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Introduction: Chaotic Systems Can
Synchronize

Synchronization is a ubiquitous phenomenon char-
acteristic of many processes in natural systems and
(nonlinear) science. It has permanently remained an
objective of intensive research and is today consid-
ered as one of the basic nonlinear phenomena
studied in mathematics, physics, engineering, or life
science. This word has a Greek root, syn = common
and chronos = time, which means to share the
common time or to occur at the same time, that is,
correlation or agreement in time of different
processes (Boccaletti et al. 2002). Thus, synchroni-
zation of two dynamical systems generally means
that one system somehow traces the motion of
another. Indeed, it is well known that many coupled
oscillators have the ability to adjust some common
relation that they have between them due to weak
interaction, which yields to a situation in which a
synchronization-like phenomenon takes place.

The original work on synchronization involved
periodic oscillators. Indeed, observations of (peri-
odic) synchronization phenomena in physics go back
at least as far as C Huygens (1673), who, during his
experiments on the development of improved pen-
dulum clocks, discovered that two very weakly
coupled pendulum clocks become synchronized in
phase: two clocks hanging from a common support
(on the same beam of his room) were found to
oscillate with exactly the same frequency and
opposite phase due to the (weak) coupling in terms
of the almost imperceptible oscillations of the beam
generated by the clocks.

Since this discovery, periodic synchronization has
found numerous applications in various domains,
for instance, in biological systems and living nature
where synchronization is encountered on different
levels. Examples range from the modeling of the
heart to the investigation of the circadian rhythm,
phase locking of respiration with a mechanical
ventilator, synchronization of oscillations of human
insulin secretion and glucose infusion, neuronal
information processing within a brain area and
communication between different brain areas. Also,
synchronization plays an important role in several
neurological diseases such as epilepsies and patho-
logical tremors, or in different forms of cooperative

behavior of insects, animals, or humans (Pikovsky
et al. 2001).

This process may also be encountered in celestial
mechanics, where it explains the locking of revolu-
tion period of planets and satellites.

Its view was strongly broadened with the devel-
opments in radio engineering and acoustics, due to
the work of Eccles and Vincent, 1920, who found
synchronization of a triode generator. Appleton,
Van der Pol, and Van der Mark, 1922–27, have,
experimentally and theoretically, extended it and
worked on radio tube oscillators, where they
observed entrainment when driving such oscillators
sinusoidally, that is, the frequency of a generator
can be synchronized by a weak external signal of a
slightly different frequency.

But, even though original notion and theory of
synchronization implies periodicity of oscillators,
during the last decades, the notion of synchroniza-
tion has been generalized to the case of interacting
chaotic oscillators. Indeed, the discovery of determi-
nistic chaos introduced new types of oscillating
systems, namely the chaotic generators.

Chaotic oscillators are found in many dynamical
systems of various origins; the behavior of such
systems is characterized by instability and, as a
result, limited predictability in time.

Roughly speaking, a system is chaotic if it is
deterministic, has a long-term aperiodic behavior,
and exhibits sensitive dependence on initial condi-
tions on a closed invariant set (the chaos theory is
discussed in more detail elsewhere in this encyclo-
pedia) (see Chaos and Attractors).

Consequently, for a chaotic system, trajectories
starting arbitrarily close to each other diverge
exponentially with time, and quickly become uncor-
related. It follows that two identical chaotic systems
cannot synchronize. This means that they cannot
produce identical chaotic signals, unless they are
initialized at exactly the same point, which is in
general physically impossible. Thus, at first sight,
synchronization of chaotic systems seems to be
rather surprising because one may intuitively (and
naively) expect that the sensitive dependence on
initial conditions would lead to an immediate
breakdown of any synchronization of coupled
chaotic systems. This scenario in fact led to the
belief that chaos is uncontrollable and thus unusa-
ble. Despite this, in the last decades, the search for
synchronization has moved to chaotic systems.
Significant research has been done and, as a result,
Yamada and Fujisaka (1983), Afraimovich et al.
(1986), and Pecora and Carroll (1990) showed that
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two chaotic systems could be synchronized by
coupling them: synchronization of chaos is actual
and chaos could then be exploitable. Ever since,
many researchers have discussed the theory and the
design or applications of synchronized motion in
coupled chaotic systems. A broad variety of applica-
tions has emerged, for example, to increase the
power of lasers, to synchronize the output of
electronic circuits, to control oscillations in chemical
reactions, or to encode electronic messages for
secure communications.

The publication of the seminal paper of Pecora
and Caroll (1990) had a very strong impact in the
domain of chaos theory and chaos synchronization,
and their applications. It had stimulated very intense
research activities and the related studies continue to
attract great attention. Many authors have contrib-
uted to developing this domain, theoretically or
experimentally (Boccaletti et al. 2002, Pecorra et al.
1997, references therein).

However, the special features of chaotic systems
make it impossible to directly apply the methods
developed for synchronization of periodic oscilla-
tors. Moreover, in the topics of coupled chaotic
systems, many different phenomena, which are
usually referred to as synchronization, exist and
have been studied now for over a decade. Thus,
more precise descriptions of such systems are indeed
desirable.

Several different regimes of synchronization have
been investigated. In the following, the focus will be
on explaining the essentials on this large topic,
subdivided into four basic types of synchronization
of coupled or forced chaotic systems which have
been found and have received much attention, while
emphasizing on the first three:

� identical (or complete) synchronization (IS),
which is defined as the coincidence of states of
interacting systems;
� generalized synchronization (GS), which extends

the IS phenomenon and implies the presence of
some functional relation between two coupled
systems; if this relationship is the identity, we
recover the IS;
� phase synchronization (PS), which means entrain-

ment of phases of chaotic oscillators, whereas
their amplitudes remain uncorrelated; and
� lag synchronization (LS), which appears as a

coincidence of time-shifted states of two systems.

Other regimes exist, some of them will be briefly
pointed out at the end of this article; we also will
briefly discuss the very relevant issue of the stability
of synchronous motions.

Our discussion and examples given here are based
on unidirectionally continuous systems, most of the
exposed ideas can be easily extended to discrete
systems.

Let us also emphasize that the same year, 1990,
saw the publication of another seminal paper, by
Ott, Grebogi, and Yorke (OGY) on the control of
chaos (Ott et al. 1990). Recently, it has been
realized that synchronization and control of chaos
share a common root in nonlinear control theory.
Both topics were presented by many authors in a
unified framework. However, synchronization of
chaos has evolved in its own right, even if it is
nowadays known as a part of the nonlinear control
theory.

Synchronization and Stability

For the basic master–slave configuration, where an
autonomous chaotic system (the master)

dX

dt
¼ FðXÞ; X 2 Rn ½1�

drives another system (the slave),

dY

dt
¼ GðX;YÞ; Y 2 Rm ½2�

synchronization takes place when Y asymptotically
copies, in a certain manner, a subset Xp of X. That
is, there exists a relation between the two coupled
systems, which could be a smooth invertible func-
tion  , which transforms the trajectories on the
attractor of a first system into those on the attractor
of a second system. In other words, if we know,
after a transient regime, the state of the first system,
it allows us to predict the state of the second:
Y(t) = (X(t)). Generally, it is assumed that n � m;
however, for the sake of easy readability (even if this
is not a necessary restriction) the case n = m will
only be considered; thus, Xp = X. Henceforth, if we
denote the difference Y �  (X) by X?, in order to
arrive at a synchronized motion, it is expected that

jjX?jj�! 0; as t�!þ1 ½3�

If  is the identity function, the process is called IS.

Definition of IS System [2] synchronizes with
system [1], if the set M = {(X, Y) 2 Rn �Rn, Y = X}
is an attracting set with a basin of attraction B(M � B)
such that limt!1 kX(t)� Y(t)k= 0, for all
(X(0), Y(0)) 2 B.

Thus, this regime corresponds to the situation
where all the variables of two (or more) coupled
chaotic systems converge.
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If  is not the identity function, the phenomenon
is more general and is referred to as GS.

Definition of GS System [2] synchronizes with
system [1], in the generalized sense, if there exists a
transformation  : Rn�!Rm, a manifold M =
{(X, Y) 2 Rnþm, Y = (X)} and a subset B (M � B),
such that for all (X0, Y0) 2 B, the trajectory based
on the initial conditions (X0, Y0) approaches M as
time goes to infinity. This is explained further in the
following.

Henceforth, in the case of IS, eqn [3] above means
that a certain hyperplane M, called synchronization
manifold, within R2n, is asymptotically stable.
Consequently, for the sake of synchrony motion,
we have to prove that the origin of the transverse
system X?= Y �X is asymptotically stable. That is,
to prove that the motion transversal to the synchro-
nization manifold dies out.

However, significant progress has been made by
mathematicians and physicists in studying the
stability of synchronous motions. Two main tools
are used in the literature for this aim: conditional
Lyapunov exponents and asymptotic stability. In the
examples given below, we will essentially formulate
conditions for synchronization in terms of Lyapunov
exponents, which play a central role in chaos theory.
These quantities measure the sensitive dependence
on initial conditions for a dynamical system and also
quantify synchronization of chaos.

The Lyapunov exponents associated with the
variational equation corresponding to the transverse
system X?:

dX?
dt
¼ DFðXÞX? ½4�

where DF(X) is the Jacobian of the vector field
evaluated onto the driving trajectory X, are referred
to as transverse or conditional Lyapunov exponents
(CLEs).

In the case of IS, it appears that the condition L?max <
0 is sufficient to insure synchronization, where L?max is
the largest CLE. Indeed, eqn [4] gives the dynamics of
the motion transverse to the synchronization manifold;
therefore, CLEs indicate if this motion dies out or not,
and hence, whether the synchronization state is stable
or not. Consequently, if L?max is negative, it insures the
stability of the synchronized state. This will be best
explained using two examples below.

Even if there exist other approaches for studying
synchronization, one may ask if this condition on
L?max is true in general. To answer this question,
mathematicians have recently formulated it in terms
of properties of manifolds (or synchronization
hyperplanes). Some rigorous results on (generalized)

synchronization, when the system is smooth, are
given by Josic (2000). This approach relies on the
Fenichel theory of normally hyperbolic invariant
manifolds and quantities that resemble Lyapunov
exponents, and is referred to as differentiable GS.
However, many situations correspond to the case
where, in some region of values of parameters
coupling, the function  is only continuous but not
smooth, that is, the graph of  is a complicated
geometrical object. This kind of synchronization
is called nonsmooth GS (Afraimovich et al. 2001).

Furthermore, the mathematical theory of IS often
assumes the coupled oscillators to be identical, even
if, in practice, no two oscillators are exact copies of
each other. This leads to small differences in system
parameters and then to synchronization errors.
These errors have been studied by many authors
(see, e.g., Illing (2002), and references therein).

Identical Synchronization

Perhaps the best way to explain synchronization of
chaos is through IS, also referred to as conventional
or complete synchronization (Boccaletti et al. 2002).
It is the simplest form of chaos synchronization and
generalizes to the complete replacement which is
explained below. It is also the most typical form of
chaotic synchronization often observable in two
identical systems.

There are various processes leading to synchroni-
zation; depending on the particular coupling config-
uration used these processes could be very different.
So, one has to distinguish between the following two
main situations, even if they are, in some sense,
similar: the unidirectional and the bidirectional
coupling. Indeed, synchronization of chaotic systems
is often studied for schemes of the form

dX

dt
¼ FðXÞ þ kNðX� YÞ

dY

dt
¼ GðYÞ þ kMðX� YÞ

½5�

where F and G act in Rn, (X, Y) 2 (Rn)2, is a scalar,
and M and N are coupling matrices belonging to
Rn�n. If F = G the two subsystems X and Y are
identical. Moreover, when both matrices are non-
zero then the coupling is called bidirectional, while
it is referred to as unidirectional if one is the zero
matrix, and the other nonzero.

Constructing Pairs of Synchronized Systems:
Complete Replacement

Pecora and Carroll (1990) proposed the use of
stable subsystems of given chaotic systems to

Synchronization of Chaos 215



construct pairs of unidirectionally coupled synchro-
nizing systems. Since then generalizations of this
approach have been developed and various meth-
ods now exist to synchronize systems (Wu 2002,
Hasler 1998).

One way to build a couple of synchronized
systems is then to use the basic construction method
introduced by Pecora and Carroll, who made an
important observation. They found that, when they
make a replica of part of a chaotic system and send
a system variable from the original system (trans-
mitter) to drive this replica (receiver), sometimes the
replica subsystem and the original chaotic one lock
in their steps and evolve together chaotically in
synchrony. This method can be described as follows.
Consider the autonomous n-dimensional dynamical
system,

du

dt
¼ FðuÞ ½6�

divide this system into two subsystems (u = (v, w)),

dv

dt
¼ Gðv;wÞ

dw

dt
¼ Hðv;wÞ

½7�

where v= (u1, . . . ,um), w= (umþ1, . . . ,un), G=(F1, . . . ,
Fm), and H = (Fmþ1, . . . ,Fn). Next, create a new
subsystem w0 identical to the w-subsystem. This
yields a (2n�m)-dimensional system:

dv

dt
¼ Gðv;wÞ

dw

dt
¼ Hðv;wÞ

dw0

dt
¼ Hðv;w0Þ

½8�

The first state-variable component v(t) of the (v, w)
system is then used as the input to the w0-system.
The coupling is unidirectional and the (v, w)
subsystem is referred to as the driving (or master)
system, the w0-subsystem as the response (or slave)
system. In this context, the following notions and
results are useful.

Definition If limt!þ1 kw0(t)�w(t)k= 0 and w0(t)
continues to remain in step with w(t) in the course
of the time, the two subsystems are said to be
synchronized.

Definition The Lyapunov exponents of the
response subsystem (w0) for a particular driven
trajectory v(t) are called CLEs.

Let w(t) be a chaotic trajectory with initial
condition w(0), and w0(t) be a trajectory started at
a nearly point w0(0). The basic idea of the Pecora–
Carroll approach is to establish the asymptotic
stability of the solutions of w0-subsystem by means
of CLEs. They have shown the following result
(Pecora and Carroll 1990):

Theorem A necessary and sufficient condition for
the two subsystems, w andw0, to be synchronized is
that all of the CLEs be negative.

Note that only a finite number of possible
decompositions (or couplings) v–w exist; this is
bounded by the number of different possible
subsystems, namely N(N � 1)=2. (For a description
and mathematical analysis of various coupling
schemes see Wu (2002).) Furthermore, by splitting
the main system [6] in a different way, (complete)
synchronization could not exist. Indeed, in general,
only a few of the possible response subsystems
possess negative CLEs, and may thus be used to
implement synchronizing systems using the Pecora–
Caroll method. In fact, it has been pointed out in the
literature that in some cases, the CLE criterion is not
as practical as some other criteria.

For simplicity, the idea will now be developed on
the following three-dimensional simple autonomous
system, which belongs to the class of dynamical
systems called generalized Lorenz systems (see
Derivière and Aziz-Alaoui (2003), and references
therein):

_x ¼ �9x� 9y

_y ¼ �17x� y� xz

_z ¼ �zþ xy

½9�

(This should be compared with the well-known
Lorenz system:

_x ¼ �10xþ 10y

_y ¼ 28x� y� xz

_z ¼ � 8
3 zþ xy

which differs in the signs of various terms and the
values of coefficients.) From previous observations,
it was shown that system [9] oscillates chaotically;
its Lyapunov exponents are þ0.601, 0.000, and
�16.470; it exhibits the chaotic attractor of Figure 1,
with a three-dimensional feature very similar to that
of Lorenz attractor (in fact, it satisfies the condition
z < 0, but in our context it does not matter).

Let us divide system [9] into two subsystems
v = x1 and w = (y1, z1). By creating a copy
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w0= (y2, z2) of the w-subsystem, we obtain the
following five-dimensional dynamical system:

_x1 ¼ �9x1 � 9y1

_y1 ¼ �17x1 � y1 � x1z1

_z1 ¼ �z1 þ x1y1

_y2 ¼ �17x1 � y2 � x1z2

_z2 ¼ �z2 þ x1y2

½10�

In numerical experiments, it was observed that the
motion quickly results in the two equalities,
limt!þ1 jy2 � y1j= 0 and limt!þ1 jz2 � z1j= 0, to
be satisfied, that is, limt!þ1 kw0 �wk= 0. These
equalities persist as the system evolves. Hence, the
two subsystems w and w0 are synchronized. Figure 2
illustrates this phenomenon.

It is also easy to verify that the synchronization
persists even if a slight change in the parameters of
the system is made. The CLEs of the linearization of
the system around the synchronous state, the
negativity of which determines the stability of the
synchronized solution, are also computed easily.

Pecora–Carroll similarly built the system [10] by
using the following steps. Starting with two copies
of system [9], a signal x(t) is transmitted from the
first to the second: in the second system all x-
components are replaced with the signal from the
first system, that is, x2 is replaced by x1 in the
second system. Finally, the dx2=dt equation is
eliminated, since it is exactly the same as dx1=dt
equation, and is superfluous. This then results in
system [10]. For this reason, Pecora–Carroll called
this construction a complete replacement. Thus, it is
natural to think of the x1 variable as driving the
second system, but also to label the first system the
drive and the second system the response. In fact,
this method is a particular case of the unidirectional
coupling method explained below. Note also that
this method could be modified by using a partial
substitution approach, in which a response variable

is replaced with the drive counterpart only in certain
locations (Pecora et al. 1997).

Unidirectional IS

The IS synchronization has also been called as one-
way diffusive coupling, drive–response coupling,
master–slave coupling, or negative feedback control.

System [5], F = G and N = 0, becomes unidirec-
tionally coupled, and reads

dX

dt
¼ FðXÞ

dY

dt
¼ FðYÞ þ kMðX� YÞ

½11�

M is then a matrix that determines the linear
combination of X components that will be used
in the difference, and k determines the strength of
the coupling (see, for an interesting review on
this subject, Pecora et al. (1997)). In unidirectional
synchronization, the evolution of the first system
(the drive) is unaltered by the coupling, the second
system (the response) is then constrained to copy the
dynamics of the first. Let us consider an example
with two copies of system [9], and for

M¼
1 0 0
0 0 0
0 0 0

0@ 1A ½12�

that is, by adding a damping term to the first equation
of the response system, we get a following unidir-
ectionally coupled system, coupled through a linear
term k > 0 according to variables x1, 2:

_x1 ¼ �9x1 � 9y1

_y1 ¼ �17x1 � y1 � x1z1

_z1 ¼ �z1 þ x1y1

_x2 ¼ �9x2 � 9y2 � kðx2 � x1Þ
_y2 ¼ �17x2 � y2 � x2z2

_z2 ¼ �z2 þ x2y2

½13�
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Figure 1 The chaotic attractor of system [9]: x–y and x–z plane projections.
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For k = 0, the two subsystems are uncoupled; for
k > 0 both subsystems are unidirectionally coupled;
and for k�! þ1, we recover the complete replace-
ment coupling scheme explained above. Our numer-
ical computations yield the optimal value k̃ for the
synchronization; we found that for k � k̃ = 4.999,
both subsystems of [13] synchronize. That is,
starting from random initial conditions, and after
some transient time, system [13] generates the same
attractor as for system [9] (see Figure 1). Conse-
quently, all the variables of the coupled chaotic
subsystems converge: x2 converges to x1, y2 to y1,
and z2 to z1 (see Figure 3). Thus, the second system
(the response) is locked to the first one (the drive).

Alternatively, observation of diagonal lines in
correlation diagrams, which plot the amplitudes x1

against x2, y1 against y2, and z1 against z2, can also
indicate the occurrence of system synchronization.

IS was the first for which examples of unidir-
ectionally coupled chaotic systems were presented. It
is important for potential applications of chaos
synchronization in communication systems, or for
time-series analysis, where the information flow is
also unidirectional.

Bidirectional IS

A second brief example uses a bidirectional (also
called mutual or two-way) coupling. In this situa-
tion, in contrast to the unidirectional coupling, both
drive and response systems are connected in such a
way that they influence each other’s behavior. Many
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Figure 2 Complete replacement synchronization. Time series for (a) yi (t) and (b) zi (t), i = 1, 2, in system [10]. The difference

between the variable of the transmitter and the variable of the receiver asymptotes tends to zero as time progresses, that is,

synchronization occurs after transients die down. (c) The plot of amplitudes y1 against y2, after transients die down, shows a diagonal

line, which also indicates that the receiver and the transmitter are maintaining synchronization. The plot of z1 against z2 shows a

similar behavior.
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biological or physical systems consist of bidirection-
ally interacting elements or components; examples
range from cardiac and respiratory systems to
coupled lasers with feedback. Let us then take two
copies of the same system [9] as given above, but
two-way coupled through a linear constant term k >
0 according to variables x1, 2:

_x1 ¼ �9x1 � 9y1 � kðx1 � x2Þ
_y1 ¼ �17x1 � y1 � x1z1

_z1 ¼ �z1 þ x1y1

_x2 ¼ �9x2 � 9y2 � kðx2 � x1Þ
_y2 ¼ �17x2 � y2 � x2z2

_z2 ¼ �z2 þ x2y2

½14�

We can get an idea of the onset of synchronization
by plotting, for example, x1 against x2 for various
values of the coupling-strength parameter k. Our
numerical computations yield the optimal value k̃
for the synchronization: k̃ ’ 2.50 (Figure 4), both
(xi, yi, zi) subsystems synchronize and system [14]
also generates the attractor of Figure 1.

Synchronization manifold and stability Geometri-
Geometrically, the fact that systems [13] and [14],
beyond synchronization, generate the same attractor

as system [9], implies that the attractors of these
combined drive–response six-dimensional systems
are confined to a three-dimensional hyperplane (the
synchronization manifold) defined by Y = X. After
the synchronization is reached, this manifold is a
stable submanifold in the full phase space R6.
Figure 5 gives an idea of what the geometry of the
synchronous attractor of system [13] or [14] looks
like, by exhibiting the projection of the phase space
R6 onto (x1, y1, y2) subspace. But, one can simi-
larly plot any combination of variable xi, yi, and
zi (i = 1, 2), and get the same result, since the
motion, in case of synchronization, is confined to
the hyperplane defined in R6 by the equalities
x1 = x2, y1 = y2, and z1 = z2.

This hyperplane is stable since small perturbations
which take the trajectory off the synchronization
manifold decay in time. Indeed, as stated earlier,
CLEs of the linearization of the system around the
synchronous state could determine the stability of
the synchronized solution. This leads to requiring
that the origin of the transverse system, X?, is
asymptotically stable. To see this, for both systems
[13] and [14], we then switch to the new set of
coordinates, X?= Y �X, that is, x?= x2 � x1,
y?= y2 � y1, and z?= z2 � z1. The origin (0, 0, 0)
is obviously a fixed point for this transverse system,
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Figure 3 Time series for xi (t), yi (t), and zi (t)(i = 1, 2) in system [13] for the coupling constant k = 5:0, that is, beyond the threshold

necessary for synchronization. After transients die down, the two subsystems synchronize perfectly.
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within the synchronization manifold. Therefore, for
small deviations from the synchronization manifold,
this system reduces to a typical variational equation:

dX?
dt
¼ DFðXÞX? ½15�

where DF(X) is the Jacobian of the vector field
evaluated onto the driving trajectory X, that is,

dx?
dt

dy?
dt

dz?
dt

0BBBBBBB@

1CCCCCCCA
¼ V

x?

y?

z?

0BBBBBBB@

1CCCCCCCA
½16�

For systems [13] and [14], we obtain

V ¼ Vi ¼
�9� ki �9 0
�17� z �1 �x

y x �1

0@ 1A ½17�

with ki = k for system [13] and ki = 2k for system
[14]. Let us remark that the only difference between
both matrices Vi is the coupling k which has a factor

–10

–5

0

 5

10

–10 –5 0 5 10

(a)

–10

–5

 0

5

 10

–10 –5 0  5 10

(b)

–10

–5

0

5

10

–10 –5 0 5 10

(c)

0

5

10

15

20

25

30

35

40

1200 1220 1240 1260 1280 1300

(d)

Figure 4 Illustration of the onset of synchronization of system [14]. (a)–(c) Plots of amplitudes x1 against x2 for values of the coupling

parameter k = 0:5, 1:5, 2:8, respectively. The system synchronizes for k � 2:5. (d) Plot, for k = 2:8, of the norm N(X ) = kx1 � x2k þ
ky1 � y2k þ kz1 � z2k versus t, which shows that the system synchronizes very quickly.

y 1 
= 

y 2

y2

x1

y1

Transverse

direction

–12

12

15

–15

0

0
0

15

–15

H
yp

er
pl

an
e :

sy
nc

hr
on

iz
at

io
n 

m
an

ifo
ld

Figure 5 The motion of synchronized system [13] or [14] takes

place on a chaotic attractor which is embedded in the

synchronization manifold, that is, the hyperplane defined by

x1 = x2, y1 = y2, and z1 = z2:

220 Synchronization of Chaos



2 in the bidirectional case. Figure 6 shows the
dependence of L?max on k, for both examples of
unidirectionally and bidirectionally coupling sys-
tems. L?max becomes negative as k increases, which
insures the stability of the synchronized state for
systems [13] and [14].

Let us note that this can also be proved
analytically as done by Derivière and Aziz-Alaoui
(2003) by using a suitable Lyapunov function, and
using some new extended version of LaSalle invar-
iance principle.

Desynchronization motion Synchronization depends
not only on the coupling strength, but also on the
vector field and the coupling function. For some
choice of these quantities, synchronization may
occur only within a finite range [k1, k2] of coupling
strength; in such a case a desynchronization phe-
nomenon occurs. Thus, increasing k beyond the
critical value k2 yields loss of the synchronized
motion (L?max becomes positive).

Generalized Synchronization

Identical chaotic systems synchronize by following the
same chaotic trajectory. However, real systems are in
general not identical. For instance, when the para-
meters of two coupled identical systems do not match,
or when these coupled systems belong to different
classes, complete IS may not be expected, because
there does not exist such an invariant manifold Y = X,
as for IS. For non-identical systems, the possibility of
some type of synchronization has been investigated
(Afraimovich et al. 1986). It was shown that when two
different systems are coupled with sufficiently strong
coupling strength, a general synchronous relation
between their states could exist and it could be

expressed by a smooth invertible function,
Y(t) = (X(t)). This phenomenon, called GS, is thus a
relaxed and extended form of IS in non-identical
systems.

However, it may also occur for pairs of identical
systems, for example, for systems having reflection
symmetry, F(�X) = �F(X). Besides these examples
of GS, others also exist that exploit symmetries of
the underlying systems (Parlitz and Kocarev 1999).

GS was introduced for unidirectionally coupled
systems by Rulkov et al. (1995). For simplicity, we
also focus on unidirectionally coupled continuous
time systems:

dX

dt
¼ FðXÞ

dY

dt
¼ GðY; uðtÞÞ

½18�

where X 2 Rn, Y 2 Rm, F : Rn�!Rn, G : Rm �
Rk�!Rm, and u(t) = (u1(t), . . . , uk(t)) with
ui(t) = hi(X(t, Xo)). Two (non-identical) dynamical
systems are said to be synchronized in a generalized
sense if there is a continuous function  from the
phase space of the first to the phase space of the
second, taking orbits of the first system to orbits of
the second.

The main problem is to know when and under
what conditions system [18] undergoes GS. Many
authors have addressed this question, and it has been
shown that asymptotic stability is equally significant
for this more universal concept (for some theoretical
results, see Rulkov et al. (1995) and Parlitz and
Kocarev (1999)). For unidirectionally coupled con-
tinuous time systems, the following results hold:

Theorem A necessary and sufficient condition for
system [18] to be synchronized in the generalized
sense is that for each u(t) = u(X(t, Xo)) the system-
is asymptotically stable.

When it is not possible to find a Lyapunov function
in order to use this theorem, one can numerically
compute the CLEs of the response system, and use the
following result:

Theorem The drive and response subsystems of
system [18] synchronize in the generalized sense iff
all of the CLEs of the response subsystem are
negative.

The definition of  has the advantage that it allows
the discussion of synchronization of non-identical
systems and, at the same time, to consider synchroni-
zation in terms of the property of synchronization
manifold. Therefore, it is important to study the
existence of the transformation  and its nature
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Figure 6 The largest transverse Lyapunov exponents L?max as

a function of coupling strength k, in the unidirectional system [13]

(solid) and the bidirectional system [14] (dotted).
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(continuity, smoothness, . . .). Unfortunately, except in
special cases (Afraimovich et al. 1986), rarely will one
be able to produce formulas exhibiting the mapping  .

An example of two unidirectionally coupled
chaotic systems which synchronize in the generalized
sense is given below. Consider the following Rössler
system driven by system [9]:

_x1 ¼ �9x1 � 9y1

_y1 ¼ �17x1 � y1 � x1z1

_z1 ¼ �z1 þ x1y1

_x2 ¼ �y2 � z2 � kðx2 � ðx 2
1 þ y2

1 ÞÞ

_y2 ¼ x2 þ 0:2y2 � kðy2 � ðy2
1 þ z 2

1 ÞÞ

_z2 ¼ 0:2þ z2ðx2 � 9:0Þ � kðz2 � ðx 2
1 þ z 2

1 ÞÞ

½19�

As shown in Figure 7, it appears impossible to tell
what the relation is between the transmitter sub-
system (x1, y1, z1) in eqn [19] and the two Rössler
response subsystems (x2, y2, z2) at k = 1 and k = 100.

However, GS occurs for large values of the
coupling-strength parameter k. Therefore, for such
values we expect that orbits of [19] will lie in the
vicinity of a certain synchronization manifold.
Indeed, let us define the set

S ¼fðx1; y1; z1; x2; y2; z2Þ 2 R6 : x2 ¼ x2
1 þ y2

1 ;

y2 ¼ y2
1 þ z 2

1 ; z2 ¼ x2
1 þ z2

1g

Since the projections of S onto the coordinates
(x1, y1, x2), (y1, z1, y2), and (x1, z1, z2) are parabo-
loids, we can see how the synchronization manifold
is approached. This is illustrated in Figure 8, where
the (x1, y1, x2) projections of typical trajectories are
shown at four different coupling values. (See Josic
(2000) for other examples and further develop-
ments; see also Pecora et al. (1997), where the
authors summarize a method in order to get an idea

on the functional relation occurring in case of GS,
between two coupled systems.)

Phase Synchronization

For coupled non-identical chaotic systems, other
types of synchronizations exist. Recently, a rather
weak degree of synchronization, the PS, of chaotic
systems has been described (Pikovsky et al. 2001).
The Greek meaning of the word synchronization,
mentioned in the introduction, is closely related to
this type of processes. The synchronous motion is
actually not visible. Indeed, in PS the phases of
chaotic systems with PS are locked, that is, there
exists a certain relation between them, whereas the
amplitudes vary chaotically and are practically
uncorrelated. Thus, it is mostly close to synchroni-
zation of periodic oscillators.

Definition PS of two coupled chaotic oscillators
occurs if, for arbitrary integers n and m, the phase
locking condition between the corresponding
phases, jn�1(t)�m�2(t)j � constant, holds and the
amplitudes of both systems remain uncorrelated.

Let us note that such a phenomenon occurs when
a zero Lyapunov exponent of the response system
becomes negative, while, as explained above, iden-
tical chaotic systems synchronize by following the
same chaotic trajectory, when their largest trans-
verse Lyapunov exponent of the synchronized
manifold decreases from positive to negative values.

Moreover, following the definition above, this
phenomenon is best observed when a well-defined
phase variable can be identified in both coupled
systems. This can be done for strange attractors that
spiral around a ‘‘hole,’’ or a particular (fixed) point
in a two-dimensional projection of the attractor. The
typical example is given by the Rössler system, which,
for some range of parameters, exhibits a Möbius-
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strip-like chaotic attractor with a central hole. In such
a case, a phase angle �(t) can be defined that decreases
or increases monotonically. For an illustration, we
take the following two coupled Rössler oscillators:

_x1 ¼ ��1y1 � z1 þ kðx2 � x1Þ
_y1 ¼ �1x1 þ 0:17y1

_z1 ¼ 0:2þ z1ðx1 � 9:0Þ

_x2 ¼ ��2y2 � z2 þ kðx1 � x2Þ
_y2 ¼ �2x2 þ 0:17y2

_z2 ¼ 0:2þ z2ðx2 � 9:0Þ

½20�

with a small parameter mismatch �1, 2 =
0.95	 0.04,k governs the strength of coupling.
If we can define a Poincaré section surface for
the system, then, for each piece of a trajectory
between two cross sections with this surface, we
define the phase, as done in Pikovsky et al. (2001),
as a piecewise linear function of time, so that the
phase increment is 2� at each rotation:

�ðtÞ ¼ 2�
t � tn

tnþ1 � tn
þ 2�n; tn � t � tnþ1

where tn is the time of the nth crossing of the secant
surface.

In our example, the last has been chosen as the
negative x-axis and represented by the wide segment
in Figure 9a. This definition of phases is clearly
ambiguous since it depends on the choice of the
Poincaré section; nevertheless, defined in this way,

the phase has a physically important property, it
does correspond to the direction with the zero
Lyapunov exponent in the phase space, its perturba-
tions neither grow nor decay in time. Figure 9c
shows that there is a transition from the nonsyn-
chronous phase regime, where the phase difference
increases almost linearly with time (k = 0.01 and
k = 0.05), to a synchronous state, where the relation
j�1(t)� �2(t)j < constant holds (k = 0.1), that is,
the phase difference does not grow with time.
However, the amplitudes are obviously uncorrelated
as seen in Figure 9b. This example shows that
PS could takes place for weaker degree of synchro-
nization in chaotic systems. Readers can find more
rigorous mathematical discussion on this subject,
and on the definition of phases of chaotic oscillators,
in Pikovsky et al. (2001), see also Boccaletti et al.
(2002) and references therein.

Other Treatments and Types
of Synchronization

Lag Synchronization

PS synchronization occurs when non-identical chao-
tic oscillators are weakly coupled: the phases are
locked, while the amplitudes remain uncorrelated.
When the coupling strength becomes larger, some
relationships between amplitudes may be estab-
lished. Indeed, it has been shown (Rosenblum et al.
1997), in symmetrically coupled non-identical oscil-
lators and in time-delayed systems, that there exists

(a) (b)

(c) (d)

Figure 8 Generalized synchronization. (x1, y1, x2) projections of typical trajectories of system [19] after transients die out, with

(a) k = 1, (b) k = 20, (c) k = 100, and (d) k = 200. For the last value, the attractor lies in the set S, three-dimensional projections of

which are paraboloı̈ds.
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a regime of LS. This process appears as a coin-
cidence of time-shifted states of two systems:

lim
t!þ1

jjYðtÞ �Xðt � �Þjj ¼ 0

where � is a positive delay.

Projective Synchronization

In coupled partially linear systems, it was reported
by Mainieri and Rehacek (1999) that two identical
systems could be synchronized up to a scaling factor.
This type of chaotic synchronization is referred to as
projective synchronization. Consider, for example, a
three-dimensional chaotic system Ẋ = F(X), where
X = (x, y, z). Decompose X into a vector v = (x, y)
and a scalar z; the system can then be rewritten as

du

dt
¼ gðv; zÞ; dz

dt
¼ hðv; zÞ

In projective synchronization, two identical sys-
tems X1 = (x1, y1, z1) (drive) and X2 = (x2, y2, z2)
(response) are coupled through the scalar variable z.
It occurs if the state vectors v1 and v2 synchronize up
to a constant ratio, that is, limt!þ1 jj�v1(t)�
v2(t)jj= 0, where � is called a scaling factor. For
partially linear systems, it may automatically occur

provided that the systems satisfy some stability
conditions.

However, this process could not be classified as
GS, even if there exists a linear relation between the
coupled systems, because the response system of
projective synchronization is not asymptotically
stable. For more information about this subject,
the reader is referred to Mainieri and Rehacek
(1999).

Anticipating Synchronization

It is interesting to mention that a new form of
synchronization has recently appeared, the so-called
anticipating synchronization (Boccaletti et al. 2002).
It shows that some coupled chaotic systems might
synchronize such that their response anticipates the
drivers by synchronizing with their future states.

It is also interesting to mention the nonlinear H1
synchronization method for nonautonomous
schemes introduced by Suykens et al. (1997).

Spatio-Temporal Synchronization

Low-dimensional systems have rather limited useful-
ness in modeling real-world applications. This is
why the synchronization of chaos has been carried
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Figure 9 (a) Rössler chaotic attractor projection onto x–y plane. (b) Amplitudes A1 versus A2 for the phase synchronized case at

k = 0:1. (c) Time serie of phase difference for different coupling strengths k; for k = 0:01 PS is not achieved, while for k = 0:1 PS takes

place. Although the phases are locked, for k = 0:1, the amplitudes remain chaotic and uncorrelated.
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out in high dimensions (see Kocarev et al. (1997) for
a review). See also Chen and Dong (2001) for a
discussion of special high-dimensional systems,
namely large arrays of coupled chaotic systems.

Application to Transmission Systems
and Secure Communication

Synchronization principles are useful in practical
applications. Use of chaotic signals to transmit
information has been a very active research topic
in the last decade. Thus, it has been established that
chaotic circuits may be used to transmit information
by synchronization. As a result, several proposals
for secure-communication schemes have been
advanced (see, e.g., Cuomo et al. (1993), Hasler
(1998), and Parlitz et al. (1999)). The first labora-
tory demonstration of a secure-communication
system, which uses a chaotic signal for masking
purposes, and which exploits the chaotic synchroni-
zation techniques to recover the signal, was reported
by Kocarev et al. (1992).

It is difficult, within the scope of this article, to
give a complete or detailed discussion, and it should
be noted that there exist many competing and tested
methods that are well established.

The main idea of the communication schemes is
to encode a message by means of a chaotic
dynamical system (the transmitter), and to decode
it using a second dynamical system (the receiver)
that synchronizes with the first. In general, secure-
communication applications assume additionally
that the coupled systems used are identical.

Different methods can be used to hide the useful
information, for example, chaotic masking, chaotic
switching, or direct chaotic modulation (Hasler
1998). For instance, in the chaotic masking method,
an analog information carrying the signal s(t) is
added to the output y(t) of the chaotic system in the
transmitter. The receiver tries to synchronize with
component y(t) of the transmitted signal s(t)þ y(t).
If synchronization takes place, the information
signal can be retrieved by subtraction (Figure 10).

It is interesting to note that, in all proposed
schemes for secure communications using the idea of
synchronization (experimental realization or com-
puter simulation), there is an inevitable noise
degrading the fidelity of the original message.

Robustness to parameter mismatch was addressed
by many authors (Illing et al. 2002). Lozi et al.
(1993) showed that, by connecting two identical
receivers in cascade, a significant amount of the
noise can be reduced, thereby allowing the recovery
of a much higher quality signal.

Furthermore, different implementations of chaotic
secure communication have been proposed during
the last decades, as well as methods for cracking this
encoding. The methods used to crack such a chaotic
encoding make use of the low dimensionality of the
chaotic attractors. Indeed, since the properties of
low-dimensional chaotic systems with one positive
Lyapunov exponent can be reconstructed by analyz-
ing the signal, such as through the delay-time
reconstruction methods, it seems unlikely that these
systems might provide a secure encryption method.
The hidden message can often be retrieved easily by
an eavesdropper without using the receiver. But,
chaotic masking and encoding are difficult to break,
using the state-of-the-art analysis tools, if suffi-
ciently high dimensional chaos generators with
multiple positive Lyapunov exponents (i.e., hyperch-
aotic systems) are used (see Pecora et al. (1997), and
references therein).

Conclusion

In spite of the essential progress in theoretical and
experimental studies, synchronization of chaotic
systems continues to be a topic of active investiga-
tions and will certainly continue to have a broad
impact in the future. Theory of synchronization
remains a challenging problem of nonlinear
science.

See also: Bifurcations of Periodic Orbits; Chaos and
Attractors; Fractal Dimensions in Dynamics; Generic
Properties of Dynamical Systems; Isochronous Systems;
Lyapunov Exponents and Strange Attractors; Singularity
and Bifurcation Theory; Stability Theory and KAM;
Weakly Coupled Oscillators.
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