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Abstract

The main concern of this paper is to study the dynamic of a predator—prey system
with diffusion. It incorporates the Holling-type-II and a modified Leslie—-Gower
functional responses under Robin boundary conditions. More concretely, we
study the dissipativeness of the system by using the comparison principle, and we
derive a criteria for permanence and for predator extinction.
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1. Introduction, Mathematical Model and
Preliminaries

1.1. Introduction and Mathematical Model

One of the dominant themes in both ecology and mathematical ecology is the
dynamic relationship between predators and their prey due to its universal existence
and importance in population dynamics. The investigations on predator—prey
models have been mainly developed during the last decades, and more realistic
models are derived in view of laboratory experiments and observations (see for
example Chen and Shi 2012; Ko and Ryu 2006; Moussaoui and Bouguima 2016;
Nindjin et al. 2006; Nindjin and Aziz-Alaoui 2008; Pao 1982; Saez and Gonzalez-
Olivares 1999; Tanner 1975; Ye and Li 1990 and references cited therein). Aziz-
Alaoui and Daher (2003) performed a global analysis of predator—prey system
without diffusion. Concretely, they studied the following system:
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where U(T) and V(T) are the population densities of the prey and predator species at
time 7, respectively, and ry, r,, by, ay, a», ki, ko are positive constants. These
parameters are defined as follows: r; is the growth rate of prey U, b; measures the
strength of intraspecific competition among individuals of species U, and it is
related to the carrying capacity of the prey, g; is the maximum value of the per
capita reduction rate of U due to V, k; (respectively k, ) measures the extent to




which environment provides protection to prey U (respectively, to the predator V),
r, describes the growth rate of V, and a, has a similar meaning to @; . The model
(1) 1s proposed based on the biological fact that the predator 7 is more capable of
switching from its favorite food (the prey U) to other food options, thus it has better
ability to survive when the prey population is low. The historical origin and
applicability of this model is discussed in detail in Aziz-Alaoui (2002), Aziz-Alaoui
and Daher (2003), Daher (2004), Nindjin et al. (2006), see also Nindjin and Aziz-
Alaoui (2008), Letellier and Aziz-Alaoui (2002), Letellier et al. (2002).

For simplicity, we nondimensionalize system (1) with the following scaling,
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t=nrT,ult) = —U(T) and v() = ——LV(p),
r rr
to obtain the form,
o=l - - 2
dv __ %
dar — (1 - u+en ) v,
u)=uy >0, v(0)=vy>0,
where
b1k b1k
a=a1r2,b=r—2, e] = 171 and e = ! 2.
arr r r r

In Aziz-Alaoui and Daher (2003), the boundedness of solutions, the existence of
positive invariance attracting set and the global stability of the coexisting interior
equilibrium of system (2) are studied. See also Daher Okiye and Aziz-Alaoui
(2003). Later, Nindjin et al. (2006) studied the global stability and persistence of the
corresponding delayed system by using Lyapunov functional. The existence of
periodic solutions and their stability are studied in Yafia et al. (2008, 2007), by
considering the delay as a parameter of bifurcation.

Recently, Camara and Aziz-Alaoui (2008a, b) and Abid et al. (2015a, b) studied the
diffusive version with Newman boundary conditions, and analyzed the stability,
traveling wave, Turing and Hopf bifurcations.

It is much suitable to consider a reaction diffusion system, subject to general
boundary conditions, we use here the Robin Boundary conditions and study the
permanence condition of the following strongly-coupled PDE system:
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The spatial population densities of the prey and the predator species are respectively
denoted by u(x, ) and v(x, 1), x € 2, where (2 is a bounded domain in R with
smooth boundary, and r > 0. A denotes the Laplacian operator, the parameters

dy, d, > 0 are the diffusion coefficients of the corresponding species. f,y € [0, 1]
9

= denotes the
2

describes how likely it is for an individual reaching 0f2 to leave Q,

outward normal derivative on the boundary 042.

Remark on the boundary conditions (BC)

— Dirichlet boundary conditions

The first observation is that the case f = y = 1, corresponds to Dirichlet, used
when the region £ is rounded by a hostile environment for species.

— Neumann boundary conditions

The second observation is that in the case f = y = 0 corresponding to no-flux
(i.e., Neumann or reflecting) boundary conditions, species do not leave their
domain (because of security or isolation) and do not cross the frontier, there is
no diffusion along the boundaries, and any solution of the system without
diffusion (1) is also solution of the system with diffusion (3).

— Robin boundary conditions, which we use in the present paper.

In general, in the case of Robin BCs, see Eq. (3), the value of § (resp. y)
represent the balance between the tendency of the prey (resp. the predator) to
remain in its domain when it is close to the boundary, and its tendency to
disappear beyond the boundary.

The system we study in the present paper may, for example, be considered as a
representation of a snake-peacock food chain, nature abounds in systems which
exemplify this model, see Aziz-Alaoui (2002), Letellier and Aziz-Alaoui

(2002), Singh and Gakkhar (2014). Besides, as the model (1) is proposed based




on the biological fact that the predator V' is more capable of switching from its
favorite food (the prey U) to other food options, and thus it has better ability to
survive when the prey population is low, see Aziz-Alaoui (2002), Daher Okiye
and Aziz-Alaoui (2003), it seems more reasonable to use Robin BCs that allow
this balance at the edge of the domain. But, in doing so, we also consider,
through the use of Robin’s BCs, that the prey can also escape from its domain.
Therefore, the model describes a situation where favorable/unfavorable
conditions exist, for each specie, on a boundary of the domain. For
motivation,' and for those specific questions, see especially the work of
Bassett et al. (2017) and Kurowski et al. (2017), where movement toward a
subsidy or toward/away from favorable/unfavorable regions are considered,
assuming those features are on the interior of the domain. For more
information about Robin BCs, see also Dai et al. (2015), Wang et al. (2012) for
example.

Now, in order to study the solution of (3) we consider initial conditions of the form,
ulx,0) =uy(x) >0, vix,0) =vy(x) >0 x € Q, 4

where u(x) and vy (x) are non-negative continuous functions. The existence and
nonexistence of positive solutions of the corresponding stationary problem have
been analyzed in some papers, see for example Abid et al. (2015a), Chen and Wang
(2008) in the case of homogeneous Neumann boundary conditions, or Abid et al.
(2015b), Camara and Aziz-Alaoui (2008a), Yafia et al. (2008) for the case of
homogeneous Dirichlet boundary conditions. Other works exist, see for example
Upadhyay et al. (2009, 2008) and references therin cited.

In the present article, we discuss the dynamics of (3) in terms of permanence,
dissipativity and extinction of the predator ; we prove that the permanence of this
system is fully determined by the signs of generalized principal eigenvalues.

which are needed in next section. In Sect. 2, some conditions for the ultimate
boundedness of solutions and permanence of this system are established. A
sufficient condition of extinction of predator population is also given. We end with
a brief section on conclusion.

2. Permanence and Extinction




2.1. Preliminaires

The analysis of (3) uses a number of results mainly due to Cantrell and Cosner
(1999, 2001, 2003, 1991, 1996) about single reaction—diffusion equations and
related eigenvalue problems which we shall state below, and which for the sake of
readability, we recall here.

Lemma 1 (Cantrell and Cosner 2003) If m(x) is continuous on 2 and positive on

an open subset of Q, the eigenvalue problem,
{A® +im()® =0 inQ po+(1-HL =0 onodQ 5

has a unique positive principal eigenvalue J}(m, ) which admits a positive

eigenfunction. The eigenvalue problem,
{dAT+m(x)Y’=0Y’ in 2 ﬂ&”+(1—ﬂ)%=0 on 052 6

has a unique principal eigenvalue ¢\ (d, m, ) which admits a positive
eigenfunction. We have ¢, (d, m, ) > 0 if and only if dAf(m, p) < 1.

These results follow from general results given in Cantrell and Cosner (2003), Hess
(1991).

Lemma 2 (Cantrell and Cosner 2003) Suppose that f(x, w) is a smooth and
decreasing function in w, with f(x, 0) > 0 on an open subset of Q. Suppose
further that there exists a constant K so that f(x,w) < 0 for w > K. Then the
equation,

M = dAw + f(x, w)w in 2 X (0, o) 7

o
ﬂw+(1—ﬂ)%—j;=o on 02 X (0, o)

has a unique positive equilibrium w, which is globally attracting for all
solutions, if and only if dA{ (f(x,0), p) < 1 (which is equivalent to
o1(d,f(x,0), ) > 0). Ifd/ﬁ(f(x, 0), ) > 1 then all positive solutions of (7)
approach zero as t — oo.

The case of Dirichlet boundary conditions is treated in Cantrell and Cosner (2003,
1991, 1998). A version of this result for the time-periodic case is given in Hess




(1991).

Remark 1 The condition dA}(f(x,0), §) < 1 is equivalent to
o,(d, f(x,0),$) > 0 by Lemma 1.

2.2. Dissipativity

In this subsection, we will show that any nonnegative solution (u(x, ), v(x, t)) of (3)
lies in a certain bounded region as t — oo for all x € Q.

Theorem 1 All the solutions of (3) are nonnegative and defined for all t > 0.
Furthermore, the nonnegative solution (u(x, t), v(x, t)) of (3) satisfies

lim sup max u(x, 1) < 1,
-0 XEQ

limsup max v(x, 1) < 1 + e;.
oo XxXeEQ

Proof The nonnegativity of the solutions of (3) is obvious since the initial value is
nonnegative. We only consider the second part of the theorem. From the first
equation of the system (3) it follows that,

9)
%—dﬂuﬁu(l—u) xe N, t>0, 8
as long as u is defined as a function of ¢. Let z be the solution of the equation,
7 =z(1 —2), z(0) = max u(x, 0). 9

XEQN

From the comparison principle Friedman (1964), we obtain u(x, ) < z(¢). Now,
taking into account that for any ¢ > 0 there exists 7. > 0 such that z(¥) < 1 + €
for any ¢t > T., which in turn implies that u(x, ¢) is defined for all + > 0, and

lim sup max u(x, ) < 1.
t—00 fo)

Having in mind that for a given ¢ > 0O there exists T, > 0 such that
u(x,t) < 1+ ¢ forany x € 2 and r > T,, and by using the second equation of
(3), we get




av % \%
P _ A =b(1— >§b<1——>
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for any x € Q and ¢ > T,, let z be the solution of the following initial value
problem,

’t=b<1—;>, T.) = .0). 11
(1) = bz TTeto z(Te) r)fle%\)(x}

Then,

limzit)=1+€+ e

—00
Hence, by using the comparison principle, we obtain that v(x, 1) < z(¢); which
implies that

lim sup max v(x, 1) < 1 + e;.
o0 XEQ

This completes the proof.

Remark 2 An immediate consequence of the proof of the former result is that for
any ¢ > 0, the rectangle [0, 1 + €) X [0, 1 + e5 + €) 1s an absorbing set for the
system (3) in Ri.

2.3. Permanence

In this subsection, we investigate the permanence of system (3), for this aim we use
Hale and Waltman Theorem stated in the “Appendix” (Hale and Waltman 1989;
Hale 1988). To formulate such a result, we need to interpret (3) as a semi-flow on
an appropriate space. Let use denote,

— G,
Yy = {ue clQ): pu+( —ﬂ)a—” =00nag},
n
and

{uevpu>oma}, irp<i
vy =
{uevpu>0inQand 2 <oonon}, itp=1.

Thenlet Yy = Y x ¥, ¥ =Y,UdY, C[C' (@




Theorem 2

a) The system (3) generates a dissipative semi-flow on Y for which Y, and 0Y
are forward invariant.

b) If di AT (1, p) > 1 (equivalently o, (d;, 1, p) < 0) then the system (3) is not
permanent.

) If diA{ (1, p) < 1 (equivalently 6,(dy, 1, p) > 0) the system is permanent if and
Only ijpal (dza bs 7) > 0

Proof a) The proof that (3) generates a semi-flow {S(r)}, on Y, which is
defined by [S(t)¢p](x) = U(x, t; uy, vy) Where U(x, t; ug, vo) 15 the classical
solution of system (3) with initial condition (y(x), vy(x)), follows from the results
given in Cantrell and Cosner (1991), thus it is omitted here.

A direct application of the maximum principle shows that S() is positively invariant
on dY,, which in turn implies that S(#) is positively invariant on Y,,. Moreover,
from Theorem 1, it follows that S(7) is pointwise dissipative.

b) Now, to show that (3) cannot be permanent if ¢, A7 (1, §) > 1, let’s remark that if
(u, v) 1s a nonnegative solution to (3) then u is a subsolution to

%:d14u+u(1—u) n 2 X (0, 00) 12

pu+(1—p)% =0 onoRx(0,c0)

It follows that if 7 is a solution of (12) with 7(x, 0) = uy(x) then 0 < u < 7% for all
t > 0. However, by Lemma 2, i — 0 as t —» +oo0 if ;4] (1, #) > 1, hence u — 0
as t —» +oo. Therefore, (3) is not permanent.

¢)If ¢, 27(1,p) < 1 and 6,(d,, b, y) > 0, then the strong maximum principle
implies that any solution of (3) which lies in 9Y,, must be of the form (u, 0) or

(0, v). For solutions of the form (u, 0) approaching E; = (u,0) as t - +oco0 and
solutions of the form (0, v) approaching £, = (0,v) as t - +oco by Lemma 2.
Henceforth, we conclude that w(dY,) = {E;, E, }. It follows from these structural
features that w(dY,)) is isolated and acyclic. By choosing M, = E, and M, = E,,
then M = M, U M, 1s the covering required by Theorem 3 in “Appendix”. Taking
into account that w(9Y,)) is positively invariant and the fact that the stable manifold




of E; is the u-axis and the stable manifold of E, is the v-axis, we obtain
WSE)) N Yy =@ and W(Ey) N Yy = 0.

Since all hypotheses of Theorem 3 are fulfilled, we may conclude that system (3) is
permanent.

Inversely, suppose that system (3) is permanent, it remains to prove that
o1(d>, b, y) > 0. Since the system (3) is permanent, it has a positive equilibrium
(u*,v*). The equation for v* is,

* * bv* _ .
AV + v (b_u*+e2)_0 in Q2 13
P+ (1-p2 =0 on 0Q
Since v* > 0 in 2 we have,
bv* 14
o1 <d2,b— 4 ,}/>=0.
u* + e

However, u* > 0 and v* > 0, so that, on 2 we have,

bv*
u* + ep

< b,

and by standard monotonicity results for eigenvalues we get,

bv*
u* + e

15

0= (dz,b— ,y) < 61(do, b, 7).

Therefore so permanence implies that oy (d>, b,y) > 0. O

2.4. Predator Extinction

In this subsection, we investigate sufficient conditions for predator extinction.

Proposition1 If 6y(dy,b,y) <0, (i.e., AT (b, p) > 1) then v — 0 as
t = +oo, that is, the predator goes to extinction.

Proof Suppose (u(x, 1), v(x, t)) is a solution of (3) with initial condition
up(x) >0 (# 0), vo(x) > 0 (£ 0). Let (¢, x) be a solution of

16




o _ v ~ ~
Fj — AV — b (1 - 1:@) V=0, V(x0) = v

Using the inequality

9 9
O=—v—d2Av—b<1— v >v2—v—d2Av—b<1— 4 )v

ot u+ e ot 1+ e
we get
av v dov y
0=——dA~—b<1— >~>——dA —b(l— )
o 7Y T+e, /)" = or @7 1 +e /)

The comparison principle gives v < v on . Or, by Lemma 2, if
o1(dr, b,y) <0, (or equivalently d> 17 (b, y) > 1), then any solution of (16)
approach 0 as t - +o0. This implies that v — 0 as ¢t - +c0. ]

3. Conclusion

In this paper, we have analysed a spatio-temporal system modelling predator—prey
population with modified Leslie-Gower and Holling type-II functional response
under Robin boundary condition, the dissipativity of nonnegative solutions of the
system is established by the comparison principle for parabolic equations. We have
obtained conditions for the permanence and the predator extinction of the system by
using techniques in Cantrell and Cosner (2003), Hess (1991). Such results are
determined by the sign of a generalized principal eigenvalue.
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4. Appendix: Permanence

For the convenience of the reader, we will summarize some facts contained in Hale
and Waltman, see Hale and Waltman (1989), about the permanence for abstract
dynamical systems. Suppose that 2 is a complete metric space with Q2 = Q, U 08,
for an open set £, , where 02, is the boundary of the set ;. We will typically
choose 2, to be the positive cone in an ordered Banach space. A flow or semiflow
on £ under which , and 0€, are forward invariant is said to be permanent if it is
dissipative and if there is a number 5 > 0O such that any trajectory starting in £,




will be at least a distance 5 from 0€2, for all sufficiently large 7. To state a theorem
implying permanence we need a few definitions. An invariant set M for the flow or
semiflow is said to be isolated if it has a neighborhood U such that M is the
maximal invariant subset of U. Let w(d€2,) C 0£2, denote the union of the sets w(u)
over u € £ (This differs from the standard definition of the w-limit set of a set
but it is more convenient for our purposes; see Hutson and Schmitt (1992) for a
discussion). The set w(£2y) is said to be isolated if it has a covering M = U]kvlek
of pairwise disjoint, both sets M; which are isolated and invariant with respect to
the flow or semiflow both on 002, and on Q2 = Q, U 92, . The covering M is then
called an isolated covering. Suppose N; and N, are isolated invariant sets (not
necessarily distinct). The set N; is said to be chained to N, (denoted N; — N,) if
there exists u € Ny U N, with u € W*(N;) n W*(N,). (As usual, W* and W*
denote the unstable and stable manifolds, respectively). A finite sequence

Ny, N, -+, N; of isolated invariant sets is a chain if Ny - N, - N3 — --- = N;.
(This 1is possible for k = 1 if N; — N;.) The chain is called a cycle if

N = N;.The set w(0€2) is said to be acyclic if there exists an isolated covering
Ujkvlek such that no subset of {M,} is a cycle. We now state a theorem that can be
used to establish permanence.

Theorem 3 (Hale and Waltman 1989) Suppose that §2 is a complete metric space
with Q = Q) U 08, where , is open. Suppose that a semiflow on Q leaves

both Q, and 0§, forward invariant, maps bounded sets in Q to precompact

set for t > 0, and is dissipative. If in addition:

(1) w(082y) is isolated and acyclic,

(1) WS(My) N Qy = B for all k, where Uiv=1Mk is the isolated covering used in
the definition of acyclicity of 02y, then the semiflow is permanent; i.e., there
exist n > 0 such that any trajectory with initial data in , will be bounded
away from 0§, by a distance greater than n for t sufficiently large.
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