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SIARD MODEL AND EFFECT OF LOCKDOWN ON THE

DYNAMICS OF COVID-19 DISEASE WITH NON TOTAL IMMUNITY

M.A. Aziz-Alaoui1,2,3, F. Najm4 and R. Yafia4,*

Abstract. We propose a new compartmental mathematical model describing the transmission and
the spreading of COVID-19 epidemic with a special focus on the non-total immunity. The model
(called SIARD) is given by a system of differential equations which model the interactions between
five populations “susceptible”, “reported infectious”, “unreported infectious”, “recovered with/without
non total immunity” and “death”. Depending on the basic reproduction number, we prove that the
total immunity induces local stability-instability of equilibria and the epidemic may disappear after a
first epidemic wave and more epidemic waves may appear in the case of non-total immunity. Using the
sensitivity analysis we identify the most sensitive parameters. Numerical simulations are carried out
to illustrate our theoretical results. As an application, we found that our model fits well the Moroccan
epidemic wave, and predicts more than one wave for French case.
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1. Introduction and mathematical model

For the first infection, the body responds quickly to the threat and activates the first defence called innate
immune system. This system is quick-acting but is not targeted to the specific threat, and distracts the infection
while the body produces a more targeted but slower response against the infection, via the adaptive and
“specific” immune system. The adaptive immune system produces antibodies to fight infections. These are what
we measure in the blood when trying to determine who has been exposed to SARS-CoV-2 (the virus that
causes COVID-19 epidemic). In this case, the body produces different types and specific antibodies to respond
to different parts of the virus. But only some have the ability to stop the virus entering cells. These are called
neutralizing antibodies. According to the WHO, people recovered from COVID-19 develop antibodies in their
blood. But some people appear to have low levels of neutralising antibodies and scientific communities still
do not know how the human immune system responds to SARS-CoV-2 and whether or not people develop
long-term immunity.

Keywords and phrases: Covid19, SIARD model, ODE, basic reproduction number, stability.

1 Normandie Univ, 76600 Le Havre, France.
2 ULH, LMAH, 76600 Le Havre. France
3 FR-CNRS-3335, ISCN, 25 rue Ph. Lebon, 76600 Le Havre, France.
4 Laboratory of Analysis, Geometry and Applications (LAGA), Department of Mathematics Faculty of Sciences, Ibn Tofail
University, Campus Universitaire BP 133, Kenitra, Morocco.

* Corresponding author: radouane.yafia@uit.ac.ma

c© The authors. Published by EDP Sciences, 2021

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1051/mmnp/2021025
https://www.mmnp-journal.org/
mailto:radouane.yafia@uit.ac.ma
https://creativecommons.org/licenses/by/4.0


2 M.A. AZIZ-ALAOUI ET AL.

Table 1. Table of reinfection confirmed cases.

Sex Age (year) Infection date Reinfection date Interval (days) References

Nevada, USA Male 25 April, 2020 June 2020 48 [15]
Hong Kong Male 33 April, 2020 August, 2020 142 [16]

Belgium Female 51 March, 2020 June, 2020 93 [17]
Ecuador Male 46 May, 2020 July, 2020 63 [12]

India Male 25 May, 2020 August, 2020 108 [7]
India Femele 28 May, 2020 September, 2020 111 [7]

The question is, can immunity protect recovered individuals from reinfection of COVID-19?
Biologically, the answer is no, because:

A man (25-year-old) from Nevada (USA) [15] presented to health authorities on two times with symptoms of
viral infection, first one was in April, 2020, and a second time at the end of May and beginning of June, 2020.
In each time, the patient had a positive test for SARS-CoV-2, the two tests separated by two negative tests
done during follow-up in May, 2020.

In Hong Kong, during routine airport checking, a man (33 years) presented with symptoms of cough, sore
throat, fever and headache for three days during the first episode and was tested positive to SARS-Cov-2 and
hospitalised (see [16]). Although his symptoms had mostly disappeared upon hospitalisation. Two weeks later
and after two subsequent negative tests, the patient was discharged. During the reinfection, the patient had a
high viral load which decreased over time.

In Belgium, a case of reinfection which is a women in a 51 year old who presented with headache (see [17]),
fever, myalgia, cough, chest pain, dyspnoea and anosmia to hospital on 9 March 2020. The patient was self-
isolated at home and reported persistent symptoms for nearly five weeks. Three months (10 June 2020) after
her initial symptoms, the patient presented with headache, cough, fatigue and rhinitis and was tested again
positive.

In Ecuador, Prado-Vivar et al. [12], report a case (46 year) of reinfection who presented on 12 May 2020 to
hospital and was tested positive.. In July, the same patient presented with symptoms including headache, fever,
cough and shortness of breath. On 22 July 2020, he was tested positive to SARS-Cov-2.

In India, Gupta et al. [7] report two cases (25 year old man and 28 year old woman) of reinfection. During
routine surveillance of health workers, the two patients were tested positive, the first on on 5 May 2020 and the
second on 17 May 2020. They continued working thereafter and were tested again PCR-positive, the first on
17 August and the second on 5 September. We summarize these finding in Table 1.

In a research letter published in “JAMA Network” (see [9]), the authors stated that, four individuals tested
positive for a period of 5−13 days after showing clinical signs of recovery from COVID-19. Another study
published in “American Journal of Respiratory and Critical Care Medicine” (see [3]) confirmed that, by collecting
throat swabs from 16 people recovered from COVID-19, one person had a false negative result, and half of the
these people tested positive up to 8 days after their symptoms resolved. In this paper, we focus our study on
the effect of lockdown and non total immunity via mathematical modeling.

Mathematical models of the dynamics of infectious disease transmission are useful for forecasting and con-
trolling epidemics. In compartmental epidemic models, each individual of the population is categorized based on
their disease status in addition to, possibly, their attributes and/or the treatment they received. The dynamics
of disease transmission are then typically modeled with differential equations that describe the interaction of
individuals between the compartments as the population mixes, the disease spreads, infected individuals progress
through the stages of the disease, and public health interventions are implemented. The classical Susceptible-
Infectious-Removed (SIR) compartmental model was introduced by Kermack and McKendrick [8]. Based on
the idea of the SIR framework, numerous types of mathematical models using compartmental approach have
been developed in the meanwhile, all incorporating more structure and details of the transmission process
and infectious disease dynamics [1, 2, 4]. Other authors use stochastic approach to models the dynamics and
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Figure 1. Schematic diagram of SIARD model.

transmission of emergent and re-emergent infectious diseases [13, 14]. In [13], the authors develop and study
a stochastic approach to model the spread of COVID-19 epidemic by taking into account the cross immunity
and time delay of transmission. They prove the existence and uniqueness of positive global solution of proposed
SIRC model and they deduce that; when the white noise is relatively large, the infectious diseases will become
extinct; Re-infection and periodic outbreaks can occur due to the existence of feedback time-delay (or memory)
in the transmission terms.

Based on the SIR and SIRC models described above, we propose a new compartmental mathematical model
(called SIARD) which takes into account the role of lockdown and the effect of fails of immunity and reinfection
by COVID-19 after recovery. The SIARD model describes the interaction between susceptible population S,
reported infectious population I, unreported asymptomatic infectious population A, recovered population R
and death population D (see Fig. 2).

In this work, we suppose that our system is a closed system and the proposed model follows the schematic
diagram described in Figure 1. We assume that α is the rate of susceptible and asymptomatic populations
which obey to lockdown rules and 1 − α is the rate of susceptible and asymptomatic populations which does
not obey to lockdown rules. So with a contagion rate βI (resp. βA) an infected person infects on average
βI(1− α)S (resp. βA(1− α)S) of susceptible population. Moreover, if the COVID-19 epidemic immunity does
not exist or is very low, a part of recovered population R becomes susceptible and re-enters again into the
susceptible population which obey to the lockdown rules with a rate wI if the recovered population comes from
infectious population and with a rate wA if the recovered population comes from asymptomatic population. The
second compartment I will be incremented by infected individuals leaving the susceptible compartment and by
asymptomatic individuals which become symptomatic with a rate µ. The recovered compartment receives all
recovered individuals and loses those who become susceptible due to their non-immunity wI and wA. The model
is given as follows: 

dS
dt = −βI(1− α)SI − βA(1− α)2SA+ ωIR+ ωAR
dI
dt = βI(1− α)SI − (γI + dI)I + µA
dA
dt = βA(1− α)2SA− (γA + dA)A− µA
dR
dt = γII + γAA− ωIR− ωAR

(1.1)

Remark 1.1. As the system (1.1) is a closed system, we can consider also the equation of death population

dD

dt
= dII + dAA
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Figure 2. Numerical illustrations showing the SIARD dynamics for different values of trans-
mission rate βI . The right plot illustrates how a lower value of βI flattens the curve of infectious
population (red line) while also significantly delaying the infection peak. Further, this picture
suggests that social distancing and lockdown measures may have to be imposed for a very long
time to be effective. βI in the left plot is greater than the right one and with total immunity.

and we have N = S + I +A+R+D = cste = 1.

The parameters meaning is summarized in the following table.

Parameters Epidemiological interpretation

βI The averaged contact rate between S and I
βA The averaged contact rate between S and A

α ∈ [0, 1] Lockdown rate of susceptible and asymptomatic populations
γI Self-recovery rate for symptomatic cases
γA Self-recovery rate for asymptomatic cases
dI Death rate for symptomatic cases
dA Death rate for asymptomatic cases
µ Transition rate from asymptomatic to symptomatic compartments
wI Non-immunized rate for symptomatic cases
wA Non-immunized rate for asymptomatic cases

For epidemiological reasons, we assume βA ≤ βI which means that, the symptomatic population is more
infectious than the asymptomatic one. dA ≤ dI , the infectious populations died more than the asymptomatic
one. µ� 1, the asymptomatic individuals become symptomatic rarely. γI ≤ γA, the asymptomatic population
recovered more than the symptomatic one. wA ≤ wI , asymptomatic population is more immunized than the
infectious one.

As S + I +A+R+D = cste, we can easily prove that, all solutions of system (1.1) starting from a positive
initial conditions are bounded and positives. The current work is organized as follows: In Section 2 we study the
SIARD model with lockdown rule (α > 0) and total immunity wI = wA = 0. In Section 3, we study the SIARD
model with lockdown rule (α > 0) and non total immunity wI > 0, wA > 0. Section 4 is devoted to detecting
the most critical parameters by using sensitivity analysis. We end our paper by a conclusion. We carry out some
numerical simulations to illustrate our theoretical results and an application of the SIARD model to Moroccan
and French COVID-19 epidemic data.
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2. Dynamics with total immunity

In this section, we suppose all recovered population is immune wI = wA = 0.

2.1. Equilibria, stability and R0

The equilibria of system (1.1) are: the extinction equilibrium (EE) E0 = (0, 0, 0, 0) and the disease free
equilibrium (DFE) (S∗, 0, 0, 0). The biological meaningful of disease free equilibrium (DFE) is the case when
S∗ = S0 = N = 1 (because the other components are zeros). Next, we compute the basic reproduction number
by using the next generation matrix introduced by Van Den Driessche et al. [18] and by Diekmann et al. [5]
and we have:

F =

 βI(1− α)S∗ 0

0 βA(1− α)2S∗


and

V =

 −(γI + dI) µ

0 −(γA + dA + µ)

 .

The eigenvalues of −FV −1 are λ1 =
βI(1− α)

γI + dI
= RI(1 − α) and λ2 =

βA(1− α)2

γA + dA + µ
= RA(1 − α), with

RI =
βI

γI + dI
and RA =

βA
γA + dA + µ

.

Then,

R0 = ρ(−FV −1) = max(RI , RA(1− α))(1− α). (2.1)

Remark 2.1. From equation (2.1), R0 depends on the lockdown rate α (see Fig. 4). If the lockdown rate
is increasing the basic reproduction number R0 is decreasing. In addition, noting RI (resp. RA) the basic
reproduction number of infectious population I (resp. asymptomatic population A), according to a study given
by Petersen et al. [11] of the 115 people who tested positive with SARS-CoV-2, 16 or 13.9% reported symptoms,
while 99 people or 86.1% of the patients, did not report any specific symptoms on the day of the test. In
Morocco, according to the health authority 70− 98% of tested people are asymptomatic Based on this study,
we can suppose RA > RI .

By linearizing system (1.1) around the DFE E0 = (S0, 0, 0, 0), we have the corresponding jacobian matrix:

JE0
=


0 βI(1− α) βA(1− α)2

0 βI(1− α)− (γI + dI) µ

0 0 βA(1− α)2 − (γA + dA + µ)


and the characteristic equation is

∆ = λ(λ− βI(1− α) + (γI + dI))(λ− βA(1− α)2 + (γA + dA + µ)) = 0. (2.2)



6 M.A. AZIZ-ALAOUI ET AL.

The corresponding eigenvalues are 0, βI(1−α)− (γI + dI) and βA(1−α)2− (γA + dA +µ). Therefore, we obtain
the following result.

Proposition 2.2. The equilibrium DFE E0 is stable if R0 < 1 and unstable if R0 > 1.

Remark 2.3. The non-trivial equilibrium of (1.1) is given by E∗ = (S∗, 0, 0, R∗), where (S∗, R∗) ∈ {(S,R) ∈
R2

+∗}.

Next we consider a non-trivial equilibrium E∗ = (S∗, 0, 0, R∗), then the jacobian matrix is as follows:

JE∗ =


0 βI(1− α)S∗ βA(1− α)2S∗

0 βI(1− α)S∗ − (γI + dI) µ

0 0 βA(1− α)2S∗ − (γA + dA + µ)


and the corresponding eigenvalues are 0, βI(1 − α)S∗ − (γI + dI) and βA(1 − α)2S∗ − (γA + dA + µ). Let
R0(S) = SR0, therefore, we obtain the following result.

Proposition 2.4. E∗ is stable if R0(S∗) < 1 and unstable otherwise.

Remark 2.5. Note α = αIpic, the critical value of the lockdown rate such that for all α > αIpic, the curve of I

has a pic and no pic elsewhere. That is; there exists T Ipic et αIpic,
dI
dt < 0 for all t < T Ipic,

dI

dt
= 0 for t = T Ipic

and dI
dt > 0 for t > T Ipic. At t = T Ipic, R0 becomes < 1 and at t = T Ipic,

dR0

dt < 0. To compute αIpic, from equation

(1.1)2, we have
dI

dt
(T Ipic) = 0 and

αIpic = 1− 1

RIS(T Ipic)
+

µA(T Ipic)

βIS(T Ipic)Imax
. (2.3)

By the same method we compute α = αApic the critical value of the lockdown rate such that, the curve of A has

a pic and no pic elsewhere. From equation (1.1)3, we have
dA

dt
(TApic) = 0 and

αApic = 1− 1

RAS(TApic)
. (2.4)

From Figure 3, the peaks values of the populations I and A are decreasing and go to initial conditions when
the temporal solutions of I and A start to decreasing immediately from initial conditions (i.e. α > αIpic and

α > αApic).

Remark 2.6. With total immunity w1 = w2 = 0 and by changing the values of lockdown rate α and the
transition rate µ, the infectious and asymptomatic populations have only one peak over time see Figures 4
(right) and 5. In this case there is only one wave COVID-19 epidemic.

3. Dynamics with non total immunity

Suppose now, there is a fraction of recovered population which become infected after recovery (i.e. wI 6= 0
and wA 6= 0). In this case the equilibria are of the form E∗∗ = (S∗∗, 0, 0, 0) (S∗∗ > 0) and the jacobian is as
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Table 2. Parameters values.

Parameter Estimation

βI 0.294
βA 0.29
α 0–1
γI 0.05
γA 0.1
dI 0.007
dA 0.0001
µ 0–0.2

Figure 3. Peak time versus peak value of populations I and A for different values of lockdown
parameter α varying from 0 to 1 with 0.001 step and w1 = 0, w2 = 0.

Figure 4. Left: Curve of R0 = max(λ1, λ2) with respect to α. Right: Temporal evolution of
different populations S, I, A, R for µ = 0.0001. We have plotted many solutions for different
values of α and w1 = 0, w2 = 0.
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Figure 5. Temporal evolution of different populations S, I, A and R for µ = 0, 0.001, 0.2 and
w1 = 0, w2 = 0.

follows

JE∗∗ =



0 βI(1− α)S∗∗ βA(1− α)2S∗∗ wI + wA

0 βI(1− α)S∗∗ − (γI + dI) µ 0

0 0 βA(1− α)2S∗∗ − (γA + dA + µ) 0

0 γI γA −(wI + wA)


.

The corresponding characteristic equations takes the form

λ(λ+ wI + wA)(λ− (βI(1− α)S∗∗ − (γI + dI)))(λ− (βA(1− α)2S∗∗ − (γA + dA + µ))) = 0,

and the stability of E∗∗ is deduced from the sign of βI(1−α)S∗∗− (γI + dI) and βA(1−α)2S∗∗− (γA + dA +µ).

Proposition 3.1. If R0(S∗∗) < 1, the equilibrium E∗∗ is stable and unstable if R0(S∗∗) > 1.
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Figure 6. Temporal evolution of different populations S, I, A, R for diffrent values of t = 600
(left) and 1000 (right) for 0 < w1 � 1, 0 < w2 � 1.

Remark 3.2. With non total immunity 0 < w1 � 1, 0 < w2 � 1, (i.e. recovered population from SARS-Cov-2
may be re-infected for second time) the infectious population has more than one wave as we noticed from Figures
6 and 7 and the amplitude of the second wave is smaller than the first one, but with appropriate parameters
values the amplitude of the second wave may be greater than the first one (see Fig. 8) and the asymptomatic
population has only one wave over time Figures 6 and 7. Then, we conclude that the non total immunity can
lead to more one wave of COVID-19 epidemic.

3.1. Application to real data

In what follows, we apply our results to real epidemic data of France and Morocco countries collected from
the website www.statista.com (see Fig. 9). With matlab software and using the “lsqcurvefit” function to fit
curves to real data, we get the estimated values of unknown parameters which are summarized in Table 3 for
moroccan total population N = 35.000.000 and french total population N = 50.000.000. From Figure 9, we
see that our model presents a good fit for real statistical data of infectious population with only one wave for
moroccan case and more one wave for french case with a slight phase shift to the right due to high transmission
value of βI and low values of βA, γA, low transition rate µ and low non-total immunity.

4. Sensitivity analysis

Sensitivity analysis is commonly used to determine the robustness of model predictions to parameters values,
since there are usually errors in collected data and presumed parameters values. It is used to discover parameters
that have a high impact on the threshold R0 and should be targeted by intervention strategies. More accurately,
sensitivity indices allows us to measure the relative changes in a variable when a parameter changes. For that
purpose, we use the normalized forward sensitivity index of a variable with respect to a given parameter, which
is defined as the ratio of the relative change in the variable to the relative change in the parameter. If such
variable is differentiable with respect to the parameter, then the sensitivity index is defined as follows.
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Figure 7. Temporal evolution of different populations S, I, A and R for µ = 0, 0.001, 0.2 and
0 < w1 � 1, 0 < w2 � 1.

Figure 8. Temporal evolution of infectious population I with one wave, w1 = w2 = 0 (left)
and two waves w1 = 0.003, w2 = 0.00001 (right), for α = 0.1; βI = 0.294; βA = 0.29; γI = 0.05;
γA = 0.1; µ = 0.0001; dI = 0.007; dA = 0.0001..
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Table 3. Estimating parameters values with “lsqcurvefit” function in Matlab.

Parameters France Morocco Reference

βI 0.89730 0.38407 Estimated
βA 0.07578 0.56392 Estimated
α 0.06205 0.05881 Estimated
γI 0.73 0.953 Health ministry
γA 0.5702× 10−6 0.00334 Estimated
dI 0.09 0.017 Health ministry
dA 0.254.10−6 0.01182 Estimated
µ 0.04960 0.44828 Estimated
wI 0.22× 10−13 0.31× 10−13 Estimated
wA 0.22× 10−13 0.31× 10−13 Estimated

Figure 9. Curves fitting to Moroccan and French COVID-19 epidemic data.

Definition 4.1. [10] The normalized forward sensitivity index of R0, which is differentiable with respect to a
given parameter θ, is defined by

ΥR0

θ =
∂R0

∂θ

θ

R0
.

From the definition of R0 = ρ(−FV −1) = max(λ1, λ2), we discuss its sensitivity analysis for each case. Note
that, the sensitivity index may depend on several parameters of the system, but also can be constant, independent
of any parameter. For example, ΥR0

θ = +1 means that increasing (decreasing) θ by a given percentage increases
(decreases) always R0 by that same percentage. The estimation of a sensitive parameter should be carefully
done, since a small perturbation in such parameter leads to relevant quantitative changes. On the other hand,
the estimation of a parameter with a rather small value for the sensitivity index does not require as much
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Figure 10. Sensitivity analysis with no normalization, w1 = w2 = 0, for α = 0.2; βI = 0.294;
βA = 0.29; γI = 0.05; γA = 0.1; µ = 0.002; dI = 0.007; dA = 0.0001..

Table 4. Sensitivity of R0 = λ1 =
βI(1− α)

γI + dI
evaluated for the parameters values given in

Table 2.

Parameter Sensitivity index R0 = λ1 Index value “Morocco” Index value “France”

α − α

1− α
−0.0624 −0.066

βI +1 +1 +1

γI − γI
γI + dI

−0.982 −0.92

dI − dI
γI + dI

−0.017 −0.109

attention to estimate, because a small perturbation of parameters leads to small changes. We conclude that the
most sensitive parameters to the basic reproduction number R0 of COVID-19 are βA, βI , γA and γI . Then, to
control the propagation of COVID-19 needs to control these sensitive parameters (Tab. 4).

Using non normalization, normalization relative to numerator and full dedimentialization techniques in Sim-
Biology Toolbox for MATLAB to calculate the local sensitivity of each model state with respect to model
constants, we can detect the most critical and sensitive parameters(see Figs. 10–12). In Figure 10, we see that
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Table 5. Sensitivity of R0 = λ2 =
βA(1− α)2

γA + dA + µ
evaluated for the parameters values given in

Table 2.

Parameter Sensitivity index R0 = λ2 Index value “Morocco” Index value “France”

α −2
α

1− α
−0.124 −0.132

βA +1 +1 +1

γA − γA
γA + dA + µ

−0.0072 −1.149.× 10−5

dA − dA
γA + dA + µ

−0.0255 −5.12× 10−6

µ − µ

γA + dA + µ
−0.96 −0.999

Figure 11. Sensitivity analysis with normalization relative to numerator, w1 = w2 = 0, for
α = 0.2; βI = 0.294; βA = 0.29; γI = 0.05; γA = 0.1; µ = 0.002; dI = 0.007; dA = 0.0001..

d2 is the most critical parameter followed by βI and the other parameters. In Figure 11, we see that µ is the
most critical parameter followed by d2 and the other parameters. In Figure 12, we see that βI and βA are
the most critical parameters followed by γI and γA and the other parameters. Then we deduce that the third
technique agreed the results given in Tables 2 and 5.
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Figure 12. Sensitivity analysis with full dedimentialization, w1 = w2 = 0, for α = 0.2; βI =
0.294; βA = 0.29; γI = 0.05; γA = 0.1; µ = 0.002; dI = 0.007; dA = 0.0001..

5. Conclusion

In the presence of vaccines, some infectious diseases like measles have achieved herd immunity. But in the
absence of vaccines, our mathematical finding confirm the answer of our question “can immunity protect
recovered individuals from reinfection of COVID-19?”. The mathematical analysis given in this paper
proves that, the immunity cannot protect humans from a second infection, in this case herd immunity is not the
best concept to fight SARS-Cov-2 because we do not how long immunity lasts after an infection, and how much
that varies from person to person and we do not know whether ending the pandemic through herd immunity
is even possible. Actually, a vaccines against SARS-Cov-2 virus is the ideal way to achieve herd immunity. By
the same way for each country, we have identified the parameters having an impacts on the basic reproduction
number. This sensitivity analysis has been performed by using the numerical values of the parameters obtained
through fitting of the model with actual number of infectious cases.
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