

dEk
dt

(t)⩽−C∗
kEk (t) ,

for all t⩾ 0, where C∗
k is the positive constant defined by

C∗
k =min

{
min

1⩽i⩽n−1

[
2
Di,kλP (Ω,µi)

h2i
−
(
1+L2k

)]
,2
Dn,kλP (Ω,µn)

h2n
−
(
1+L2k

)}
.

Finally, we apply Gronwall lemma to write

Ek (t)⩽ Ek (0)e
−C∗

k t,

for all t⩾ 0 and all k ∈ {1, . . . ,m}, which proves that the complex network (1)–(4) globally
synchronizes in Ω. This completes the proof for a cyclic graph.

The case of a ring of 2K-nearest neighbors is treated analogously.

2.3.3. Synchronization conditions for non-homothetic domains. We now investigate the
case of non-homothetic domains. We observe that the proof of theorem 2 mostly relies on
equation (30), which expresses how the gradient is modified under the action of a given trans-
formation. However, equation (30) is characteristic from homotheties, thus cannot be fulfilled
for a general planar transformation (as for instance, a transformation that maps an ellipse onto
an another ellipse of distinct eccentricity). Therefore, we are led to consider a modification of
the Laplace diffusion operator involved in equation (1), so as to guaranty that equations (31)

18



Nonlinearity 37 (2024) 025011 M A Aziz-Alaoui et al

and (28), which are obtained from (30), are still fulfilled under the action of a non-homothetic
transformation.

To that aim, we consider a complex network of semi-linear equations determined by (10)
instead of (1); the Neumann andRobin boundary conditions (2) and (3) and the initial condition
(4) are conserved, where the derivative with respect to the outward normal unit vector is now
defined by

∂Ui

∂νi
(t,xi) = νi (xi) ·Ai∇ΩiUi (t,xi) , (38)

with t> 0 and xi ∈ ∂Ωi (see for instance equation (2.23) in [36]). For simplicity, we assume
that the matrices Ai involved in equation (10) are invertible and diagonal; this assumption
guarantees commutativity with the gradient operator, that is

(Ai∇Ωi)u=∇Ωi (Ai u) , (39)

for all u ∈W1,p(Ωi). Note that the existence and uniqueness of global solutions to the complex
network determined by (2)–(4) and (10) can be treated as in section 2.2. Next, we set as before
Ω= Ω1, Γ = Γ1 and suppose that there exists a family (Bi)2⩽i⩽n of n− 1 planar transforma-
tions mapping Ω onto Ω2, . . . , Ωn, respectively, preserving the boundaries ΓRi , Γ

N
i (2⩽ i ⩽ n).

We assume that for each i ∈ {2, . . . ,n}, the transformation Bi satisfies the property

∇Ω (u ◦Bi) = Bi (∇Ωiu) ◦Bi, (40)

for all u ∈W1,p(Ωi), where the matrix Bi is invertible and diagonal. Unlike the case of
homotheties, the planar tranformation is likely to rotate the outward normal vector νΩ; thus
we denote

νΩi ◦Bi (x) = Θi (x)νΩ (x) , x ∈ Ω, 2⩽ i ⩽ n, (41)

where Θi(x) is a square matrix of order 2.
The following theorem establishes sufficient conditions of synchronization for two nodes

of the complex network determined by problem (2)–(4) and (10).

Theorem 4. Let assumptions (18), (39) and (40) hold. Suppose moreover that two neighbor
nodes i and j of the complex network (2)–(4) and (10) satisfy equation (25) and the following
conditions:

Di,k
(
B−1
i

)2
Ai = Dj,k

(
B−1
j

)2
Aj = diag{α1,k, . . . ,αM,k} , (42)

Di,kB
−1
i Θiµi ◦Bi = Dj,kB

−1
j Θjµj ◦Bj, (43)

γkλP (Ω,µi)>
1+L2k

2
, (44)

for each k ∈ {1, . . . ,n}, where diag{α1,k, . . . ,αM,k} is a diagonal matrix of order M with pos-
itive coefficients, and γk =min{α1,k, . . . ,αM,k}.
Then the two nodes i and j of the complex network determined by the semi-linear

equation (10), the boundary conditions (2), (3) and the initial conditions (4) synchronize.
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Proof. Let k ∈ {1, . . . ,m} and i, j ∈ {1, . . . ,n}. We use the same notations as before for u, ũ, v
and ṽ, and show the steps which differ with the proof of theorem 2.

We consider again the energy functional defined by

Ei,j,k (t) =
1
2

ˆ
Ω

|ũ(t,x)− ṽ(t,x)|2 dx,

and compute its derivative:

dEi,j,k
dt

(t) =
ˆ
Ω

(
∂ũ
∂t

− ∂ṽ
∂t

)
(ũ− ṽ)dx.

Using equations (39) and (40), we easily compute

∂ũ
∂t

= Di,k∇·
(
B−1
i

)2
Ai∇ũ+ fk (ũ) ,

∂ṽ
∂t

= Dj,k∇·
(
B−1
j

)2
Aj∇ũ+ fk (ṽ) .

By virtue of (42) and Green’s formula, we deduce that

dEi,j,k
dt

(t) =
ˆ
Ω

[
α1,k

∂2 (ũ− ṽ)

∂x21
(ũ− ṽ)+ . . .+αM,k

∂2 (ũ− ṽ)

∂x2M
(ũ− ṽ)

]
dx

+

ˆ
Ω

( fk (ũ)− fk (ṽ))(ũ− ṽ)dx

⩽−γk
ˆ
Ω

|∇(ũ− ṽ)|2 dx+Di,k

ˆ
ΓR

∂ (ũ− ṽ)
∂ν

(ũ− ṽ)ds

+

ˆ
Ω

( fk (ũ)− fk (ṽ))(ũ− ṽ)dx.

We use again the Poincaré inequality (1) to write

−γk
ˆ
Ω

|∇(ũ− ṽ)|2 dx⩽−2γkλP (Ω,µi)Ek.

In parallel, applying again (42), we compute:

Di,k

(
∂ũ
∂ν

− ∂ṽ
∂ν

)
= Di,kν ·

(
B−1
i

)2
Ai∇ũ−Dj,kν ·

(
B−1
j

)2
Aj∇ṽ

= Di,kB
−1
i Θi νi ·Ai (∇u) ◦Bi−Dj,kB

−1
j Θjνj ·Aj (∇v) ◦Bj

= Di,kB
−1
i Θi

∂u
∂νi

−Dj,kB
−1
j Θj

∂v
∂νj

.

Next, from (3), (25) and (43), we deduce as in the proof of theorem 2 that(
Di,kB

−1
i Θi

∂u
∂νi

−Dj,kB
−1
j Θj

∂v
∂νj

)
(ũ− ṽ)⩽ 0.

Finally, using (18) and combining the above inequalities leads to

dEi,j,k
dt

(t)⩽−2γkλP (Ω,µi)Ek (t)+
(
1+L2k

)
Ek (t) .

Applying Gronwall lemma as for theorem 2 completes the proof.
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Remark 4 (Interpretation of assumption (40)). Note that assumption (40) is satisfied for a
wide class of planar transformations, such as, for instance, the transformation defined by

(x1,x2) ∈ R2 7−→ (φx1,ψ x2) ,

with φ 6= 0, ψ 6= 0 and φ 6= ψ, which maps an ellipse onto another ellipse of distinct eccent-
ricity (in that case, we have M= 2). Numerical experiments shown in figure 9 illustrate the
synchronization of such non-homothetic domains.

Remark 5. Assumptions (42)–(44) can be viewed as generalizations of assumptions (23),
(24) and (26), respectively. Therefore, their interpretation is analogous (see remarks 2 and
3). Furthermore, statements similar to corollaries 1 and 2 can easily be deduced from
theorem 4, for complete graphs and two-nodes networks.

Finally, it is easily seen that theorem 3 also extends to the case of anisotropic diffusion for
cyclic graphs and rings of nearest neighbors. We obtain the following theorem.

Theorem 5. Let assumptions (18), (39) and (40) hold. Suppose that the graph G underlying
the complex network (2)–(4) and (10) is a cyclic graph or a ring of 2K-nearest neighbors (with
K⩾ 1). Finally, assume that each pair (i, j) of nodes satisfies (42), (43) and (44).
Then the complex network (2)–(4) and (10) globally synchronizes in Ω.

3. Numerical simulations

In this section, our aim is to underpin our theoretical statements by numerical experiments and
to explore in a quantitative approach the validity of the assumptions made in theorems 2 and
4. Of particular interest, as discussed in remark 3, is the influence of the sizes of the domains
Ω1, . . . , Ωn and of the coupling strengths µ1, . . . , µn, involved in the complex networks (1)–
(4) or (2)–(4) and (10), on the Poincaré constants λP(Ωi,µi) appearing in the synchronization
assumptions (26) and (44).

To that aim, we consider the predator–prey model with Leslie–Gower-type functional
response, given by the following system of two reaction–diffusion equations:

∂u
∂t

= d1∆u+ u(1− u)− Quv
u+A

,
∂v
∂t

= d2∆v+ Sv

(
1− v

u+C

)
, (45)

in a bounded domain Ω⊂ R2; u and v denote the densities of preys and predators, respect-
ively. The parameters A, C, Q, S, d1 and d2 are positive constants. Various forms of the latter
model have been studied in several papers on a single domain (see for instance [1, 2, 4, 5, 7,
21]). In particular, the emergence of Turing patterns in this reaction–diffusion system has been
analyzed in [4].

Here, we consider complex networks with boundary couplings, of the form (1)–(4) or (2)–
(4) and (10), and with point-wise couplings, of the form (7)–(9), built with n instances of
the predator–prey model (45). Following [4], we fix A= 0.15, C= 0.28, Q= 0.575, S= 0.26,
d1 = 1, d2 = 35 and present several numerical simulations which show how to globally syn-
chronize Turing patterns on each node of the network. Our computations have been performed
on the calculation server of the VELO research team (Laboratoire des Sciences du Numérique,
Nantes Université, France), in a GNU/LINUX environment, using a finite elements splitting
method and the free and open-source software FreeFem++ [18]. First, we present a case of
synchronization in large domains with point-wise couplings. Next, we experiment the effect of
the boundary couplings on small domains and on a complete graph network. We then explore
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Figure 4. Turing instability with labyrinths patterns in a two-nodes network of predator-
preymodels with Leslie–Gower-type functional response (illustration of section 3.1). (a)
In absence of coupling, the solutions converge towards distinct Turing patterns. (b) With
point-wise couplings, the Turing patterns are synchronized.

the case of non-homothetic domains with diffusion in an anisotropic habitat. Finally, we test
the possibility to globally synchronize a network whose underlying graph is a cyclic graph of
four nodes.

3.1. Synchronization in large domains with point-wise couplings

In our first numerical simulation, we show how to synchronize two identical domains with
point-wise couplings of the form (7).

The domainsΩ1 andΩ2 are circles of radius 200. The state variables are (u1,v1) on domain
Ω1 and (u2,v2) on domainΩ2. In figure 4, we illustrate the possible synchronization by showing
the pair (u1,u2). Note that the dynamics of the pair (v1,v2) is similar. The initial conditions
are given for (x1,1,x1,2) ∈ Ω1 and (x2,1,x2,2) ∈ Ω2, respectively by
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Figure 5. Components u1, u2 of the initial conditions defined by (46) (illustration of
section 3.2).

u1,0 (x1,1,x1,2) = 0.1+ 0.1 (1.1+ cos(x1,1 + x1,2)) ,

v1,0 (x1,1,x1,2) = C+ 0.1 (1.1+ cos(x1,1 + x1,2)) ,

u2,0 (x2,1,x2,2) = 0.1+ 0.1 (1.1+ sin(0.8x2,1 + 0.7x2,2)) ,

v2,0 (x2,1,x2,2) = C+ 0.1 (1.1+ sin(0.8x2,1 + 0.7x2,2)) .

(46)

In absence of coupling, that is µ ≡ 0, we observe that the solutions converge towards dis-
tinct Turing patterns of labyrinths type (see figure 4(a)). A careful watch on these Turing pat-
terns convinces on their synchronization when the coupling strength is set to µ ≡ 0.3 (see
figure 4(b)). This shows that, in the case of point-wise couplings, a weak coupling strength is
sufficient to synchronize the local dynamics, even in large domains.

3.2. Effect of the boundary couplings for small domains

In our second numerical simulation, we show how to synchronize two identical domains with
boundary couplings of the form (3).

The domains Ω1 and Ω2 are now circles of radius 20, thus 10 times smaller than in the first
simulation. The Robin type boundaries ΓR1 and Γ

R
2 of Ω1 and Ω2, respectively cover more than

3 quarters of the whole boundaries (from −5π/6 to 5π/6, depicted with black thick lines in
figure 7(b)). The state variables are again (u1,v1) on domain Ω1 and (u2,v2) on domain Ω2.
In figures 5–7, we illustrate the possible synchronization by showing again the pair (u1,u2).
The initial conditions are again given by (46) (see figure 5). In absence of coupling, that is
µ1 = µ2 ≡ 0, we observe3 that the solutions converge towards distinct Turing patterns of spots
type (see figure 7(a)). When the coupling strengths are set to µ1 = µ2 ≡ 30, thus 100 times
stronger than in the first simulation, these Turing patterns are significantly modified, but they
are synchronized (see figure 7(b); note that, due to symmetry, the synchronization is viewed
with a ‘mirror’ effect). Other numerical experiments show that this synchronization does not

3 Animations showing the temporal evolution can be freely visualized at https://pagesperso.ls2n.fr/∼cantin-g/
turingpatterns.html.

23

https://pagesperso.ls2n.fr/~cantin-g/turingpatterns.html
https://pagesperso.ls2n.fr/~cantin-g/turingpatterns.html


Nonlinearity 37 (2024) 025011 M A Aziz-Alaoui et al

occur in larger domains, with a weaker coupling strength, or with smaller Robin type boundar-
ies ΓR1 and Γ

R
2 . These observations confirm the discussion on the Poincaré constants λP(Ω,µi)

given in remark 3.

3.3. Four domains complete graph network

Our third simulation explores the case of a small four nodes network, whose underlying graph
is complete, so that assumption (25) is fulfilled for each pair of nodes. We vary the geometry of
the domains by considering egg-shape domains, as depicted in figure 8. The state variables are
(u1,v1) on domain Ω1, (u2,v2) on domain Ω2, (u3,v3) on domain Ω3 and (u4,v4) on domain
Ω4. In figure 8, we illustrate the possible synchronization by showing the tuple (u1,u2,u3,u4).
The initial conditions are given as in (46) in the domains Ω1 and Ω2, and

u3,0 (x3,1,x3,2) = 0.1+ 0.1 (1.1+ sin(0.6x3,1 + 0.1x3,2)) ,

v3,0 (x3,1,x3,2) = C+ 0.1 (1.1+ sin(0.35x3,1 + 0.82x3,2)) ,

u4,0 (x4,1,x4,2) = 0.1+ 0.1 (1.1+ sin(0.06x4,1 + 0.91x4,2)) ,

v4,0 (x4,1,x4,2) = C+ 0.1 (1.1+ sin(0.535x4,1 + 0.082x4,2)) ,

(47)

inΩ3 andΩ4. The observations are similar to the second simulation: in absence of coupling, the
solutions converge to distinct Turing patterns; when the coupling strengths are set toµ1 = µ2 =
µ3 = µ4 ≡ 30, these Turing patterns are modified, but synchronized, according to theorem 2
(with the same ‘mirror’ effect as in figure 7(b)). Note that in the case of a four nodes network,
the synchronization towards equilibrium occurs faster (t= 5800) than in the case of a two
nodes network (t= 7800).

3.4. Non-homothetic domains

Our next simulation experiments the synchronization in a two-nodes network of non-
homothetic domains, with the semi-linear equation (10). The matrix A1 is the identity mat-
rix, whereas the matrix A2 is given by A2 = diag{4/9,9/4}. The elliptic domains Ω1 and Ω2

are depicted in figure 9 and the initial conditions are given by (46). The domain Ω1 is mapped
onto the domainΩ2 under the action of the transformation given by (x1,x2) 7→ (2/3x1,3/2x2),
which fits with matrix A2, so that assumptions (42) and (43) are fulfilled. Roughly speaking,
synchronization in such non-homothetic domains is possible only if the diffusion rates vary in
space according to the shapes of the domains. Here, the domainΩ1 is wide along the horizontal
axis, whereas the domain Ω2 is narrow along the same axis. Hence, for reaching a synchron-
ization state, the species u1, v1 living in Ω1 must move quickly along the horizontal axis while
the species u2, v2 must move slowly along the same axis. Otherwise, synchronization cannot
occur. As in sections 3.1 and 3.2, the state variables are (u1,v1) on domain Ω1 and (u2,v2) on
domain Ω2. In figure 9, we illustrate the possible synchronization by showing the pair (v1,v2),
since the forms of the Turing patterns are more precise than for the pair (u1,u2). As before,
the solutions converge towards Turing patterns in absence of coupling. If the couplings are
activated, these Turing patterns are much modified, but they are synchronized, although the
domains are not homothetic, which illustrates theorem 4.

3.5. Synchronization in non-convex domains with a cyclic graph

In our last simulation, we test the possibility to synchronize a complex network whose underly-
ing graph topology is not complete. Hence we consider a cyclic graph of four nodes. Moreover,
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Figure 6. Turing instability with spots patterns in a two-nodes network of predator-
prey models with Leslie–Gower-type functional response (illustration of section 3.2).
In absence of coupling, the solutions converge towards distinct Turing patterns.
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Figure 7. Turing instability with spots patterns in a two-nodes network of predator-prey
models with Leslie–Gower-type functional response (illustration of section 3.2). With
boundary couplings (along the black thick frontier of the domains), the Turing patterns
are modified but synchronized. We observe that synchronization occurs very quickly,
before the convergence to equilibrium.
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Figure 8. Turing instability with spots patterns in a four-nodes network of predator-
prey models with Leslie–Gower-type functional response, whose underlying graph is
complete (illustration of section 3.3). (a) In absence of coupling, the solutions converge
towards distinct Turing patterns. (b) With boundary couplings (along the black thick
frontier of the domains), the Turing patterns are modified but synchronized.
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Figure 9. Turing instability with spots patterns in a two-nodes network of non-
homothetic domains (illustration of section 3.4). (a) In absence of coupling, the solutions
converge towards distinct Turing patterns. (b) With boundary couplings (along the black
thick frontier of the domains), the Turing patterns are modified but synchronized.

we experiment a non-convex shape, so as to show that our results can be applied to any shape of
spatial domain, and not only to disks, elliptic domains or other convex domains. The domains
Ω1, Ω2, Ω3, Ω4, which are shown in figure 10, admit a non-convex ‘C’ shape; the initial con-
ditions are again given by (46) and (47).

The results of the simulation are depicted in figure 10. In absence of coupling, the solu-
tions converge towards distinct spot patterns. If the couplings are activated, these patterns are
modified, but they are synchronized (according to theorem 3), although the graph topology
underlying the complex network is not complete.

From the ecological point of view, this example shows that a global synchronization state
can be reached with only a weakly densely connected network. This suggests that a control
strategy for maintaining coexistence and avoiding extinction can be successfully set in place
in a fragmented habitat with a relevant distribution of ecological corridors.
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Figure 10. Turing instability with spots patterns in a cyclic four-nodes network (illus-
tration of section 3.5). (a) In absence of coupling, the solutions converge towards dis-
tinct Turing patterns. (b) With boundary couplings (along the black thick frontier of the
domains), the Turing patterns are modified but they are synchronized.
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4. Conclusion and perspectives

In this paper, we have studied a new type of complex networks of reaction–diffusion systems,
in which the domains are non-identical, and the couplings are defined along the boundaries
of the domains. We have proved that it is possible to synchronize the local dynamics of such
complex networks, provided the domains are roughly not too large, and the couplings are
strong enough, independently of the shapes and sizes of the domains. We have established the
following properties:

• synchronization can occur between two nodes, if the two nodes admit only common neigh-
bors;

• synchronization can be global if the graph underlying the complex network is a complete
graph, a cyclic graph, or a ring of nearest neighbors;

• compared with complex networks with point-wise couplings, our numerical experiments
show that the synchronization with boundary couplings is more delicate to reach.

Our theoretical results have been applied to a complex network of competing species living in
a fragmented habitat. The migrations of biological individuals from one patch of the fragmen-
ted habitat to another are supported by connections between two nodes of the corresponding
network, which model ecological corridors. Our numerical simulations show that the local
dynamics of the complex network can be controlled. In particular, spatial instabilities such as
Turing patterns are perturbed by the boundary couplings, but they can be synchronized.

In a future paper, we aim to deepen our work in several directions. First, it is natural to
wonder whether the sufficient conditions considered in theorems 2–4 are necessary or not, so
as to complete our synchronization statements with non-synchronization theorems. Next, the
migrations of biological individuals between two patches of their fragmented habitat have been
here assumed to occur instantaneously, for simplicity; hence, a relevant perspective would be to
consider a time delay on these spatial migrations. Finally, the couplings of the complex network
(1)–(4) have been designed in such a manner that a patch Ωi admitting several neighbors Ωj1 ,
Ωj2 , . . . , Ωjp (with p= |Ni|), is connected to these neighbors by corridors that share the same
boundary ΓRi . Hence, it would be relevant to relax this constraint, so that a corridor connecting
a pair of patches (Ωi,Ωj) admits its own starting boundary ΓRi,j, with possibly ΓRi,j 6= ΓRi,j ′ if
j, j ′ ∈Ni are such that j 6= j ′. In this way, equation (3) would be rewritten

∂Ui

∂νi
=−µi,j (xi)(Ui −Uj) , (t,xi) ∈ (0,∞)×ΓRi,j, j ∈Ni, (48)

which improves the modeling of the connections in the complex network and can lead to ori-
ginal behaviors that have not been observed in the present work. Overall, we believe that a
further study of such complex networks of reaction–diffusion systems will reveal again rich
dynamics in a near future.
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