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A system of nonautonomous differential equations having Chua’s piecewise-linearity is studied.
A brief discussion about equilibrium points and their stability is given. It is also extended to
obtain a system showing “multispiral” strange attractors, and some of the fundamental routes to
“multispiral chaos” and bifurcation phenomena are demonstrated with various examples. The
same work is done for other systems of autonomous or nonautonomous differential equations.
This is achieved by modifying Chua’s piecewise-linearity in order to have additional segments.
The evolution of the dynamics and a mechanism for the development of multispiral strange
attractors are discussed.

1. Introduction

Many papers have described chaotic systems, one
of the most famous being a third-order differen-
tial system which models the original Chua cir-
cuit [Chua, 1990, 1992, 1993; Madan, 1993]. It
contains four linear elements and a nonlinear one
(Chua’s diode). This nonlinear element is charac-
terized by a piecewise-linear function, characteristic
of Chua’s resistor whose functional representation is
expressed by Eq. (1) below and shown in Fig. 1(a).

In this paper (see also [Aziz-Alaoui, 1997,
1998]), we essentially deal with a nonautonomous
dynamical system given by Lacy [1996]. Some other
examples of dynamical systems are also studied,
each one having Chua’s piecewise-linearity (PWL)
which is given by:

g(vC) = GAvC +
1

2
(GB −GA)[|vC +Bp|

−|vC −Bp|] . (1)

The other examples studied are, namely: the Chua
system, the Brockett system [Brockett, 1982], the

Fig. 1. (a) v–i characteristic of the nonlinear resistor NR.
The slopes of the inner and outer regions are GB and GA,
respectively, while BP indicates the breakpoints. (b) The
fN -characteristic of the nonlinear resistor in the multispiral
case. (sk)k∈IN−2 indicate the breakpoints, while (mk)k∈IN−1

indicate the slopes of the segments.
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nonautonomous system given by Reich [1961], and
studied by Kapitaniak [1997], and finally the modi-
fied van der Pol system [Parker & Chua, 1983; Itoh
& Murakami, 1994].

The corresponding dimensionless form of
Eq. (1) is given by [Chua, 1992, 1993]:

f2(x) = m1x+
1

2
(m0 −m1)[|x+ 1| − |x− 1|] . (2)

Next, we extend these systems to obtain ones which
exhibit various strange attractors with more than
two spirals (multispiral attractors). This is achieved
by changing the nonlinear resistive element to have
one with a modified piecewise-linear characterisitic
containing additional segments [see Fig. 1(b)].

Let us remark that multispiral attractors with
an even number of spirals (n-double scroll attrac-
tors), in Chua’s generalized circuit, were first pro-
posed in [Suykens & Vandewalle, 1993]. A more
complete family of n-scroll attractors which con-
tains both an even and odd number of spirals was
presented in [Suykens et al., 1997] and [Aziz-Alaoui,
1997]. An experimental confirmation of n-double
scroll attractors has been presented in [Arena et al.,
1996a, 1996b]. Furthermore, using weak linear cou-
pling between chaotic cells, hyperchaos is obtained
in a CNN array; this was demonstrated in [Suykens
& Chua, 1997] with the n-double scroll hypercube
CNN, using n-double scrolls as cells.

To extend the three-segment systems of dif-
ferential equations to the multispiral case, let us
first give the equation for the piecewise-linear func-
tion fN (.) [see Fig. 1(b)]. This “extended” charac-
teristic nonlinear element has additional segments
compared to f2(.), allowing for multispiral strange
attractors. It is given by

fN (x)

=


mkx+ sgn(x)ξk if sk−1 ≤ |x| ≤ sk,

k ∈ IN−2

mN−1x+ sgn(x)ξN−1 if |x| ≥ sN−2 ,

(3)

where N ∈ N, N ≥ 2, and

• IN = {0, . . . , N}, I∗N = {1, . . . , N};
• (mk)k∈IN−1

and (ξk)k∈IN−1
are two finite and real

sequences;
• (sk)k∈IN−2

, is a finite and positive real sequence
that is strictly increasing. Furthermore, we will
set

s−1 = 0 and sN = +∞ . (4)

The parameters (mk), k ∈ IN−1, are the slopes
of fN in each of the linear segments [−s0, s0],
([sk−1, sk])k∈I∗

N−1
respectively. Throughout the

paper we will assume that

ξ0 = 0 and s0 = 1 . (5)

Proposition 1. The function fN is continuous if
the parameters (ξk)k∈IN−1

satisfy:

∀ξ0 ∈ R, ∀k ∈ I∗N−2 ,

ξk+1 = (mk −mk+1)sk + ξk .
(6)

As a result,

∀ξ0 ∈ R, ∀k ∈ I∗N−1 ,

ξk = ξ0 +
k∑
j=1

(mj−1 −mj)sj−1 .
(7)

Proof. Obviously, it is sufficient to verify the con-
tinuity on the breakpoints x = sk. Let x > 0 (other-
wise, if x < 0, one can give exactly the same proof).

If x ∈ [sk−1, sk], fN(x) = mkx + ξk, and if
x ∈ [sk, sk+1], fN(x) = mk+1x + ξk+1. Conse-
quently to obtain the continuity of fN on sk we
only have to verify that

∀ k ∈ IN−2, mksk + ξk = mk+1sk + ξk+1 .

This last relationship is obviously satisfied if (6) is
valid.

On the other hand, formula (7) follows directly
by inductive proof from (6). �

In the following sections we will give the dy-
namical multispiral systems, i.e. the systems which
allow for the emergence of chaotic attractors with
N spirals (N ≥ 2). In addition to some specific pa-
rameters, all these systems will also depend on the
parameters of the set

BN = {(sk)k∈IN−2
, (mk)k∈IN−1

} ⊂ R2N−1 . (8)

However, in order to reduce the number of param-
eters needed to obtain multispiral attractors, the
parameters (mk)k∈IN−1

are chosen to satisfy:

m2j = m0 and m2j+1 = m1, j = 1, 2, 3 . . . ,

(9)
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and we will determine the parameters (sk)k∈I∗N−2

such that the following relationship is satisfied:

B2j−2 ⊂ B2j and B2j−1 ⊂ B2j+1 ,

j = 2, 3, 4 . . . . (10)

We will see that a large number of equilibrium
states may exist in such systems (when N in-
creases), and this allows for the emergence of differ-
ent types of strange attractors, especially multispi-
ral ones. We will also study the transition to chaotic
behavior via sequences of period-doubling bifurca-
tions of limit cycles, providing the power spectrum
corresponding to the x-component in some cases.

2. A Nonautonomous Chaotic
System

2.1. Introduction and circuit
description

Of all the work done on chaotic systems, the most
well-known one is a third-order differential system
which models the original Chua circuit. Less work
has been done on nonautonomous chaotic systems
(see e.g. [Ueda & Akamatsu, 1981; Testa et al.,
1982; Murali et al., 1994]). Most of these stud-
ies concern second-order systems that incorporate
a nonlinear element.

In this section we deal with a simpler circuit
than those described in as much as the nonlin-
ear element which is replaced by Chua’s piecewise-
linearity [Eq. (2)] so that its circuit implementa-
tion is amenable to accurate modeling. In [Lacy,
1996] the chaotic behavior of this system was exper-
imentally shown and confirmed by other methods.
We give here a dimensionless system of differential
equations modeling this circuit, and extend it to
obtain a nonautonomous system which shows vari-
ous strange attractors with more than two spirals.
This is achieved by replacing the nonlinear element
with one characterized by the function fN given in
Eq. (3), and shown in Fig. 1(b).

The circuit consists of a linear inductor L, a
linear resistor R, a linear capacitor C, a periodic
voltage source [Vs sin(ωt)], and Chua’s nonlinear
resistor NR (see Fig. 2).

The equations of the circuit when operating in
any of its linear segments are

C
dvC
dτ

= iL − g(vC)

L
diL
dτ

= −RiL − iC + VS sin(ωτ) ,

(11)

Fig. 2. Electrical schematic diagram of the multispiral
nonautonomous circuit.

where g(.) is the piecewise-linear function defined
by Eq. (1).

We can transform the state equation (11) into
a dimensionless form by rescaling the parameters of
the system:

x =
vC
Bp

, y =
iLR

Bp
, t =

τ

RC
,

m0 = GBBp, m1 = GABp, Ω =
ω

2πRC
,

α =
CR2

L
, K =

VS
Bp

.

The corresponding dimensionless state equations
are then given by

dx

dt
= y − f2(x)

dy

dt
= −α(x+ y) + αK sin(2πΩt) ,

(12)

where x and y are functions of t, and f2 is given by
Eq. (2).

2.1.1. Mathematical study of the
multispiral nonautonomous system

Let us now define the dynamical multispiral nonau-
tonomous system, that is the system which allows
for the emergence of chaotic attractors with N
spirals:

dx

dt
= y − fN (x)

dy

dt
= −α(x+ y) + αK sin(2πΩt) ,

(13)

where fN is given by Eq. (3).
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This system depends on the parameters of the
set

BLN = {α, K, Ω, } ∪ BN ⊂ R2N+2 , (14)

where BN is given by Eq. (8). We also assume that
Eqs. (4) and (5) are satisfied.

Remark. We can recover the first system (12) by
taking N = 2, ξ0 = 0 and s0 = 1 (with two spirals
at most).

Let D0 and D±k (k ∈ I∗N−1) denote the regions
of the x–y plane delimited by the lines U±k =
{(x, y), x = ±sk}, k ∈ IN−2, and let us define
X := (x, y)T . Then system (13) is equivalent to:

dX

dt
= MX + F (t, X) , (15)

where for each region D0 or D±k , k ∈ I∗N−1, we have

M=Mk=

[−mk 1
−α −α

]
(16)

and F (t, X)=Fk(t, X)=

( −sgn(x)ξk

αK sin(2πΩt)

)
.

Equilibrium points and eigenspaces. Here, we
determine the equilibrium points and the
eigenspaces corresponding to the homogeneous sys-
tem derived from (13), i.e. Ẋ = MkX. In each
of the 2N − 1 regions D0 and D±k , k ∈ I∗N−1, the
system is linear and there exists an equilibrium
point P0 or P±k , respectively, with P−k = −P+

k
due to the symmetry of the vector field [invariance
under the transformation (x, y)→ (−x, −y)]. The
equilibrium points are given by
P0 = (0, 0)T

P±k = ∓
(
− ξk

1 +mk
,

ξk
1 +mk

)T
, k ∈ I∗N−1 .

(17)

Let us now investigate the stability of the equi-
librium points, i.e. the nature of the eigenspaces

present in the neighborhood of each P±k . As this
system is linear in each region D±k , the eigenval-
ues are constant, so that the associated Jacobian
matrix Mk is constant and no local approximation
is necessary to determine it. This is the essential
advantage we obtain from piecewise-linear systems,
which nevertheless may exhibit a very complex and
rich dynamical behavior.

The characteristic polynomial of the Jacobian
matrix Mk is Qk = |λkI − Mk| = λ2

k + λk(α +
mk) + α(mk + 1), and the eigenvalues are λ±k =
1/2((α+mk)2±

√
∆k) where ∆k = (α−mk)

2−4α.
Based on the value of ∆k there are two different

cases to consider

(i) ∆k ≥ 0: There are two real eigenvalues, so the
equilibrium point is a node if λ+

k λ
−
k > 0 (stable

if λ+
k < 0, unstable if λ+

k > 0), or a saddle point

if λ+
k λ
−
k < 0.

(ii) ∆k < 0: There are two complex conjugate
eigenvalues: λ±k = rk ± jqk. If rk > 0 we have
an unstable focus. If rk < 0, then we have a
stable focus. If rk = 0, then we have a center.

The eigenvectors V ±k corresponding to the eigenval-

ues λ±k are determined from the relation MkV
±
k =

λ+
k V
±
k , for which the solution is V ±k = (1, mk+

λ±k )T . Consequently, in each region D0 and D±k ,

k ∈ I∗N−1, the solution of the system Ẋ = MkX is

φk(t) = c1(1, mk + λ+
k )T eλ

+
k
tV +

k

+ c2(1, mk + λ−k )T eλ
−
k
tV −k , (18)

where c1 and c2 are real constants.
The solution of the nonautonomous system

Ẋ = MkX + Fk(t, x) is then

ψk(t) = e(t−t0)MkX(t0) + etMk

∫ t

t0

e−sMkFk(s, x)ds ,

(19)

where (setting Λ−k = mk + λ−k and Λ+
k = mk + λ+

k )

the matrix etMk is given by

etMk =
1

λ−k − λ
+
k

[
Λ−k e

tλ+
k − Λ+

k e
tλ−
k etλ

−
k − etλ+

k

Λ+
k Λ−k (etλ

+
k − etλ−k ) Λ−k e

tλ−
k − Λ+

k e
tλ+
k

]
(20)

and ∫ t

t0

e−sMkFk(s, x)ds = Hk(t)−Hk(t0) , (21)
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where

Hk(s) =

e−sλ+
kW+

1,k − e−sλ
−
kW−1,k

e−sλ
+
kW+

2,k − e−sλ
−
kW−2,k

 , (22)

and 

W±1,k = sgn(x)ξk
Λ∓k
λ±k

+
αK

λ±k

1 +

(
2πΩ

λ±k

)2

[

sin(2πΩs) +
2πΩ

λ±k
cos(2πΩs)

]

W±2,k = sgn(x)ξk
Λ+
k Λ−k
λ±k

+
αKΛ±k

λ±k

1 +

(
2πΩ

λ±k

)2

[

sin(2πΩs) +
2πΩ

λ±k
cos(2πΩs)

]
.

(23)

With these relations, one can easily study numerical
examples of the eigenvalue and eigenspace patterns.

2.2. Numerical results

All the phase portrait figures presented in this sec-
tion are done in the x–y plane. They have been
obtained by integrating the systems of differen-
tial equations (12) or (13) using the most common
fourth-order Runge–Kutta’s method. In order to
obtain reliable numerical results, the step size has
been chosen to be equal to 10−4 (or 10−5), and
the first 107 (or 108) steps are discarded to avoid
the transient regime. We have employed the same
parameters for system (12), namely,

m0 = −1.45, m1 = 0.66,

α = 0.81, Ω = 0.22 ,
(24)

and have used the initial condition

X0 = (−0.1, 0.01, 0.01) . (25)

The parameter K was taken as the bifurcation pa-
rameter, with values in the interval [0, 10]. Further-
more, the parameters mk, k ∈ IN−1 are chosen to
satisfy Eq. (9), and we will determine the parame-
ters (sk)k∈I∗N−2

such that the relationship given by

Eq. (10) is satisfied.
Formulae (9) and (10) allow us to reduce

the number of parameters to determine multispi-
ral attractors. Clearly with the set of parameters
BL2 = {α, K, Ω, m0, m1, s0} determined [they cor-
respond to system (12) and allow for two-spiral
attractors], the new set of parameters allowing
four-spiral attractors will be BL4 = BL2 ∪ {s1, s2},

where we only have to look for two new parame-
ters s1 and s2, then the new set allowing six-spiral
attractors will be BL6 = BL4 ∪ {s3, s4} and so on.

Figure 3 presents a one-spiral attractor similar
to the Rössler–Chua variety.

Figures 4–6 present, respectively, two-, four-
and six-spiral strange attractors and the corre-
sponding power spectra, for the sets of parameters
BL2 , BL4 and BL6 given, respectively, by

N = 2 : BL2 = {α = 0.81, K = 1.19, Ω = 0.22,
m0 = −1.45, m1 = 0.66}

N = 4 : BL4 = BL2 ∪ {s1 = 1.45, s2 = 2.49}
N = 6 : BL6 = BL4 ∪ {s3 = 2.94, s4 = 4.1} .

(26)

The aperiodicity of these attractors can be seen
from the calculation of the power spectrum of the
time series (here we have chosen the x-component).
The power spectrum was calculated for a very long
time series using the Cooley–Tukey algorithm [Coo-
ley & Tukey, 1965]. From these figures it seems
obvious that the attractor is aperiodic; the spec-
trum is broadband and contains a dominant dis-
crete peak at a low frequency that is due to the
presence of unstable limit cycles (and apparently
homoclinic or heteroclinic orbits). We observe that
the chaotic attractors evolve around 2N − 1 steady
states. The orbit around the N steady states re-
veals that the latter might be saddle-foci, whereas
the remaining N − 1 might be saddle points. These
steady states seem to be connected by unstable or-
bits which are dislocated under the effect of parame-
ter changes. The dominant peak found on the right
side of Figs. 4(b), 5(b) and 6(b) corresponds to the
fundamental frequency of the sinusöıdal excitation.
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(a) (b)

Fig. 3. (a) Phase portrait in the x–y plane of a one-spiral strange attractor for Eq. (12), N = 2, for the set of parameters
BL2 given by (26) with K = 1.135. (b) The time-waveform of the x-component for the same parameters.

(a) (b)

(c)

Fig. 4. (a) Phase portrait in the x–y plane of a strange attractor for Eq. (12), N = 2, for the set of parameters BL2 given by
(26). (b) The corresponding PWL characteristic. (c) The corresponding power spectra of x(t).
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(a) (b)

(c)

Fig. 5. (a) Phase portrait in the x–y plane of a strange attractor for Eq. (13), N = 4, for the set of parameters BL4 given by
(26). (b) The corresponding PWL characteristic. (c) The corresponding power spectra of x(t).

Figures (7-1)–(7-24) present various phase por-
traits, illustrating the period-doubling Feigenbaum
scenario of the transition chaos or “period-halving”,
where the parameter K belongs to [0, 10]. The fig-
ures present an intensive numerical investigation of
the behavior of system (13) when N equals 4 and
the other parameters are fixed as in (26) (i.e. the
set of parameters BL4 ). These investigations are
done simultaneously for the initial condition X0

given by (25) and the associated odd-symmetric
initial condition −X0. As K increases from 0 to
∞, there is a very complicated sequence of bifur-
cations and attractors. In particular, there is a
“period-halving” of stable limit cycles as K in-

creases whereby chaos ceases; this is the inverse
process of period-doubling.

For K = 0 this system is autonomous and
has an odd symmetry property, because the equa-
tions are then invariant under the transformation
(x, y)→ (−x, −y). In that case [Fig. (7-1)], we ob-
tain a stable focus and its symmetric counterpart
with respect to (0, 0)T , with formula (18) giving
the precise solution. For K > 0, formula (19)–(23)
give the precise solution in each region D0 and D±k ,
(k ∈ I∗N−1).

For K ∈]0, 7.42], stable limit cycles with var-
ious periods emerge almost simultaneously for X0

and −X0, [Figs. (7-2)–(7-4)]. Upon passing through
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(a) (b)

(c)

Fig. 6. (a) Phase portrait in the x–y plane of a strange attractor for Eq. (13), N = 6, for the set of parameters BL6 given by
(26). (b) The corresponding PWL characteristic. (c) The corresponding power spectra of x(t).

the boundary K = 0.743 as K increases, sequences
of period-doubling bifurcations of various limit cy-
cles give rise to two coexisting chaotic attractors,
mostly unsymmetric, showing one spiral first then
two spirals, with one corresponding to X0 the other
to −X0 [Figs. (7-5) and (7-6)].

As K increases, these attractors grow in size
and are then combined leading to the formation
of a four-spiral attractor [Fig. (7-7)]. This chaotic
behavior persists up to a threshold of K = 0.765
beyond which a quasiperiodic orbit and then a
limit cycle of period one reappears. A new area of

order is achieved and remains for K ∈ [0.765, 1.156]
[Figs. (7-8)–(7-15)].

The same chaotic scenario starts again for
K ∈ [1.156, 1.23[ and new sequences of period-
doubling bifurcations occur (always separately for
X0 and −X0) which lead to the almost simulta-
neous appearence of two-spiral chaotic attractors
that grow in size and again give rise to other
four-spiral attractors as K increases, [Figs. (7-16)–
(7-19)]. This last and unique four-spiral attractor
bifurcates to obtain an attractor similar to a three-
spiral attractor [Fig. (7-20)]. Finally, upon passing



Fig. 7. Transition to chaos via period-doubling from a focus to four-spiral strange attractors (or transition to order
via “period-halving”) for Eq. (13) with N = 4 and for the set of parameters BL4 given by (26).
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Fig. 7. (Continued )
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Fig. 7. (Continued )

through a critical value of K = 1.245, a second and
last chaotic area is reached, wherein an “inverse”
period-doubling bifurcation of limit cycles leads to
a unique limit cycle [Fig. (7-24)], the radius of which
goes towards infinity as K → +∞.

In some cases, the attractors (correponding to
X0 and to −X0) are on the same side of the x–y
plane.

3. Chua’s Multispiral System

3.1. Introduction

In this section, we deal with Chua’s system for
which the dimensionless state equations are given
by 

dx

dt
= α[y − x− f2(x)]

dy

dt
= x− y + z

dz

dt
= −βy − γz ,

(27)

where f2(.) is given by Eq. (2), and x, y and z are
functions of t.

To obtain strange chaotic attractors with N
spirals, N ≥ 2, we integrate the differential

system 

dx

dt
= α[y − x− fN(x)]

dy

dt
= x− y + z

dz

dt
= −βy − γz ,

(28)

where fN (.) is given by Eq. (3). This system de-
pends on the parameters of the set

BCN = {α, β, γ} ∪ BN ⊂ R2N+2 , (29)

where BN is given by Eq. (8). We also assume that
Eqs. (4) and (5) are satisfied.

Remark. We can recover system (27) from system
(28) by taking N = 2, ξ0 = 0 and s0 = 1 (with two
spirals at most).

Thus the third-order differential system which
allows us to obtain three-spiral strange attractors
would be given by

dx

dt
= α[y − x− f3(x)]

dy

dt
= x− y + z

dz

dt
= −βy − γz ,

(30)
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in which f3 is defined by

f3(x) =


m0x+ sgn(x)ξ0 if |x| ≤ s0

m1x+ sgn(x)(m0 −m1)s0 if s0 ≤ |x| ≤ s1

m2x+ sgn(x)[(m1 −m2)s1 + (m0 −m1)s0] if |x| ≥ s1

(31)

This system depends on the parameters of the set

BC3 = {α, β, γ} ∪ B3 ⊂ R8 , (32)

where B3 = {s0, s1, m0, m1, m2}. By introducing two new parameters, s2 and s3, and replacing f3 by
f5 in the previous system, one can obtain five-spiral strange attractors with the new set of parameters
BC5 = BC3 ∪ {s2, s3}. The next set would be BC7 = BC5 ∪ {s4, s5}, and so on.

Let us define X := (x, y, z)T and D0, D±k (k ∈ I∗N−1) the regions of R3 delimited by the planes
U±k = {(x, y, z), x = ±skk ∈ IN−2}. In each one of these regions, one can write the system (28) as

Ẋ = AkX + sgn(x)Uk , (33)

where

Ak =

−α(1 +mk) +α 0
1 −1 1
0 −β −γ

 and Uk =

−αξk0
0

 . (34)

3.2. Equilibrium points and
eigenspaces

We will now determine the equilibrium points and
the eigenspaces corresponding to system (34).

It is easy to see that in each of the 2N − 1
regions D0 and (Dk)k∈I∗N−1

, the system is linear

and a unique equilibrium point O0 or O±k exists, re-
spectively. Due to the symmetry of the vector field
i.e. invariance under the transformation (x, y, z)→
(−x, −y, −z)], we have that O−k = −O+

k . The co-
ordinates of these equilibrium points are

Ok =

(
xOk , xOk

γ

β + γ
, xOk

−β
β + γ

)
,

(35)

where xOk =
ξk

γ

β + γ
− 1−mk

.

The most interesting cases which can lead to com-
plicated dynamics occur when [γ/(β + γ)] − 1 −
mk 6= 0.

Let us now study their stability. As this sys-
tem is also piecewise-linear in each region D0 and
(Dk)k∈I∗N−1

, the eigenvalues are constant so that

the associated Jacobian matrix is too and no local
approximation is necessary to determine it.

By setting ∆k = 4P 3
k + 27Q2

k, where:

Pk = −A
2
k

3
+Bk ,

Qk =
1

9
(A3

k +A2
k − 3AkBk + 9Ck) ,

Ak = (1 + α+ γ + αmk) ,

Bk = β + γ + α(γ + γmk +mk) ,

Ck = α(β + βmk + γmk) ,

the eigenvalues of Ak are the solutions of the cubic
equation

Π(λ) = λ3 +Akλ
2 +Bkλ+ Ck = 0 .

Setting λ = Λ + ω, where ω = −(Ak/3), we have

Π(Λ) = Λ3 + PkΛ +Qk .

This third-degree polynomial in Λ can be solved
using the Cardan formula for each region D0, D±k ,
(k ∈ I∗N−1), resulting in:

(i) If ∆k > 0, there is a unique real eigenvalue

λRk =
3

√√√√−Qk
2

+

√
Q2
k

4
+
P 3
k

27

+
3

√√√√−Qk
2
−

√
Q2
k

4
+
P 3
k

27
− Ak

3
, (36)
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and two complex conjugate eigenvalues

(λCk )± = −Ak
3
− ΛRk

2
± j

2

√
4Pk + 3(ΛRk )2 ,

(ii) If ∆k < 0, the system has three real and dis-
tinct eigenvalues:

λk,1 = 2

√
−Pk

3
sin

(
θk
3

)
− Ak

3
,

λk,2 = 2

√
−Pk

3
sin

(
2π + θk

3

)
− Ak

3
,

and

λk,3 = 2

√
−Pk

3
sin

(
4π + θk

3

)
− Ak

3

where

θk = arcsin

(√
−27Q2

k

4P 3
k

)
∈ [0, π] .

The case where ∆k = 0 corresponds to a measure-
zero set of parameters. So by a slight perturbation
of parameters and without changing the behavior
of the system, a system that belongs to one of the
two other cases is obtained.

For the real eigenvalue, the eigenvectors V R
k

satisfy the relation AkV R
k = λRk V

R
k , [V R

k = (vk,1,

vk,2, vk,3)T ], so that
−α

(
1 + ω +

λRk
α

)
vk,1 + αvk,2 = 0

vk,1 − (1 + λRk )vk,2 + vk,3 = 0

−βvk,2 − (γ + λRk )vk,3 = 0 .

(37)

We easily find that V R
k = (1, (1/α)(λRk +α(1+mk)),

(1 + λRk /α)(λRk + α(1 +mk))− 1)T .
For the complex eigenvalues (λCk )± = µk ± iσk,

the associated eigenspace (two-dimensional) is de-
termined as a linear combination of eigenvectors V 1

k
and V 2

k such that:(
A− µkI σkI

A− σkI −µkI

)(
V 1
k

V 2
k

)
= 0 .

In D0, if ∆k > 0 and s0 = 1, ξ0 = 0 (the case
for Chua’s equations), there exists a basis where
the matrix Ak (k = 0) is in the real Jordan form

Ak =

(
λRk 0 0
0 µk −σk
0 σk µk

)
.

The solution of the system is then
x = C1e

λRk

y = eµkt(C2 cos(σkt)− C3 sin(σkt))

z = eµkt(C4 sin(σkt) + C5 cos(σkt)) .

(38)

Therefore the behavior of the system depends on
the signs of λRk and µk.

3.3. Numerical results

As we have done in the previous section, all the
phase portraits presented in this section are done
in the x–y plane. They have been obtained by inte-
grating the system of differential equations (28) for
various values of N using the most common fourth-
order Runge–Kutta’s method. In order to obtain
reliable numerical results, the step size was chosen
to be equal to 10−4 (or 10−5), and the first 107

(or 108) steps were discarded to avoid the transient
regime. In addition, as in all sections of this paper,
we assume that Eqs. (4) and (5) are satisfied.

The initial condition was fixed to be

X0 = (−0.1, 0.1, 0.1) . (39)

Furthermore, to obtain an even number of spirals,
we have employed the same parameters

α = 9.365 , β = 11.79 , γ = 0.04 . (40)

In addition the parameters mk, k ∈ IN−1, are
chosen to satisfy

m2j = m0 = −8

7
and m2j+1 = m1 = −5

7
,

j = 1, 2, 3, . . . . (41)

On the other hand to obtain an odd number of spi-
rals, we have employed the same parameters

α = 10.40 , β = 12.5709 , γ = 0.005 . (42)

The parameters mk, k ∈ IN−1, are chosen to satisfy

m2j = m0 = −5

7
and m2j+1 = m1 = −8

7
,

j = 1, 2, 3, . . . . (43)

In all our numerical tests we have chosen ξ0 = 0 and
s0 = 1, as in Sec. 1. The parameter α was taken as
the bifurcation parameter.

Finally, we determined the parameters
(sk)k∈I∗

N−2
such that the relationship given by

Eq. (10) is satisfied. Let us remark that the distinc-
tion between the attractors with an even number
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(a) (b)

(c) (d)

(e) (f)

Fig. 8. Phase portraits in the x–y plane of two-, three-, . . . , seven-multispiral attractors corresponding to the set of parameters
BCN , N = 2, 3, . . . , 7, given by [(44) and (45)], (from upper left, row by row).
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(a′) (b′)

(c′) (d′)

(e′) (f′)

Fig. 8. (Continued ) Nonlinearities FN (x) corresponding to the PWL fN allowing the attractors of the previous figure for
N = 2, 3, . . . , 7 (from upper left, row by row).
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(g) (h)

(i) (j)

(k) (l)

Fig. 8. (Continued ) Phase portraits in the x–y plane of multispiral attractors corresponding to sets of parameters BCN ,
N = 8, 9, . . . , 13, given by [(44) and (45)] (from upper left, row by row).
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of spirals and an odd number is due to the nature
of the equilibrium points that changes when N in-
creases (see Fig. 8). These strange attractors often
appear when one-spiral or double-scroll strange at-
tractors (like Chua’s one) cling to each other. We
give below the parameters used to find the attrac-
tors of the following figures:

Fig. 8(a) : BC2 ={α=9.365, β=11.79,
γ=0.04, s0 =1}

Fig. 8(c) : BC4 =BC2 ∪{s1 =1.8, s2 =2.7}
Fig. 8(e) : BC6 =BC4 ∪{s3 =3.36, s4 =5.0}
Fig. 8(g) : BC8 =BC6 ∪{s5 =5.6, s6 =6.6}
Fig. 8(i) : BC10 =BC8 ∪{s7 =7.15, s8 =9.0}
Fig. 8(k) : BC12 =BC10∪{s9 =9.95, s10 =10.75} ,

(44)



Fig. 8(b) : BC3 ={α=10.40, β=12.5709,
γ=0.005, s0 =1, s1 =4.5}

Fig. 8(d) : BC5 =BC3 ∪{s2 =5.8, s3 =7.8}
Fig. 8(f) : BC7 =BC5 ∪{s4 =9.0, s5 =11.8}
Fig. 8(h) : BC9 =BC7 ∪{s6 =12.9, s7 =14.5}
Fig. 8(j) : BC11 =BC9 ∪{s8 =15.35, s9 =17.7}
Fig. 8(l) : BC13 =BC11∪{s10 =18.7, s11 =20.2} .

(45)

Since the plots showing PWL characteristics do not
give enough information, we have plotted some cor-
responding nonlinearities Fi(x) [only for Figs. 8(a)–
8(f)]. In this case Fi(x) = x+ fi(x) if i is even and
Fi(x) = −x − fi(x) if i is odd (i = 2, 3, . . . , 7).
These nonlinearities give us a more precise idea of
the PWL characteristics.

Bifurcations and chaos transition. As the pa-
rameter α increases from 0 to ∞ (with β, γ and
the other parameters mk and sk being fixed),
there is a very complicated sequence of bifurca-
tions and attractors. Chaotic and regular os-
cillatory regimes alternate in a neighborhood of
various stable equilibrium states. Processes of
period-doubling or inverse period-doubling lead to
multispiral strange attractors via the connection of
double-scroll strange attractors. Figure 11 gives an
impression of the sequence of bifurcations based on
numerical calculations, where all the parameters are
fixed by the set BC8 in Eq. (44), but with α vary-
ing. The illustrations are schematic and somewhat
simplified.

Figure 12 illustrates this phenomena by pre-
senting examples of trajectories [in the x–y plane]

corresponding to these various bifurcations. For the
first nine parts of Fig. 12 [Figs. 12(a)–12(i)], we
give a trajectory and its symmetric counter part
(which always exists because of the odd symmetry

(a)

(b)

(c)

(d)

Fig. 9. 15-, 17-, 19- and 21-spiral strange attractors for
the set of parameters specified (a) BC15 = BC13 ∪ {s12 =
21.15, s13 = 23.3}, (b) BC17 = BC15 ∪ {s14 = 24.2, s15 = 25.8},
(c) BC19 = BC17 ∪ {s16 = 26.5, s17 = 28.2}, (d) BC21 =
BC19∪{s18 = 29.12, s19 = 31.0}, where BC13 is given by Eq. (45)
but with α = 10.9 and s8 = 15.43.
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(a)

(b) (c)

Fig. 10. (a) The 19-spiral strange attractor given in the previous figure in the z–y plane. (b) PWL f19(x) allowing this
attractor, (c) the corresponding nonlinearity F19(x) = −x− f19(x).

Fig. 11. Symbolic diagram specifying the attractors of system (28) when N = 8 (i.e. eight-spiral case) for β = 11.79, γ = 0.04
and for the set of parameters BC8 given by Eq. (44) with 0 ≤ α < ∞. A stable equilibrium point is denoted by “EP”, a
stable limit cycle of period k by “k-LC”, a strange attractor with k spirals by “k-SA” (a double-scroll is then denoted by
“2-SA”), a quasi-periodic trajectory by “QP”, and a quasi-periodic trajectory connected with a double-scroll strange attractor
by “QP-2SA”.

property of the system) while the last two figures
[Fig. 12(j) and Fig. 12(k)] present two eight-spiral
strange attractors.

Let us remark that the transition via the quasi-
periodic trajectory [Fig. 12(g)] is not required to
obtain multispiral strange attractors. This depends
on the choice of the parameters. It is shown in
[Aziz-Alaoui, 1997], that other sets of parameters

are possible, and the birth of multispiral attractors

is found directly via the connection of two-spiral

attractors.

Let us also remark that for a given N one can

find strange attractors presenting different shapes

(see Fig. 13), or with N ′ spirals, where 1 ≤ N ′ ≤ N
(see Fig. 14).
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Fig. 13.

(a1), (a2), (a3) : B′3 = {α = 14.6, β = 12.0, γ = 0.9, s1 = 3, m0 = −5

7
,

m1 = −8

7
, m2 = −0.7}

(b1), (b2), (b3) : B′5 = B′3 ∪ {s2 = 4.6, s3 = 5.3, m3 = −1.54, m4 = −0.8} ,

(46)

(a) (b)

(c) (d)

(e) (f)

Fig. 12. Phase portraits of coexisting attractors for the same parameters and various initial conditions, illustrating the
transition to chaos (corresponding to the previous diagram) via period-doubling from a focus to a eight-spiral strange attractor
for the set of parameters BC8 given by (44). Here α varies and is as specified. (a) α = 6.0: stable foci; (b) α = 7.0: stable
one-limit cycles; (c) α = 7.35: stable two-limit cycles; (d) α = 7.53: stable four-limit cycles; (e) α = 7.59: quasi-periodic
trajectories; (f) α = 7.83: two-spiral strange attractors; (g) α = 9.0314: two quasi-periodic trajectories coexisting with four
two-spiral strange attractors; (h) α = 9.15: quasi-periodic trajectories connected with two-spiral strange attractors coexisting
with two other two-spiral strange attractors; (i) α = 9.2326: two coexisting four-spiral strange attractors; (j) α = 9.35: an
eight-spiral strange attractor; (k) α = 9.9: another eight-spiral strange attractor.
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(g) (h)

(i) (j)

(k)

Fig. 12. (Continued )


Fig. 14(a) :
B′′5 = {α = 9.7633, β = 12.5709, γ = 0.005, s1 = 3, s2 = 5.85, s3 = 6.75,

m0 = −5

7
,m1 = −1.16, m2 = −0.75, m3 = −1.5, m4 = −0.65} ,

(47)


Fig. 14(b) :
B′′7 = B′5 ∪ {s4 = 5.4, s5 = 7.2, m5 = −1.6, m6 = −0.814},
where B′5 is given by (46) .

(48)
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(a1) (a2) (a3)

(a)

(b1) (b2) (b3)

(b)

Fig. 13. (a) Three-spiral strange attractor: (a1) projection onto the x–y plane of the phase portrait, (a2) the time waveform
of the x-component, (a3) the corresponding power spectra for the set of parameters B′3 given by (46). (b) Five-spiral strange
attractor: (b1) projection onto the x–y plane of the phase portrait, (b2) the time waveform of the x-component, (b3) the
corresponding power spectra, for the set of parameters B′5 given by (46).

4. Brockett’s Multispiral System

Brockett [1982] studied the following system:

dx

dt
= y

dy

dt
= z

dz

dt
= −βy − γz + g(x) ,

(49)

where the nonlinear function g is given by:

g(x) =


−Kx if |x| < 1

2Kx− 3k sgn(x) if 1 < |x| < 3

3K sgn(x) if |x| > 3 .

(50)

This system exhibits the two-spiral chaotic attrac-
tor shown in Fig. 15.

Deregel [1993] remarks that the only interest in
region |x| > 3 is to claim that all of the solutions
of system (49) are bounded when t goes to infinity.

This region does not play any role in the dynamics
of the system, therefore one can replace the func-
tion g by Chua’s function f2 given in Eq. (2). See
also [Chua et al., 1993] in which the authors used
Chua’s oscillator to model other chaotic systems.

If we set

m0 = −K = 1.8 and m1 = 2K

in the above modified Brockett’s system, then for
N = 2, system (49) presents trajectories qualita-
tively similar to those in Fig. 15, where explicitly

dx

dt
= y

dy

dt
= z

dy

dt
= −βy − γz + fN(x) .

(51)

To extend system (49) to obtain Brockett’s chaotic
attractors with an N -spiral system, we replace the
function g by the function fN given in Eq. (3).
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(a)

(b)

Fig. 14. Attractors in the x–y plane. (a) for the set of pa-
rameters B′′5 given by (47), (b) for the set of parameters B′′7
given by (48).

Hence the new system will depend on the set of the
parameters given by

BBN = {β, γ} ∪ BN ⊂ R2N+1 , (52)

where BN is given by Eq. (8). We then adopt the
same technique as in the previous sections. Hence
we set

m0 = m2i = −K and m1 = m2i+1 = +2K ,

i = 1, 2, . . . .

After finding a two-spiral attractor, a set of pa-
rameters BB2 is then determined. To find a four-
spiral strange attractor, we look for two new param-
eters s1 and s2 which give a BB4 set of parameters
(BB4 = BB2 ∪ {s1, s2}, and so on).

The following figures (Figs. 16 and 17) show,
respectively, four- and six-spiral strange attrac-
tors, their corresponding x-component power
spectra and their corresponding PWL characteris-
tic. The parameter s0 is fixed to be equal to 1.0
and the parameter K = −1.99. The other pa-

rameters are
Fig. 16 : BB4 = {β = 1.06, γ = 0.827,

s1 = 1.65, s2 = 2.1}
Fig. 17 : BB6 = BB4 ∪ {s3 = 2.5, s4 = 4.1} .

(53)

5. Multispiral Chaotic and
Nonchaotic Attractors
in a Quasi-Periodically
Forced System

Kapitaniak [1997] has shown that aperiodic non-
chaotic trajectory characteristic of strange non-
chaotic attractors can occur on a two-frequency
torus. He investigated the dynamics of the nonau-
tonomous circuit which is a classical configura-
tion of a forced negative-resistance oscillator [Reich,
1961]. (Concerning nonchaotic strange attractors,
see, e.g. [Brindley & Kapitaniak, 1991; Grebogi
et al., 1984; Ding et al., 1989] and references cited
therein.) The dynamics of the circuit considered is
described by the following dimensionless equations:

dx

dt
=y−f2(x)

dy

dt
=−β[x+(v+1)y)+A(sin(ω1t)+sin(ω2t)] ,

(54)

where f2 is the nonlinear piecewise-linear function
given by Eq. (2). The dynamics of Eq. (54) de-
pends on the parameters β, v, m0, m1, ω1, ω2, and
the amplitude A.

Here we consider the extension of system (54) to
a system allowing multispiral nonchaotic or chaotic
attractors. We replace the function f2 by the func-
tion fN given in Eq. (3) and, as in the previous
sections, we also assume that Eqs. (4) and (5) are
satisfied. Hence, the new system will be:
dx

dt
=y−fN (x)

dy

dt
=−β[x+(v+1)y)+A(sin(ω1t)+sin(ω2t)] .

(55)

It depends on the set of parameters:

BKN = {β, v, ω1, ω2, A} ∪ BN ⊂ R2N+4 , (56)

where BN is given by Eq. (8). For our numerical
results we set (as in [Kapitaniak, 1997])

β = 1.0, v = 0.015, ω1 = 0.75, ω2 =
√

2 . (57)
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Fig. 15. Phase portrait of the modified Brockett system (51) for N = 2 and for B = 1.25 γ = 1.0, m0 = 1.8 and m1 = −2m0.
(a) In the x–y plane. (b) In the x–z plane. (c) In the y–z plane. (d) The power spectra of the x-component. (e) The actual
PWL characteristic, f2, corresponding to this attractor.
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Fig. 16. Phase portrait of the modified Brockett system for N = 4 and for BB4 given by Eq. (53), with K = −1.99. (a) In
the x–y plane. (b) In the x–z plane. (c) In the y–z plane. (d) The power spectra of the x-component. (e) The actual PWL
characteristic, f4, corresponding to this four-spiral attractor.
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Fig. 17. Phase portraits of the modified Brockett system for N = 6 and for BB6 given by Eq. (53), with K = −1.99, s3 = 2.5
and s4 = 4.1. (a) In the x–y plane. (b) In the x–z plane. (c) In the y–z plane. (d) The power spectra of the x-component.
(e) The actual PWL characteristic, f6, corresponding to this attractor.
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We also set

m0 = m2i = · · · = −1.02
(58)

and m1 = m2i+1 = · · · = −0.55 , i = 1, 2, . . . .

Therefore, the parameters used to obtain

Figs. 18–21 below are given by
BK2 =B2∪{A} ,
where

B2 ={β=1.0, v=0.015, ω1 =0.75, ω2 =
√

2,
m0 =−1.02, m1 =−0.55, s0 =1.0} .

(59)

Fig. 18. Attractors and the corresponding x-component power spectra for system (55) with N = 2 and the set of parameters
BK2 given by (60). (a1,2) two-frequency torus for A = 0.08; (b1,2) two-frequency torus for A = 0.088; (c1,2) strange chaotic
attractor for A = 0.092.

Fig. 19. Attractors of system (55) and for N = 2, with the set of parameters BK2 given by (60) and A = 0.088.
(a) Coexisting two-frequency tori (for the same parameters). (b) Combination of these two attractors with the formation
of a double two-frequency torus.
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Fig. 20. Two-frequency torus attractor of system (55) for
N = 2, with the set of parameters BK2 given by (60) and
A = 5.0.

The amplitude of the external quasi-periodic forc-
ing A was taken as a control parameter. The fol-
lowing figures show coexisting two-frequency tori or
strange chaotic attractors, and the corresponding
x-component power spectra. With an increase of
the forcing amplitude A and the number N , these
coexisting attractors cling to each other giving birth
to multispiral ones.

Let us remark that our computer experiments
showed that for the case N = 2, and the set of
parameters BK2 , upon passing through the value
A = 0.65, the two-frequency torus (Fig. 20) sub-
sists, the latter’s radius going towards infinity as
A → +∞. The same figure is obtained when
N = 4, upon passing through the value A = 1.1;
and when N = 6, upon passing through the value

A = 1.65.
Figs. 18–21 : BK2 given by (59)

Fig. 22 : BK4 =BK2 ∪{s1 =1.11, s2 =2.06}
Fig. 23 : BK6 =BK4 ∪{s3 =2.14, s4 =3.06}
Fig. 24 : BK8 =BK6 ∪{s5 = 5.6, s6 = 6.6}

(60)

6. Multibuckle in van der Pol’s
System

The van der Pol equation with periodic forcing is
the subject of much studies. This system is given
by 

ε
dx

dt
= y −

(
x3

3
− x

)
dy

dt
= −αx+ b cos(t) ,

(61)

where α and ε are sufficiently small and b > 0 (see
e.g. [Itoh & Murakami, 1994] and references cited
therein). The associated piecewise-linear version of
(61) has been studied in [Parker & Chua, 1983]:

ε
dx

dt
= y − f2(x)

dy

dt
= −αx+ b cos(t) ,

(62)

where f2 is the nonlinear piecewise-linear function
given by Eq. (2), and m0 = −1 and m1 = 1. In
[Itoh & Murakami, 1994], the computer results for

Fig. 21. (a) Coexisting chaotic attractors (for the same parameters) of system (55) for N = 2, with the set of parameters
BK2 given by (60) and A = 0.093. (b) Combination of these two attractors with the formation of a double one-spiral chaotic
attractor when A = 0.102.
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Fig. 22. (a) Coexisting two-spiral chaotic attractors (for the same parameters) for system (55) for N = 4, with the set of
parameter BK4 given by (60) and for A = 0.095. (b) Combination of these two attractors with the formation of a double
two-spiral chaotic attractor when A = 0.18.

Fig. 23. (a) Coexisting three-spiral chaotic attractors (for the same parameters) for system (55) for N = 6, with the set
of parameters BK6 given by (60) and A = 0.173. (b) Combination of these two attractors with the formation of a double
three-spiral chaotic attractor when A = 0.18. (c) The nonlinearity F6(x) = x+f6(x) corresponding to the PWL characteristic
which allows this attractor.
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system (62) show essentially that chaotic attractors
appear for: {

α = ε = 0.167

b = 0.59983 .
(63)

The system exhibits a positive Lyapunov expo-
nent, and the range of the parameter b correspond-
ing to this attractor is very narrow. Further-
more, this attractor is easily destroyed by a small
perturbation.

Here, we extend system (62) to obtain van der
Pol strange attractors with N, N ≥ 2, spirals (or
buckles). However, we did not study whether its
behavior is chaotic or not. The modified system is
given by 

ε
dx

dt
= y − fN (x)

dy

dt
= −αx+ b cos(t) ,

(64)

where fN is given by Eq. (3). This last system de-
pends on the set of parameters:

BVN = {α, ε, b} ∪ BN ⊂ R2N+2 , (65)

where BN is given by Eq. (8), and for which we as-
sume, as in the previous sections, that Eqs. (4) and
(5) are satisfied. Furthermore, for our numerical
results we set

m0 = m2i = · · · = −1.0
(66)

and m1 = m2i+1 = · · · = 1.0, i = 1, 2, . . . .

Therefore, we have only to find two new param-
eters each time to increase the number of spirals
(buckles), namely, s1 and s2 to find a four-spiral at-
tractor, s3 and s4 to find a six-spiral attractor, and
so on. The following figures (Figs. 24–27) show,

Fig. 24. Strange attractor of system (64) for N = 2.

Fig. 25. Strange attractor of system (64) for N = 4, the
same parameters as in Fig. 24 with an addition s1 = 2.7,
s2 = 3.0482.

Fig. 26. Strange attractor of system (64) for N = 6, the
same parameters as in Fig. 25 with an addition s3 = 4.028,
s4 = 4.975.

Fig. 27. Strange attractor of system (64) for N = 8, the
same parameters as in Fig. 26 with an addition s5 = 5.2,
s6 = 6.1.

respectively, for the parameters given by Eqs. (4),

(5), (63) and (66), two-, four-, six- and eight-spiral

attractors for system (64). The corresponding PWL

characteristics are given in Fig. 28.

Let us also remark that for a given N , one can

find strange attractors exhibiting different shapes

(see Fig. 29).
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Fig. 28. Actual PWL characteristics corresponding to Figs. 24–27, respectively (from upper left, row by row).

Fig. 29. Phase portrait of system (64) in the x–y plane for
N = 8, with the same parameters as those of Fig. 26 and
with s5 = 5.0001 and s6 = 7.0.

7. Conclusion

Various systems of differential equations having
Chua’s piecewise-linearity and capable of chaotic
behavior have been extended, by modifying the
nonlinear element, to become systems showing mul-
tispiral strange attractors. Essentially, for one of

the nonautonomous systems, the evolution of the
dynamics, chaos transition, and the transition to-
wards multispiral attractors under the variation of
different parameters was considered. Our com-
puter results showed that the following conjecture is
sensible:

Conjecture. For any N ∈ N∗, N ≥ 2, there exists
a nonempty set of parameters BN for which each
one of these systems presents strange attractors with
N spirals, with the relationship,

BN ⊂ BN+2 .
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