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Abstract

This article is devoted to the analysis of the dynamics of a complex network of unstable
reaction-diffusion systems. We demonstrate the existence of a non-empty parameter regime
for which synchronization occurs in non-trivial attractors. We establish a lower bound of
the dimension of the global attractor in an innovative manner, by proving a novel theorem
of continuity of the unstable manifold, for which we invoke a principle of spectrum pertur-
bation of non-bounded operators. Finally, we exhibit a co-dimension 2 bifurcation of the
unstable manifold which shows that synchronization is compatible with instabilities.
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§1 Introduction

Christiaan Huygens was researching an accurate method of determining longitude for maritime
navigation when he discovered, at the end of the seventeenth century, the principle of syn-
chronization of two pendulum clocks [5]. Convinced that synchronization could be used to
maintain pendulum clocks in agreement, Huygens observed that synchronization occurred when
the pendulum clocks were interacting through small oscillations on a supporting vibrant frame.
Nowadays, more than three centuries after his discovery, synchronization of dynamical systems
has become an active topic in several domains of research. One pioneer work on the mathemat-
ical modeling of synchronized oscillators is probably the Kuramoto model [24]. Afterwards, a
huge literature has emerged on this subject and it is now well understood how dynamical systems
of finite dimension can be synchronized, even in the case of chaotic systems such as the Lorenz
system [4]. In the mean time, the concept of complex network has been introduced and many
applications to real-world systems have been considered, such as animal locomotion, coupled
chemical reactions, neural networks, social networks, ecological meta-populations, epidemiolog-
ical or behavioral networks (see for instance [6], [8], [11], [17], [19], [28], [31] and the references
therein). However, synchronization of infinite dimensional dynamical systems remains an almost
unexplored research field. In [23], the synchronization of two unidirectionally coupled reaction-
diffusion systems is studied with a numerical approach, but the study of larger networks is not
investigated. Recently, motivated by applications in neuroscience, Ambrosio & al. have proved
that it is possible to synchronize FitzHugh-Nagumo reaction-diffusion systems [3]. Nevertheless,
it is not known if synchronization is compatible with instabilities occurring in those complex
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dynamical systems: does synchronization destroy instabilities of infinite dimensional systems,
or are there different levels of instability for which synchronization can be maintained or not?
It is the purpose of this article to explore those open questions.

Since infinite dimensional dynamical systems can exhibit a complex asymptotic behavior,
we place our study in the framework of attractors for continuous dynamical systems, which are
invariant subsets of the phase space describing all the possible asymptotic states of the dynamical
system. The concept of attractor has been developed for studying the asymptotic behavior of
dissipative systems [25], and several sorts of attractors have been constructed: global attractors
[26], [35], exponential attractors in a Hilbert setting [12] or in a Banach setting [13], pullback
attractors for non-autonomous systems [15] or random attractors for stochastic systems [9].
One important class of systems for which the concept of attractor is well adapted is the class of
reaction-diffusion systems. Those systems generate infinite dimensional dynamical systems and
admit a great number of applications for chemical reactions, population dynamics, neuroscience
or epidemiology (see the pioneer work of Turing [36] or [29], [34] and the references therein).
For this class of systems, the nature of attractors has been widely studied, with estimations of
their dimension [2], [14], [18], and investigations of their possible bifurcations [20], [27], [32].

In our work, we consider a complex network of infinite dimensional systems admitting un-
stable stationary solutions, determined by the Keener-Tyson reaction-diffusion system, which
models unstable chemical reactions. This complex network is constructed in concordance with
a finite graph, whose vertices are coupled with multiple instances of the Keener-Tyson model.
We consider the coupling strength of the network as a control parameter for reaching synchro-
nization. We show that it is possible to reach a synchronization state in a parameter regime
for which the complex network admits non-trivial attractors (see Theorems 6 and 7). However,
we show that synchronization is incompatible with attractors of arbitrarily large dimension.
Roughly speaking, it seems possible to synchronize instabilities of low level, and impossible to
synchronize instabilities of high level. Those results are established by estimating a lower bound
of the dimension of attractors, applying a spectrum perturbation principle (exposed in [21]) to
the unstable manifold of the unstable stationary solutions of the Keener-Tyson model. More
precisely, we prove that the dimension of the local unstable manifold W loc

ξ is constant for a
sufficiently small coupling strength:

dim W loc
ξ (Ū , ε) = dim W loc

0 (Ū , ε),

where ξ denotes the coupling strength of the complex network, Ū is an unstable stationary
solution and ε is a parameter of the Keener-Tyson model, which also controls the dimension
of the attractor (see Theorem 8). Furthermore, we observe that a variation of the coupling
strength can provoke a series of bifurcations of the unstable manifold (see Proposition 1). Up
to our knowledge, the results and methods presented in this work are new and overcome results
established in previous works. Namely, the upper semi-continuity of attractors has been proved
in [9] for instance, using the Hausdorff distance which is well suited for measuring the distances
between two attractors, but this upper semi-continuity fails to detect changes of the dimension
of the attractor; next, a principle of continuity of unstable manifolds has been proved in [10]
but in a manner which does not control the dimension of the unstable manifold. Our methods
are presented through the example of the Keener-Tyson model, but are sufficiently general to
be applied to other parabolic problems, provided the existence of unstable stationary solutions.

Our article is organized as follows. In the next section, we recall important results of func-
tional analysis in order to guaranty the self-sufficiency of the paper, and we present the setting
of the problem, with the construction of a complex network of multiple instances of the Keener-
Tyson model. In section 3, we establish intermediate results, with the existence of an invariant
region which will be useful for proving a synchronization theorem, and dissipativity estimates
which guaranty that the complex network generates a continuous dynamical system admitting
the global attractor. Finally, we prove our main results in section 4, where the coexistence of
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synchronization and instabilities is investigated. We show that the unstable manifold contained
in the global attractor undergoes a series of bifurcations which necessarily cross a synchroniza-
tion threshold. We also explain why the continuity of exponential attractors is unable to detect
bifurcations of the dimension of the unstable manifold.

§2 Problem statement

2.1. Preliminary results

In this section, we present several important results of functional analysis which shall be em-
ployed in our work, mainly about sectorial operators, semi-linear equations and attractors for
infinite dimensional dynamical systems.

Notations. Throughout this paper, we will use classical notations for functional spaces: the
space of continuous (respectively continuously differentiable) functions defined on an interval
I ⊂ R with values in a Banach space X will be denoted C

(
I, X) (respectively C 1(I, X));

Lebesgue spaces will be denoted Lp(Ω) and Sobolev spaces will be denoted W k,p(Ω), where Ω
denotes an open bounded domain in Rd with regular boundary ∂Ω, p ∈ [1, ∞] and k ∈ N.
Those functional spaces are Banach spaces whose norms will be denoted ‖·‖Lp(Ω) and ‖·‖Wk,p(Ω)
respectively. For p = 2, we simply note Hk(Ω) = W k,2(Ω).

Sectorial operators. Let X be a Banach space and A a closed linear operator, densely
defined in X. The domain of A will be denoted D(A). Assume that the spectrum of A satisfies
σ(A) ⊂ {λ ∈ C∗, |arg(λ)| < ω}, for ω ∈]0, π] and furthermore that

∥∥(λ−A)−1∥∥
L (X) ≤

M
|λ| ,

for all λ ∈ C such that |arg(λ)| ≥ ω, with M ≥ 1, where L (X) denotes the Banach space of
bounded linear operators defined in X. Then A is said to be sectorial in X. If A is a sectorial
operator in X, it is seen that there exists a minimum coefficient ω satisfying the above properties;
it is denoted ωA and called angle of A. Sectorial operators admit fractional powers Aη with
0 < η < 1, whose domains are denoted D(Aη) and can be described in terms of interpolation
spaces (see for instance [37], Theorems 16.7 and 16.9).

Semi-linear equations. Let A be a sectorial operator in X of angle ωA < π
2 , 0 < η < 1, and

F a non-linear operator defined in D(Aη) with values in X. We consider the Cauchy problem

dU

dt
+AU = F (U), t > 0, U(0) = U0, (1)

with U0 ∈ X. We assume that F enjoys the property:

‖F (U)− F (V )‖X ≤ CF (1 + ‖AηU‖X + ‖AηV ‖X) ‖U − V ‖X , (2)

for all U, V ∈ D(Aη), with a positive constant CF and a well-chosen η ∈ (0, 1). The following
theorem is proved in [37] (Theorem 4.4).

Theorem 1. For all U0 ∈ X, there exists TU0 > 0 such that problem (1) admits a unique
solution U = U(t, U0) in function space

U ∈ C
(
(0, TU0 ] ; D(A)

)
∩ C

(
[0, TU0 ] ; X

)
∩ C 1((0, TU0 ] ; X

)
,

where TU0 depends only on ‖U0‖X . Furthermore, U satisfies

‖U(t)‖X + t ‖AU(t)‖X ≤ CU0 , 0 < t ≤ TU0 ,

where CU0 is a positive constant which depends only on ‖U0‖X .
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Dynamical systems. If X is a subset of X such that the solutions of problem (1) stemming
from initial conditions in X are global and remain in X, then X is said to be positively invariant.
In that case, one can define the mapping

Θ : (0, +∞)× X −→ X
(t, U0) 7−→ S(t)U0

(3)

where S(t) denotes the semi-flow generated by problem (1), defined by S(t)U0 = U(t, U0), for all
U0 ∈ X and t ≥ 0. Note that S(t) satisfies S(0) = Id (identity in X) and S(t) ◦ S(s) = S(t+ s)
for all non-negative t and s. The semi-flow S(t) is called a dynamical system. X is called the
universal space and X is called the phase space.

Global attractor. Let X be a Banach space and S(t) denote a dynamical system with
phase space X. A subset B ⊂ X is an absorbing set of the dynamical system S(t) if for every
bounded subset B ⊂ X, there exists a time tB such that S(t)B ⊂ B for all t ≥ tB . Now assume
that the dynamical system S(t) admits a compact absorbing set B ⊂ X. Then S(t) possesses a
global attractor A , which is a compact set of X, invariant under the semi-flow S(t), attracting
each bounded set B ⊂ X in the sense

lim
t→∞

ρH
(
S(t)B, A

)
= 0,

where ρH denotes the Hausdorff semi-distance defined by

ρH(A, B) = sup
a∈A

inf
b∈B

dX(a, b).

Note that the Hausdorff semi-distance ρH is not symmetric; thus the Hausdorff distance between
A and B is defined by

distH(A,B) = max
(
ρH(A,B), ρH(B, A)

)
. (4)

It can be proved that the global attractor A is given by

A =
⋂
t≥0

⋃
s≥t

S(s)B,

where the closure is in X (see [35], Theorem I.1.1). Furthermore, if the absorbing set B is a
connected set, then A is also a connected set. If it exists, the global attractor A is necessarily
unique.

Remark 1. The global attractor is used in order to describe the asymptotic behavior of the
dynamical system S(t); it contains every equilibrium point of the dynamical system S(t). One
way to obtain lower bounds for the Hausdorff dimension dimH A of the global attractor is to
estimate the dimension of the unstable manifold of an equilibrium of S(t), which is always a
subset of the global attractor.

Unstable manifolds. Let X denote a Banach space and S(t) a dynamical system defined
in X, admitting a compact phase space X ⊂ X. Let Ū denote an equilibrium of S(t). The
unstable manifold W (Ū) is the set of elements U0 in X for which there exists a trajectory
{U(t, U0)}t≤0 ending at U0 such that lim

t→−∞
U(t, U0) = Ū . It is possible to represent local

unstable manifolds by a localization method presented in [37] (Theorem 6.9). Furthermore, a
variation of the dimension of the unstable manifold implies a change of the global attractor and
constitutes a sufficient condition for a bifurcation to occur in the dynamical system S(t). An
illustrative example of a sequence of pitchfork bifurcations changing the dimension of the local
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dim W loc(Ū) = 1

Ū

(a)

dim W loc(Ū) = 2

Ū

(b)

dim W loc(Ū) = 3

Ū

(c)

Figure 1: Illustrative example of a sequence of pitchfork bifurcations in a three-dimensional dynamical
system, changing the dimension of the local unstable manifold (depicted in red). (a) The equilib-
rium point Ū is a saddle-node and dim W loc(Ū) = 1 (the Jacobian matrix of the system admits one
positive eigenvalue and two negative eigenvalues). (b) The equilibrium point Ū is a saddle-node and
dim W loc(Ū) = 2 (the Jacobian matrix admits two positive eigenvalues and one negative eigenvalue). (c)
The equilibrium point Ū becomes a repulsive node and dim W loc(Ū) = 3 (the Jacobian matrix admits
three positive eigenvalues).

unstable manifold is depicted in figure 1, for a three-dimensional dynamical system determined
by a system of the form

ẋ = f(x), x ∈ R3,

where f is a function defined in R3.
Spectrum perturbation principle. Let X be a Banach space and A a densely defined

closed operator in X. Then a part of σ(A) consisting of a finite number of eigenvalues changes
continuously with A: if B is a bounded operator such that ‖B‖L (X) ≤ δ, then the finite part
of eigenvalues of A + B is unchanged for δ sufficiently small [21]. If A and B commute, it is
possible to estimate the value of δ.

2.2. Keener-Tyson reaction-diffusion system

After those preliminary results, we aim to present the Keener-Tyson reaction-diffusion system,
which models unstable chemical reactions. Let Ω denote an open bounded domain of Rd with
d ∈ {1, 2, 3}, admitting a regular boundary ∂Ω. The Keener-Tyson model is given by the
following reaction-diffusion system

∂u

∂t
= a∆u+ 1

ε2

[
u(1− u)− c v u− q

u+ q

]
in Ω× (0, ∞),

∂v

∂t
= b∆v + 1

ε
(u− v) in Ω× (0, ∞),

∂u

∂ν
= ∂v

∂ν
= 0 on ∂Ω× (0, ∞),

u(x, 0) = u0(x), v(x, 0) = v0(x) in Ω.

(5)
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Here, u and v model chemical species in interaction, which are defined in Ω × (0, ∞). The
diffusion coefficients a and b are assumed to be positive. The parameters ε, c and q are positive
real coefficients, and it is assumed that q < 1. The outward normal to ∂Ω is denoted by ∂ν;
the Neumann boundary condition models the impossibility for the chemical species to leave the
domain Ω. The initial data u0 and v0 are defined in Ω and model the initial distributions of
the chemical species within Ω. This reaction-diffusion system has been studied in [22] or [38]
for instance. It is seen that system (5) admits two homogeneous stationary solutions (0, 0) and
(ū, v̄), where ū is the positive solution of the quadratic equation

(u+ q)(1− u) = c(u− q), (6)

and v̄ = ū. Note that q < ū < 1. In [38], it is proved that one can find parameters values for
which system (5) admits arbitrarily large exponential attractors. In this parameter regime, the
stationary solution (ū, v̄) admits a local unstable manifold W loc

(
(ū, v̄), ε) ; in the case Ω ⊂ R3,

its dimension satisfies
dim W loc

(
(ū, v̄), ε) ≥ C

ε3 ,

where C denotes a positive constant. The example of an elementary bifurcation provoking an
increase of the dimension of the unstable manifold is illustrated in figure 1.

2.3. Complex network of multiple instances of the Keener-Tyson model

Let us now describe the construction of a complex network of multiple instances of the Keener-
Tyson model (5). Let G = (V , E ) denote a graph composed with a finite set V of n vertices
(n ≥ 2), and a finite set E of edges. We define a matrix of connectivity L in correspondence
with the set of edges, by setting

Li,j = +1 if (j, i) ∈ E (i 6= j), Li,j = 0 else, Lj,j = −
n∑
k=1
k 6=j

Lk,j . (7)

We then construct a complex network of multiple instances of the Keener-Tyson model by
coupling each vertex of the graph G with one instance of the Keener-Tyson model, which leads
to the following equations:

∂ui
∂t

= ai∆ui + 1
ε2
i

[
ui(1− ui)− civi

ui − qi
ui + qi

]
+ ξ

n∑
k=1

Li,kuk in Ω× (0, ∞),

∂vi
∂t

= bi∆vi + 1
εi

(ui − vi) + ξ
n∑
k=1

Li,kvk in Ω× (0, ∞),

∂ui
∂ν

= ∂vi
∂ν

= 0 on ∂Ω× (0, ∞),
ui(x, 0) = ui,0(x), vi(x, 0) = vi,0(x) in Ω,

(8)

for each i ∈ {1, . . . , n}. As previously, the diffusion coefficients ai and bi (1 ≤ i ≤ n) are
assumed to be positive. The parameters εi, ci, qi (1 ≤ i ≤ n) are positive real coefficients and
we assume that

0 < qi < 1. (9)

The parameter ξ is a non-negative real coefficient which is called the coupling strength of the
complex network. Here, the coupling terms ξ

∑n
k=1 Li,kuk and ξ

∑n
k=1 Li,kvk of system (8)

admit a linear form, which is sufficiently general for the present work, since we will focus on
the possible coexistence of synchronization and instabilities. However, it would be possible to
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consider coupling terms of a more general form. For instance, quadratic couplings are studied
in [6].

Next, we consider three assumptions which will be useful in the sequel of the paper.

Assumption (A1). The graph G is a complete bi-directional graph. In that case, the connec-
tivity matrix of G reads

L =


−(n− 1) +1 . . . +1

+1 . . . . . .
...

...
. . . . . . +1

+1 . . . +1 −(n− 1)

 ,
thus the complex network equations can be written

∂ui
∂t

= ai∆ui + 1
ε2
i

[
ui(1− ui)− civi

ui − qi
ui + qi

]
+ ξ

n∑
k=1
k 6=i

(uk − ui) in Ω× (0, ∞),

∂vi
∂t

= bi∆vi + 1
εi

(ui − vi) + ξ

n∑
k=1
k 6=i

(vk − vi) in Ω× (0, ∞).
(10)

Assumption (A2). The graph G is bi-directional (or symmetric). In that case, the connectivity
matrix of G satisfies Li,j = Lj,i for all i, j in {1, . . . , n} such that i 6= j, and

∑n
k=1 Li,k = 0

for all i in {1, . . . , n}.

Obviously, assumption (A1) implies assumption (A2).

Assumption (A3). The multiple instances of the Keener-Tyson model (5) composing the com-
plex network (8) are identical. This means that there exists a common set of values a, b, c, q
and ε such that the parameters ai, bi, ci, qi and εi (1 ≤ i ≤ n) satisfy

ai = a, bi = b, ci = c, qi = q, εi = ε,

for all i in {1, . . . , n}.

Note that if assumption (A3) is satisfied, then the diffusion coefficients of the chemical species
ui and vi (1 ≤ i ≤ n) can still be different, that is, a 6= b.

2.4. Abstract formulation of the complex network problem

In order to solve the complex network problem (8), we write it as an abstract Cauchy problem
in an infinite dimensional space. To that aim, let us consider the Hilbert space X =

(
L2(Ω)

)2n
equipped with the product norm

‖U‖X =
(

n∑
i=1
‖ui‖2L2(Ω) +

n∑
i=1
‖vi‖2L2(Ω)

) 1
2

, (11)

for all U =
(
ui, vi

)>
1≤i≤n ∈ X. We introduce the linear operators

A1,i = −aiΛ + idL2(Ω), A2,i = −biΛ + idL2(Ω), Ai = diag {A1,i, A2,i} , 1 ≤ i ≤ n,
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and A = diag {Ai, 1 ≤ i ≤ n}, where Λ denotes the realization of the Laplace operator ∆ with
Neumann boundary condition. It is known that A is a positive definite self-adjoint sectorial
operator in X with angle strictly less than π

2 . Furthermore, its domain is given by

D(A) =
(
H2
N (Ω)

)2n
, (12)

with
H2
N (Ω) =

{
u ∈ H2(Ω) ; ∂u

∂ν
= 0 on ∂Ω

}
,

where H2(Ω) denotes the usual Sobolev space W 2,2(Ω) (the subscript N in the notation H2
N (Ω)

refers to the Neumann boundary condition). The operator A admits fractional powers Aθ,
0 ≤ θ ≤ 1, whose domains are given by

D(Aθ) =
{(
H2θ(Ω)

)2n if 0 ≤ θ < 3
4 ,(

H2θ
N (Ω)

)2n if 3
4 < θ < 1,

(13)

where Hs(Ω) (s ≥ 0) denotes the usual Sobolev space W s,p(Ω) with p = 2, and

Hs
N (Ω) =

{
u ∈ Hs(Ω) ; ∂u

∂ν
= 0 on ∂Ω

}
.

Now we fix an exponent η ∈
( 3

4 , 1
)
. Since d ∈ {1, 2, 3}, the Sobolev injections guaranty

that
H2η(Ω) ⊂ C

(
Ω
)
⊂ L∞(Ω), (14)

with continuous embeddings (see [1] for instance). For each i ∈ {1, . . . , n}, we introduce the
modified operator fi defined in D (Aηi ) by

fi(Ui) =
(
f̂i(Ui), f̌i(Ui)

)>
=
(
ui + 1

ε2
i

[
ui(1− ui)− ci vi

ui − qi
|ui|+ qi

]
, vi + 1

εi
(ui − vi)

)>
,

(15)

where Ui = (ui, vi)>. Note that the non-linearity of system (8) has been slightly modified,
since the denominator ui + qi has been replaced by |ui|+ qi. However, it will be proved below
that the solutions of the modified abstract problem (21) stemming from non-negative initial
conditions remain non-negative (see Lemma 1), and thus fully coincide with the solutions of the
non-modified problem (8).

It is proved in [37] that there exists a positive constant Cεi which depends on εi, such that∥∥fi(Ui)− fi(Ũi)∥∥(L2(Ω))2 ≤ Cεi
(
1 + ‖Ui‖(L∞(Ω))2 +

∥∥Ũi∥∥(L∞(Ω))2

) ∥∥Ui − Ũi∥∥(L2(Ω))2 , (16)

for all Ui, Ũi in D
(
Aηi
)
. Moreover, it can be easily shown that the constant Cεi admits a

quadratic expression
Cεi = κi,0 + κi,1

εi
+ κi,2

ε2
i

, (17)

with positive coefficients κi,0, κi,1 and κi,2 (1 ≤ i ≤ n). Under assumption (A3), the operators
Ai, fi (1 ≤ i ≤ n) will be written A and f respectively, and the constants Cεi , κi,j (0 ≤ j ≤ 2),
will be written Cε, κj respectively.

Next we introduce the non-linear operator F defined in D(Aη) by

F (U) =
(
f1(U1), . . . , fn(Un)

)>
, (18)
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with U = (U1, . . . , Un)>, and the linear operator Gξ defined in X by

Gξ(U) =
(
g1(U), . . . , gn(U)

)>
, (19)

where gi is given by

gi(U) =
(
ξ

n∑
k=1

Li,kuk, ξ

n∑
k=1

Li,kvk

)>
, 1 ≤ i ≤ n. (20)

With these notations, the abstract formulation of problem (8) reads
dU

dt
+ AU = F (U) +Gξ(U), t > 0,

U(0) = U0,
(21)

where U0 denotes any initial condition in X.
Our first result states the existence and uniqueness of local solutions to the complex network

problem (21).

Theorem 2. For any initial condition U0 ∈ X, there exists a positive time TU0 depending only
on ‖U0‖X such that problem (21) admits a unique solution U in function space

C
(
(0, TU0 ], D(A)

)
∩ C

(
[0, TU0 ], X

)
∩ C 1((0, TU0 ], X

)
. (22)

Furthermore, U satisfies

‖U(t)‖X + t ‖AU(t)‖X ≤ CU0 , 0 < t ≤ TU0 , (23)

where CU0 > 0 depends only on ‖U0‖X .

Proof. By virtue of the embedding (14), estimation (16) implies that∥∥fi(Ui)− fi(Ũi)∥∥(L2(Ω))2 ≤ Cεi
(
1 + ‖AηiUi‖(L2(Ω))2 +

∥∥Aηi Ũi∥∥(L2(Ω))2

) ∥∥Ui − Ũi∥∥(L2(Ω))2 ,

for all Ui, Ũi in D
(
Aηi
)
. Thus we can conclude that there exists a positive constant Cε,n

depending on ε = (ε1, . . . , εn) and n, such that∥∥F (U)− F (Ũ)
∥∥
X
≤ Cε,n

(
1 + ‖AηU‖X +

∥∥AηŨ∥∥
X

) ∥∥U − Ũ∥∥
X
,

for all U , Ũ in D(Aη). In parallel, the linear operator Gξ obviously satisfies∥∥Gξ(U)−Gξ(Ũ)
∥∥
X
≤ CGξ

∥∥U − Ũ∥∥
X
,

for all U , Ũ in X, where CGξ denotes a positive constant determined by Gξ, and thus depending
on the graph G . Thus we have∥∥(F +Gξ)(U)− (F +Gξ)(Ũ)

∥∥
X

≤
∥∥F (U)− F (Ũ)

∥∥
X

+
∥∥Gξ(U)−Gξ(Ũ)

∥∥
X

≤ Cε,n
(
1 + ‖AηU‖X +

∥∥AηŨ∥∥
X

) ∥∥U − Ũ∥∥
X

+ CGξ
∥∥U − Ũ∥∥

X

≤ (Cε,n + CGξ)
(
1 + ‖AηU‖X +

∥∥AηŨ∥∥
X

) ∥∥U − Ũ∥∥
X
.

for all U , Ũ in D(Aη). The conclusion follows from Theorem 4.4 in [37].

9



§3 Global solutions

In this section, we establish sufficient conditions which guarantee that the local solutions of the
complex network problem (8) are global in time. This question is not trivial, since it is known
that the solutions of reaction-diffusion systems can explode in finite time (see the survey given
in [30] for instance). We first prove the existence of an invariant region which provides a uniform
bound in L∞(Ω)2n; this uniform bound will in turn be useful for proving a sufficient condition
of synchronization in the final section. Next, we establish energy estimates which assure the
dissipativity of the complex network; from this dissipativity follows the existence of the global
attractor.

3.1. Invariant region

First, we briefly demonstrate the non-negativity of the solutions stemming from non-negative
initial data. We recall that a non-linear operator φ = (φi)1≤i≤m defined on Rm (with m ∈ N∗)
is said to be quasi-positive if it satisfies the property

φi(u1, . . . , ui−1, 0, ui+1, . . . , um) ≥ 0, (24)

for all u = (u1, . . . , um) ∈ (R+)m and for all i ∈ {1, . . . , m}. The quasi-positivity can be used
to prove the non-negativity of the solutions stemming from non-negative initial data (see e.g.
[30]). Let us introduce the space of initial conditions

X0 = {u ∈ X ; u(x) ≥ 0, ∀x ∈ Ω}, (25)

where the inequality u ≥ 0 has to be understood component-wise. It is easily seen that the
operators fi and gi (1 ≤ i ≤ n), defined by equations (15) and (20) respectively, are quasi-
positive. It follows that the operators F and Gξ are also quasi-positive, and finally, that the
sum operator F +Gξ is also quasi-positive. Thus we directly obtain the following lemma.

Lemma 1. Let U0 ∈ X0 and U be the solution of problem (21) starting from U0, defined on
[0, TU0 ]. Then, its components are non-negative on [0, TU0 ].

Lemma 1 implies that the unique solution of the modified problem (21) is also the unique
solution of the non-modified problem (8).

Our next result states the existence of an invariant region, under assumption (A1). Note that
the existence of an invariant region is a sufficient condition for the local solutions of problem
(8) to be global (see e.g. [34], Chapter 14).

Theorem 3. If assumption (A2) holds (G is a bi-directional graph), then the flow induced by
the complex network problem (8) admits a positively invariant region given by

R =
{

(wj)1≤j≤2n ∈ X ; wj(x) ∈ [0, 1], x ∈ Ω, 1 ≤ j ≤ 2n
}
, (26)

that is, if U0 ∈ R, then the solution U(t, U0) of the complex network problem (8) stemming
from U0, defined on [0, TU0 ], satisfies U(t, U0) ∈ R for all t ∈ [0, TU0 ].

The proof of Theorem 3 uses the properties of a truncation function χ which are presented
in the following lemma. Since its proof is elementary, we may skip it.

Lemma 2. Let χ be the real-valued function defined on R by:

χ(s) =
{

1
2s

2 if s ≤ 0,
0 if s > 0.
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The function χ is continuously differentiable on R and we have:

χ′(s) =
{

s if s ≤ 0,
0 if s > 0.

Furthermore, the function χ enjoys the following properties:

χ(s) ≥ 0, χ′(s) ≤ 0, sχ′(s) ≥ 0, sχ′(s) = 2χ(s), ∀s ∈ R,
(s− r)

(
χ′(s)− χ′(r)

)
≥ 0, ∀s, r ∈ R.

(27)

Proof of Theorem 3. Let consider an initial condition U0 ∈ R. We denote by U =
(
ui, vi

)
1≤i≤n

the solution of the complex network problem (8) with a bi-directional graph, stemming from
U0 and defined on [0, TU0 ] with TU0 > 0. By virtue of Lemma 1, it is already known that
ui(x, t) ≥ 0 and vi(x, t) ≥ 0, for all i ∈ {1, . . . , n}, x ∈ Ω and t ∈ [0, TU0 ]. Next, let us fix
i ∈ {1, . . . , n}. We introduce the functions ωi and ρi defined by

ωi(x, t) = 1− ui(x, t), (x, t) ∈ Ω× [0, TU0 ] ,

ρi(t) =
∫

Ω
χ
(
ωi(x, t)

)
dx, t ∈ [0, TU0 ] .

We have ui(x, 0) ≤ 1 for all x ∈ Ω, thus ωi(x, 0) ≥ 0 for all x ∈ Ω. Since χ(s) = 0 for all
non-negative s, it follows that ρi(0) = 0. Furthermore, since χ(s) ≥ 0 for all s ∈ R, we have
ρi(t) ≥ 0 for all t ∈ [0, TU0 ]. Next, the function ρi is continuously differentiable on [0, TU0 ], and
we have:

ρ′i(t) =
∫

Ω

∂ωi
∂t

χ′(ωi)dx, t ∈ [0, TU0 ] ,

where we omit the variables x and t in order to lighten our notations. By virtue of assumption
(A2), we have

n∑
k=1

Li,kuk =
n∑
k=1
k 6=i

Li,k(uk − ui).

Now we compute:

∂ωi
∂t

= −∂ui
∂t

= −ai∆ui −
1
ε2
i

[
ui(1− ui)− civi

ui − qi
ui + qi

]
− ξ

n∑
k=1
k 6=i

Li,k(uk − ui).

In parallel, we have ∆ωi = −∆ui, thus we obtain:

ρ′i(t) =

∫
Ω

ai∆ωi − 1
ε2
i

[
ui(1− ui)− civi

ui − qi
ui + qi

]
− ξ

n∑
k=1
k 6=i

Li,k(uk − ui)

χ′(ωi)dx

= ai

∫
Ω

(
∆ωi

)
χ′(ωi)dx−

1
ε2
i

∫
Ω
uiωiχ

′(ωi)dx

+ ci
ε2
i

∫
Ω
vi
ui − qi
ui + qi

χ′(ωi)dx− ξ
n∑
k=1
k 6=i

Li,k

∫
Ω

(uk − ui)χ′(ωi)dx.

Since ui satisfies the Neumann boundary condition on ∂Ω, the same holds for ωi and we have:∫
Ω

(
∆ωi

)
χ′(ωi)dx = −

∫
Ω
∇ωi∇χ′(ωi)dx = −

∫
Ω
|∇χ′(ωi)|2 dx ≤ 0.
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Next, we have ωiχ′(ωi) ≥ 0 by virtue of Lemma 2, thus:

− 1
ε2
i

∫
Ω
uiωiχ

′(ωi)dx ≤ 0.

Afterwards, we write:

ci
ε2
i

∫
Ω
vi
ui − qi
ui + qi

χ′(ωi)dx = ci
ε2
i

[∫
Ω
vi
ui − 1
ui + qi

χ′(ωi)dx+
∫

Ω
vi

1− qi
ui + qi

χ′(ωi)dx
]

= − ci
ε2
i

∫
Ω

vi
ui + qi

ωiχ
′(ωi)dx+ ci

ε2
i

∫
Ω
vi

1− qi
ui + qi

χ′(ωi)dx.

We recall that 0 < qi < 1 (see equation (9)), thus we obtain:

ci
ε2
i

∫
Ω
vi
ui − qi
ui + qi

χ′(ωi)dx ≤ 0.

At this stage, we have proved that:

ρ′i(t) ≤ −ξ
n∑
k=1
k 6=i

Li,k

∫
Ω

(uk − ui)χ′(ωi)dx.

Now we set
ρ =

n∑
i=1

ρi,

and we compute:

ρ′(t) ≤ −ξ
n∑
i=1

n∑
k=1
k 6=i

Li,k

∫
Ω

(uk − ui)χ′(ωi)dx.

We remark that

−
n∑
i=1

n∑
k=1
k 6=i

Li,k

∫
Ω

(uk − ui)χ′(ωi)dx = −
∑

1≤i,k≤n
k<i

Li,k

∫
Ω

(uk − ui)
(
χ′(ωi)− χ′(ωk)

)
dx

= −
∑

1≤i,k≤n
k<i

Li,k

∫
Ω

(ωi − ωk)
(
χ′(ωi)− χ′(ωk)

)
dx.

The last property in Lemma 2 implies that:

−
∑

1≤i,k≤n
k<i

Li,k(ωi − ωk)
(
χ′(ωi)− χ′(ωk)

)
≤ 0, (28)

thus we have:
ρ′(t) ≤ 0, t ∈

[
0, TU0

]
.

We conclude that ρ is a decreasing function on
[
0, TU0

]
. But we have ρ(0) = 0, thus ρ(t) ≤ 0

on
[
0, TU0

]
. Since we also have ρ(t) ≥ 0 on

[
0, TU0

]
, we obtain ρ ≡ 0. Finally, we have ρi ≥ 0

for all i ∈ {1, . . . , n}, from which we conclude that ρi ≡ 0, which means that ui(x, t) ≤ 1 for
all x ∈ Ω, t ∈

[
0, TU0

]
and i ∈ {1, . . . , n}.

Similar computations show that vi(x, t) ≤ 1 for all x ∈ Ω, t ∈
[
0, TU0

]
and i ∈ {1, . . . , n}.

The proof is complete.
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It is interesting to note that the property

−
∑

1≤i,k≤n
k<i

Li,k(ωi − ωk)
(
χ′(ωi)− χ′(ωk)

)
≤ 0

used at the end of the proof (see equation (28)) is similar to the property of the diffusion operator
with Neumann boundary condition ∫

Ω

(
∆ωi

)
χ′(ωi)dx ≤ 0.

In other words, the coupling operator, in the case of a bi-directional graph, acts in a similar
manner as the diffusion operator. For that reason, the coupling operator Gξ defined by (19) is
sometimes called graph Laplacian.

We emphasize that the symmetry of the coefficients Li,k is a key ingredient of the proof of
Theorem 3; if the graph G is not symmetric, then the arguments used in the proof are not valid
any longer. In that case, one should not hope to find an invariant region of rectangular shape.

Note also that recently, entropy methods have been employed in [16], for establishing, in all
space dimensions, the existence of global solutions to reaction-diffusion systems similar to the
complex network (8).

Finally, it is worth emphasizing that the region R given by (26) contains the non-trivial
stationary solution

Ū =
(
ūi, v̄i

)>
1≤i≤n (29)

when ξ = 0, since we have 0 < qi < 1 for all i ∈ {1, . . . , n} (see equation (9)). Under
assumptions (A2) and (A3), elementary computations show that the region R even contains
Ū for all positive ξ. As the invariant region provides a uniform bound which will be useful
for proving a sufficient condition of synchronization in the final section, we shall investigate the
possibility of reaching a synchronization state in the presence of the unstable stationary solution
Ū . In particular, it is a very interesting question to determine if synchronization perturbs the
nature of the stationary solution Ū .

3.2. Energy estimates

In this section, we aim to establish two energy estimates for the solutions of the complex network
(8): the first one is obtained in the general case, but implies a restriction on the parameter
regime, since the coefficients εi (1 ≤ i ≤ n), are required to be sufficiently small; the second
energy estimate is obtained under assumption (A1), but it provides a uniform exponential
decrease. From those energy estimates follows the existence of an absorbing set, as will be
shown in the next section.

Theorem 4. Let U0 be any initial condition in the set of initial data X0 defined by (25). We
denote by U(t, U0) the solution of the complex network problem (8) stemming from U0, defined
on [0, TU0 ]. Then, for εi sufficiently small (1 ≤ i ≤ n), there exist positive constants γ̃ and C
such that

‖U(t, U0)‖X ≤ ‖U0‖X e
−γ̃t + C, t ∈ [0, TU0 ]. (30)

The following lemma is elementary, but useful for rearranging double finite sums.

Lemma 3. Let n be a positive integer, (ai)1≤i≤n, (bki)1≤k,i≤n and (vi)1≤i≤n real coefficients.
Then it holds that

n∑
i=1

aiv2
i +

n∑
k=1
k 6=i

bkiv
2
k

 =
n∑
i=1

civ
2
i ,
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with

ci = ai +
n∑
k=1
k 6=i

bik, 1 ≤ i ≤ n.

Proof of Theorem 4. Let U0 ∈ X0 and U(t, U0) be the solution of problem (8) starting from U0,
defined on [0, TU0 ]. We introduce the energy functions E1 and E2 defined by

E1(t) = 1
2

n∑
i=1
‖ui(t)‖2L2(Ω) , E2(t) = 1

2

n∑
i=1
‖vi(t)‖2L2(Ω) , (31)

where U =
(
ui, vi

)>
1≤i≤n. The energy functions E1 and E2 satisfy

E1(t) + E2(t) = 1
2 ‖U(t, U0)‖2X ,

for all t ∈ [0, TU0 ]. Next, we compute

dE1
dt

(t) =
n∑
i=1

∫
Ω
ui
∂ui
∂t

dx

=
n∑
i=1

∫
Ω
ui

{
ai∆ui + 1

ε2
i

[
ui(1− ui)− civi

ui − qi
ui + qi

]
+ ξ

n∑
k=1

Li,kuk

}
dx

≤
n∑
i=1

∫
Ω

 1
ε2
i

u2
i −

1
ε2
i

u3
i −

1
ε2
i

ciuivi
ui − qi
ui + qi

+ ξLi,iu
2
i + ξ

n∑
k=1
k 6=i

Li,kukui

 dx,

where we have used the Neumann boundary condition and the maximum principle. Next, it is
easy to see that

− 1
ε2
i

ciuivi
ui − qi
ui + qi

≤ 1
ε2
i

ciqivi.

Meanwhile, we use Young inequality uiuk ≤ u2
i

2 + u2
k

2 , which leads to

dE1
dt

(t) ≤
n∑
i=1

∫
Ω

 1
ε2
i

u2
i −

1
ε2
i

u3
i + 1

ε2
i

ciqivi + ξLi,iu
2
i + ξ

2

n∑
k=1
k 6=i

Li,ku
2
k + ξ

2

n∑
k=1
k 6=i

Li,ku
2
i

 dx

≤
n∑
i=1

∫
Ω

(
ζ1,iu

2
i −

1
ε2
i

u3
i

)
dx+

n∑
i=1

∫
Ω

1
ε2
i

ciqividx,

where ζ1,i is a real coefficient obtained after rearranging the finite sums over k and i, whose
expression is determined by Lemma 3 as

ζ1,i = 1
ε2
i

+ ξ

2

n∑
k=1

Li,k, 1 ≤ i ≤ n.

Similar computations show that

dE2
dt

(t) ≤
n∑
i=1

∫
Ω

u2
i

2ε2
i

dx+
n∑
i=1

∫
Ω

(
ζ2,i −

1
εi

)
v2
i dx,
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where ζ2,i is given by

ζ2,i = 1
2 + ξ

2

n∑
k=1

Li,k, 1 ≤ i ≤ n.

It follows that

dE1
dt

(t)+dE2
dt

(t) ≤
n∑
i=1

∫
Ω

[(
ζ1,i + 1

2ε2
i

)
u2
i −

1
ε2
i

u3
i

]
dx+

n∑
i=1

∫
Ω

[
1
ε2
i

ciqivi +
(
ζ2,i −

1
εi

)
v2
i

]
dx.

We set
γi = −

(
ζ2,i −

1
εi

)
,

and we choose εi sufficiently small so that γi > 0. Now we use the elementary polynomial
inequalities (

ζ1,i + 1
2ε2
i

)
u2
i −

1
ε2
i

u3
i ≤ −

1
2u

2
i + C1,i,

1
ε2
i

ciqivi − γiv2
i ≤ −γ̃iv2

i + C2,i,

with positive constants C1,i, C2,i and γ̃i, given by:

C1,i = (1 + 2ζ1,i + ε−2
i )3

54ε−4
i

, C2,i = c2i q
2
i

2ε4
i γi

, γ̃i = γi
2 ,

for 1 ≤ i ≤ n. We obtain

dE1
dt

(t) + dE2
dt

(t) + γ̃
(
E1(t) + E2(t)

)
≤ C,

with positive constants C and γ̃. The conclusion follows from Gronwall lemma.

We emphasize that the energy estimate (30) is valid for a restrictive parameter regime, since
εi has to be chosen sufficiently small in order to guaranty that

ζ2,i −
1
εi
< 0,

where ζ2,i depends on the coupling strength ξ. In particular, the coefficients ζ2,i may increase
with ξ, thus requiring a smaller value of εi; this should be seen as a restriction, since it will
appear with Theorem 6 that ξ should admit a large value to guaranty synchronization. However,
we can obtain a uniform in ξ energy estimate by assuming that the graph G is a complete bi-
directional graph. Note that it is not necessary to assume that the instances of the complex
network (8) are identical. This is stated in the following theorem.

Theorem 5. Suppose that assumption (A1) holds (the graph G underlying the complex network
problem (8) is a complete bi-directional graph). Let U0 be any initial condition in the set of
initial data X0 defined by (25). We denote again by U(t, U0) the solution of the complex network
problem (8) stemming from U0, defined on [0, TU0 ]. Then there exist positive constants γ̃ and
K̃ such that

‖U(t, U0)‖X ≤ ‖U0‖X e
−γ̃t + K̃, t > 0, (32)

where γ̃ and K̃ do not depend on ξ.
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Proof. As before, let U0 ∈ X0 and U(t, U0) be the solution of problem (8) starting from U0,
defined on [0, TU0 ]. We examine again the energy functions E1 and E2 defined by (31). Now
we have

dE1
dt

(t) =
n∑
i=1

∫
Ω
ui

ai∆ui + 1
ε2
i

[
ui(1− ui)− civi

ui − qi
ui + qi

]
+ ξ

n∑
k=1
k 6=i

(uk − ui)

 dx.

By virtue of Young inequality and using Lemma 3, we have
n∑
i=1

ui

n∑
k=1
k 6=i

(uk − ui) =
n∑
i=1

n∑
k=1
k 6=i

uiuk −
n∑
i=1

(n− 1)u2
i

≤
n∑
i=1

n∑
k=1
k 6=i

(
u2
i

2 + u2
k

2

)
−

n∑
i=1

(n− 1)u2
i

≤
n∑
i=1

−(n− 1)
2 u2

i +
n∑
k=1
k 6=i

1
2u

2
k



≤
n∑
i=1

−(n− 1)
2 +

n∑
k=1
k 6=i

1
2

u2
i

≤ 0.

It follows that
dE1
dt
≤

n∑
i=1

∫
Ω

(
1
ε2
i

u2
i −

1
ε2
i

u3
i

)
dx+

n∑
i=1

∫
Ω

1
ε2
i

ciqividx.

Similarly, we have
dE2
dt
≤

n∑
i=1

∫
Ω

1
2εi

u2
i dx+

n∑
i=1

∫
Ω

−1
2εi

v2
i dx.

We obtain

d(E1 + E2)
dt

≤
n∑
i=1

∫
Ω

(
2 + εi
2ε2
i

u2
i −

1
ε2
i

u3
i

)
dx+

n∑
i=1

∫
Ω

(
1
εi
ciqivi −

1
2εi

v2
i

)
dx.

Now we use the elementary polynomial inequalities

2 + εi
2ε2
i

u2
i −

1
ε2
i

u3
i ≤ −

1
2u

2
i + C1,i,

1
εi
ciqivi −

1
2εi

v2
i ≤ −

1
4εi

v2
i + C2,i,

where C1,i and C2,i are positive constants, which are given for 1 ≤ i ≤ n by

C1,i = (2 + εi + ε2
i )3

54ε2
i

, C2,i = c2i q
2
i

εi
.

Note that C1,i and C2,i do not depend on ξ. We obtain

d(E1 + E2)
dt

≤ −γ(E1 + E2) +K,
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where γ and K are given by

γ = min
(

1, 1
2εmin

)
, K = |Ω|

n∑
i=1

(C1,i + C2,i),

with εmin = min
1≤i≤n

{
εi
}

. This leads to the desired estimate.

§4 Large time behavior

In this final section, we prove our main results, investigating the possibility to reach a syn-
chronization state within non-trivial attractors. We first prove a theorem which establishes
a sufficient condition of synchronization in the complex network (8), under assumptions (A1)
and (A3); this sufficient condition highlights the effect of the coupling strength ξ involved in
the coupling terms of the complex network (see equation (19)), as well as the effect of the pa-
rameter ε of the initial Keener-Tyson model (5) which controls the dimension of the attractors
(see equation (33) below). Next, we prove that the complex network (8) generates a dynamical
system which admits the global attractor. Finally, we prove the continuity of the local unstable
manifold of the stationary solution Ū of the complex network, employing an innovative method
which provides a lower bound of the dimension of the global attractor and also proves that the
unstable manifold undergoes a series of bifurcations which change its dimension.

4.1. Sufficient condition of synchronization

Let us first give a precise definition of identical synchronization for the complex network of
multiple instances of the Keener-Tyson model.

Definition 1. For every U0 in X, let us denote by U(t, U0) =
(
Ui(t, U0)

)
1≤i≤n the solution

of the complex network problem (8) stemming from U0. Let K be a subset of X such that
each solution of (8) stemming from U0 ∈ K is global. We say that the complex network (8)
synchronizes in K ⊂ X if for every initial condition U0 in K , we have:

lim
t→∞

‖Ui(t, U0)− Uj(t, U0)‖L2(Ω)2 = 0.

In the following theorem, we establish that the complex network (8) synchronizes in the
invariant region R given by Theorem 3, under assumptions (A1) and (A3). The uniform bound
provided by the invariant region plays a decisive role in the proof. Furthermore, we emphasize
that the sufficient condition of synchronization (33) highlights the effect of the parameter ε of
the Keener-Tyson model, thus is more precise than the sufficient conditions of synchronization
established in [3] or in [7].

Theorem 6. Let assumptions (A1) and (A3) hold. Then the complex network (8) synchronizes
in R, at an exponential rate, if

n ξ > κ̃0 + κ̃1
ε

+ κ̃2
ε2 , (33)

where κ̃0, κ̃1 and κ̃2 are positive constants determined by (17), which depend only on the pa-
rameters c and q of the Keener-Tyson model (5).

Proof. Let us consider an initial condition U0 ∈ R. We denote by U =
(
ui, vi

)>
1≤i≤n the solution

of the complex network problem (8) with a complete bi-directional graph, stemming from U0
and defined on [0, ∞). By virtue of Theorem 3, we have

0 ≤ ui(x, t) ≤ 1, 0 ≤ vi(x, t) ≤ 1, t ≥ 0, x ∈ Ω, 1 ≤ i ≤ n.
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We conclude that

‖ui(t)‖L∞(Ω) ≤ 1, ‖vi(t)‖L∞(Ω) ≤ 1, t ≥ 0, 1 ≤ i ≤ n.

We introduce the energy functions:

Eik = E1ik + E2ik,

where
E1ik = 1

2 ‖ui − uk‖
2
L2(Ω) , E2ik = 1

2 ‖vi − vk‖
2
L2(Ω) ,

for all i, k in {1, . . . , n} such that i 6= k. We compute:

d

dt
E1ik =

∫
Ω

(ui − uk)∂(ui − uk)
∂t

dx.

Using the fact the instances are identical, we have:

∂(ui − uk)
∂t

= ∂ui
∂t
− ∂uk

∂t

= a∆ui − a∆uk + f̂(Ui)− ui − f̂(Uk) + uk + ξ

 n∑
j=1
j 6=i

(uj − ui)−
n∑
j=1
j 6=k

(uj − uk)

 .
Now we remark that

n∑
j=1
j 6=i

(uj − ui)−
n∑
j=1
j 6=k

(uj − uk) =
n∑
j=1
j 6=i

uj − (n− 1)ui −
n∑
j=1
j 6=k

uj + (n− 1)uk

= uk − (n− 1)ui − ui + (n− 1)uk
= n(uk − ui).

We obtain

d

dt
E1ik = a

∫
Ω

(ui − uk)∆(ui − uk)dx

+
∫

Ω
(ui − uk)

(
f̂(Ui)− ui − f̂(Uk) + uk

)
dx

− nξ
∫

Ω
(uk − ui)2dx

≤
∫

Ω
(ui − uk)

(
f̂(Ui)− ui − f̂(Uk) + uk

)
dx− 2nξE1ik.

Next we have, by virtue of Hölder’s inequality:∫
Ω

(ui − uk)
(
f̂(Ui)− ui − f̂(Uk) + uk

)
dx

≤
∥∥∥(ui − uk)

(
f̂(Ui)− ui − f̂(Uk) + uk

)∥∥∥
L1(Ω)

≤ ‖ui − uk‖L2(Ω) ×
∥∥∥f̂(Ui)− ui − f̂(Uk) + uk

∥∥∥
L2(Ω)

≤ ‖Ui − Uk‖L2(Ω)2 × ‖f(Ui)− Ui − f(Uk) + Uk‖L2(Ω)2 .
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We recall that f satisfies the estimation (16). It follows that:

‖f(Ui)− Ui − f(Uk) + Uk‖L2(Ω)2 ≤ ‖f(Ui)− f(Uk)‖L2(Ω)2 + ‖Ui − Uk‖L2(Ω)2

≤
[
Cε
(
1 + ‖Ui‖L∞(Ω)2 + ‖Uk‖L∞(Ω)2

)
+ 1
]
‖Ui − Uk‖L2(Ω)2

≤ (1 + 3Cε) ‖Ui − Uk‖L2(Ω)2 .

We conclude that

d

dt
E1ik ≤ −2nξE1ik + (1 + 3Cε) ‖Ui − Uk‖2L2(Ω)2

≤ −2nξE1ik + 2(1 + 3Cε)Eik.

Similar computations show that we also have

d

dt
E2ik ≤ −2nξE2ik + 2(1 + 3Cε)Eik,

from which we deduce
d

dt
Eik + 2(nξ − C̃ε)Eik ≤ 0,

where C̃ε is a positive quantity. By virtue of equation (17), C̃ε is given by a quadratic expression
on ε:

C̃ε = 1 + 3Cε = κ̃0 + κ̃1
ε

+ κ̃2
ε2 ,

where κ̃0, κ̃1 and κ̃2 are positive constants which depend only on the parameters c and q of the
Keener-Tyson model (5). Applying Gronwall lemma leads to

Eik(t) ≤ Eik(0)e−2(nξ−C̃ε)t, t ≥ 0,

which completes the proof.

It is possible to relax assumption (A1) and (A3) in several ways (see [3] or [7]). However,
the symmetry of the graph G represents, here, a key ingredient for reaching synchronization.
Indeed, it is possible to construct a simple two nodes network with a unique directed edge, which
does not synchronize.

Note that the sufficient condition of synchronization (33) can be fulfilled for any ε > 0.
When the number n of vertices in the graph G is fixed, this sufficient condition determines
a synchronization threshold in the (ε, ξ) plane which is depicted in figure 3(b) below. In the
sequel, we examine the possibility to fulfill the sufficient synchronization (33) while conserving
the instability of the stationary solution Ū .

4.2. Global attractor of the complex network

The energy estimates proved in Theorems 4 and 5 guarantee that the solutions of the complex
network problem (8) starting in the set X0 given by (25) are global in time. Therefore, we can
construct a family of semi-flows Sξ(t) parametrized by ξ as follows: for any ξ ≥ 0 and any initial
condition U0 ∈ X0, we denote by Uξ(t, U0) the solution of the complex network problem (8),
defined for t ≥ 0 and we set

Sξ(t)U0 = Uξ(t, U0). (34)

The energy estimates (30) and (32) are also useful for proving the existence of an absorbing set,
which in turn guarantees the existence of the global attractor for each dynamical system Sξ(t).
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Theorem 7. Suppose that the assumptions of Theorem 4 or 5 hold. Then, for each ξ ≥ 0,
the complex network problem (8) generates a dynamical system Sξ(t) which admits the global
attractor Aξ. Furthermore, Aξ is connected and contains the trivial stationary solution 0 for all
ξ ≥ 0. If assumptions (A2) and (A3) hold, then the non-trivial stationary solution Ū defined by
(29) also belongs to Aξ for all ξ ≥ 0 and we have

dimH Aξ ≥ 1, ξ ≥ 0.

Proof. For each ξ ≥ 0, we have, by virtue of energy estimate (30):

‖Sξ(t)U‖X ≤ ‖U‖X e
−γ̃ξt + Cξ,

for all U ∈ X0, t ≥ 0, with positive constants γ̃ξ and Cξ. Now let us consider a bounded subset
B of X. There exists a positive constant CB such that ‖U‖X ≤ CB for all U in X. We set
tB = logCB

γ̃ξ
, which leads to

‖Sξ(t)U‖X ≤ 1 + Cξ,

for all t ≥ tB and U ∈ B ∩ X0. Following the reasoning of [37] (Chapter 6, Section 5.2), we
solve the complex network problem (21)

dU

dt
+ AU = F (U) +Gξ(U), t > 0,

with an initial condition Sξ(s)U such that s ≥ 0 and U ∈ B ∩ X0. By virtue of Theorem 2
and estimation (23), there exist a positive time τ which depends only on ‖Sξ(s)U‖X , and an
increasing function µ, such that

(t− s) ‖ASξ(t)U‖X ≤ µ
(
‖Sξ(s)U‖X

)
, s < t ≤ s+ τ.

We apply this inequality at s = t− (1 + tB + τ), which leads to

‖ASξ(t)U‖X ≤
1

1 + tB + τ
µ
(∥∥Sξ(t− (1 + tB + τ)

)
U
∥∥
X

)
, 1 + tB + τ < t.

We introduce t̃B = 1 + τ + 2tB and obtain

sup
U∈B∩X0

sup
t≥t̃B
‖ASξ(t)U‖X ≤ C̃ξ,

with C̃ξ = µ(1 + Cξ) > 0. Now we set Bξ = B
D(A)(0, C̃ξ) (closed ball in X, with closure in

D(A), centered at 0, of radius C̃ξ). As such, Bξ is a compact and connected absorbing set,
whose existence implies the existence of the global attractor Aξ, which is also connected.

Next, it is easily seen that the trivial stationary solution 0 belongs to Aξ for all ξ ≥ 0 (see
Remark 1), and that the non-trivial stationary solution Ū also does if assumptions (A2) and
(A3) hold. Indeed, elementary computations show that the stationary solution (ū, v̄) of the
Keener-Tyson model (5) satisfies in this case

1
ε2
i

[
ū(1− ū)− civ̄

ū− qi
ū+ qi

]
+ ξ

n∑
k=1

Li,kū = 1
εi

(ū− v̄) + ξ

n∑
k=1

Li,kv̄ = 0,

for all i ∈ {1, . . . , n} and all ξ ≥ 0. Therefore, the non-trivial stationary solution Ū defined
by (29) is a stationary homogeneous solution of the complex network problem (8) for all ξ ≥ 0;
hence, Ū belongs to Aξ for all ξ ≥ 0.

Now we consider the function λ defined by

λ(x) = dX(x, 0), x ∈ Aξ,
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where dX denotes the distance induced by the norm of the Banach space X (see equation (11)).
The function λ is continuous and Aξ is connected, thus λ(Aξ) is connected in R. Moreover,
λ(Aξ) is non-empty since dX(0, Ū) > 0, and the function λ is also Lipschitz, thus we have

dimH λ(Aξ) ≤ dimH Aξ.

Finally, λ(Aξ) is a non-empty connected subset of R, thus we have dimH λ(Aξ) = 1, which
completes the proof.

It is worth emphasizing that the assumptions of the latter Theorem are compatible with
the sufficient condition of synchronization (33). Thus we have proved an important pattern:
it is possible to reach a synchronization state in the complex network (8) while
preserving instabilities within a non-trivial attractor. With slight modifications, this
pattern shall be recovered for a large class of infinite dimensional dynamical systems, provided
the existence of at least two stationary solutions.

Note that it can also be shown that the complex network problem (8) generates a continuous
dynamical system Sξ(t) defined in X, admitting exponential attractors Mξ of finite fractal
dimension (see [37], Chapter 6). Under assumption (A1), the uniform in ξ energy estimate (32)
could even be used to construct a uniform in ξ absorbing set B for the family of dynamical
systems Sξ(t) (see [38]). Therefore, we would prove that the family of exponential attractors
Mξ parametrized by ξ enjoys a continuity property with respect to a variation of ξ, in the sense
of the Hausdorff distance defined by (4):

distH(Mξ, M0)→ 0 as ξ → 0. (35)

However, this continuity property would not imply4 that the Hausdorff dimension of Mξ is
close to the Hausdorff dimension of M0, mainly because the Hausdorff dimension is sensitive to
“holes”, whereas the Hausdorff distance is not [33].

Now we intend to deepen our study of the global attractor Aξ, in order to determine the level
of instability which would be compatible with a synchronization state of the complex network
(8). As illustrated with the example given in figure 1, a detailed analysis of the unstable manifold
can provide refined estimates of the dimension of the global attractor.

Let us introduce the notations

ϕ(u, v) = u(1− u)− cv u− q
u+ q

, ψ(u, v) = u− v,

for u ≥ 0 and v ≥ 0. We consider the stationary solution (ū, v̄) of the Keener-Tyson model (5),
given by (6). We also assume that the parameters c, q satisfy the condition

0 < ∂ϕ

∂u
(ū, v̄) < 1. (36)

Under the latter assumption, and in the case Ω ⊂ R3, it has been proved in [38] that the
dynamical system induced by the Keener-Tyson model (5) admits a local unstable manifold
W loc

(
(ū, v̄), ε) whose dimension satisfies, for ε sufficiently small,

dim W loc
(
(ū, v̄), ε) ≥ C

ε3 , (37)

where C denotes a positive constant. At the opposite, if ε is sufficiently large, it is seen that
(ū, v̄) is exponentially stable and that

dim W loc
(
(ū, v̄), ε) = 0. (38)

4Consider X = R, A = [0, 1] and Bm = { k
m

; 0 ≤ k ≤ m} for each integer m > 0. Then it holds that
dimH A = 1, dimH Bm = 0 for all m > 0, whereas distH(A, Bm)→ 0 as m→∞.
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Since the unstable manifold of a stationary solution is always a subset of the global attractor
(see Remark 1 and Figure 1), we can deduce that the global attractor A0 of the dynamical
system S0(t) induced by the complex network (8) with ξ = 0 also satisfies for ε sufficiently small

dimH A0 ≥
Cn
ε3 , (39)

for a positive quantity Cn which may depend on the number n of vertices in the graph G . We
are interested in establishing a similar property for Aξ with ξ > 0.

4.3. Unstable manifold of the complex network

Let us suppose that assumptions (A2) and (A3) hold. In this case, Ū belongs to Aξ for all ξ ≥ 0.
Since the operator Fξ = F +Gξ defined by equations (18) and (19) is Fréchet differentiable in a
neighborhood of Ū , it follows from Theorem 6.9 in [37], that the complex network problem (8)
can be localized and complexified, in such a way that the stationary solution Ū is hyperbolic and
admits a local unstable manifold W loc

ξ (Ū , ε) (note that the phase space can be slightly modified
in this complexification process). Furthermore, the dimension of the local unstable manifold
W loc
ξ (Ū , ε) is given by the number of eigenvalues of the operator Āξ = A − F ′ξ(Ū) having a

negative real part, where F ′ξ(Ū) denotes the Fréchet derivative of the operator Fξ, evaluated at
Ū . The following theorem states that W loc

ξ (Ū , ε) and W loc
0 (Ū , ε) have the same dimension for ξ

sufficiently small.

Theorem 8. Suppose that assumptions (A2) and (A3) hold and that the property (36) is sat-
isfied. Then for any ε > 0, there exists a positive ξε such that

dim W loc
ξ (Ū , ε) = dim W loc

0 (Ū , ε),

for 0 ≤ ξ ≤ ξε.

Proof. Let us introduce the matrices Q and R defined by

Q =
[

1 + 1
ε2

(
1− 2ū− 2cqv̄

(ū+q)2

)
− c(ū−q)
ε2(ū+q)

1
ε 1− 1

ε

]
, R =

[
1 0
0 1

]
,

and the n blocks matrices Qn and Rn given by

Qn =


Q 0 . . . 0

0 . . . . . . ...
... . . . . . . 0
0 . . . 0 Q

 , Rn =


L1,1R L1,1R . . . L1,nR

L2,1R
. . . . . . ...

... . . . . . . Ln−1,nR
Ln,1R . . . Ln,n−1R Ln,nR

 .
The Fréchet derivative of the non-linear operator Fξ = F +Gξ, where and F and Gξ are defined
by equations (18) and (19) respectively, evaluated at Ū , is given by

F ′ξ(Ū) = Qn + ξRn.

Next we introduce the operator
Āξ = A− F ′ξ(Ū).

We write
Āξ = Ā0 + T (ξ), (40)
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with Ā0 = A − Qn and T (ξ) = −ξRn. In this way, the operator Āξ is seen as a perturbation
of Ā0. Let σ

(
Āξ
)

denote the spectrum of the operator Aξ. Now we examine the separation
condition

σ
(
Āξ
)
∩ {λ ∈ C ; <eλ = 0} = ∅. (41)

It is already known that Ā0 satisfies this spectrum separation. Indeed, the intersection of σ
(
Ā0
)

with the half-plane {λ ∈ C ; <eλ < 0} is a finite set of negative eigenvalues, which proves that
Ū admits a local unstable manifold W loc

0 (Ū , ε) which is tangent to the eigenspace corresponding
to these negative eigenvalues; the dimension of W loc

0 (Ū , ε) is the dimension of this eigenspace
(see [37], Chapter 6, section 6.3). Finally, since T (ξ) is a bounded operator, by virtue of Kato’s
theorem for the spectrum of perturbed operators (see [21], Chapter 4, section §3), it follows that

dim W loc
ξ (Ū , ε) = dim W loc

0 (Ū , ε),

for ξ sufficiently small.

The association of Theorem 8 and of the lower bound (37) directly provides the promised
refined lower bound of the global attractor Aξ.

Corollary 1. Suppose that assumptions (A2) and (A3) hold and that the property (36) is
satisfied, with Ω ⊂ R3. Then for any ε > 0 sufficiently small, there exists a positive ξε such that

dimH Aξ ≥ dim W loc
ξ (Ū , ε) ≥ Cn

ε3 ,

for 0 ≤ ξ ≤ ξε, where Cn denotes a positive quantity which depends on the number n of vertices
in the graph G and on the parameters c and q of the Keener-Tyson model (5).

4.4. Bifurcations of the stationary solution

The spectrum perturbation principle is the main ingredient of the proof of Theorem 8. However,
this principle shows more than the local continuity of the unstable manifold with respect to the
parameter ξ, which corresponds to the coupling strength of the complex network (8). First, we
have for ε sufficiently small and 0 ≤ ξ ≤ ξε:

dim W loc
ξ (Ū , ε) ≥ Cn

ε3 .

At the opposite, for ε sufficiently large and 0 ≤ ξ ≤ ξε, we have, by virtue of Theorem 8 and
equation (38):

dim W loc
ξ (Ū , ε) = 0.

We obtain the following proposition.

Proposition 1. Suppose that assumptions (A2) and (A3) hold and that the property (36) is
satisfied. Then the complex network problem (8) undergoes a sequence of bifurcations which pro-
voke a variation of the dimension of the unstable manifold, under a variation of both parameters
ξ and ε.

Note that the nature of the bifurcations, whose existence is established by the latter proposi-
tion, is not investigated here. We remark that the continuity property of exponential attractors
(see equation (35)) fails to detect those bifurcations. In other words, exponential attractors seem
to damp the structural changes of the dynamical system. The same holds for the continuity
property of the unstable manifold, established in [10] by using the Hausdorff distance, which
similarly fails to detect the bifurcations. Thus the spectrum perturbation principle invoked in
the proof of Theorem 8 and Proposition 1 represents an innovative method which leads to refined
results.
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We have illustrated in figures 2 and 3 the sequence of bifurcations of the unstable mani-
fold W loc

ξ (Ū , ε), with respect to both parameters ξ and ε. Those numerical results have been
obtained for the complex network (8) with 4 nodes, Ω = (0, π)2, a = b = 1, q = 0.03 and
c = 0.7. The computations are been performed in a Debian/GNU-Linux environment with the
free software FreeFem++. We observe that the dimension of the unstable manifold increases as
ε tends to 0, or as ξ does. However, it is not known, at this stage, if the critical value ξε given
in Theorem 8 changes continuously with ε. In a separate paper, we aim to present a deepened
numerical approach in order to visualize the shape of those bifurcation lines. Of great interest is
the intersection of the synchronization threshold defined by the inequality (33) with the bifur-
cation lines in the (ε, ξ) plane, which is illustrated in figure 3(b). It is easy to approximate the
coefficients κ̃0, κ̃1 and κ̃2 involved in this synchronization threshold, but it seems more delicate
to estimate the value of the border of each bifurcation step. Note that the critical value ξε can
be roughly estimated when the perturbation T (ξ) in the operator Āξ (see equation (40)) is seen
to commute with Ā0 (see [21], Chapter 4, Theorem 3.6).
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Figure 2: (a) Variation of the dimension of the local unstable manifold W loc
0 (Ū , ε) with respect to ε.

(b) Variation of the dimension of the local unstable manifold W loc
ξ (Ū , ε0) with respect to ξ for a given

ε0 > 0.

Let us finally discuss the possible coexistence of synchronization with instabilities. The
coupling strength ξ of the complex network (8) has to overcome the threshold defined by (33) in
order to guaranty synchronization; but if ξ overcomes the critical value ξε, then the dimension
of the local unstable manifold is likely to decrease. Analogously, we can consider the effect
of a variation of the number n of vertices in the graph G . An increase of n obviously favors
synchronization, since the coefficients κ̃0, κ̃1 and κ̃2 appearing in the inequality (33) do not
depend on n. However, the dimension of the local unstable manifold W loc

ξ (Ū , ε) is bounded from
below by a quantity which is likely to increase with n (see Corollary 1). Overall, synchronization
appears to be compatible with a low level of instability, but incompatible with a high level of
instability.

Conclusion

In this article, we have studied the possibility to synchronize unstable dynamical systems of
infinite dimension, while preserving the nature of the instabilities occurring in those systems.
Considering a complex network of multiple instances of the Keener-Tyson model, we have proved
a sufficient condition of synchronization, which highlights the effect of the main parameters of the
model. In parallel, we have analyzed the asymptotic behavior of the solutions, by establishing
a lower bound of the dimension of the global attractor. This lower bound has been obtained by
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ξ (Ū , ε)

0 20 40 60
(a) (b)

Synchronization threshold

ε
ξ

dim W loc
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Figure 3: (a) Variation of the dimension of the local unstable manifold W loc
0 (Ū , ε) with respect to ε and

ξ. (b) Symbolic figure illustrating the intersection of the synchronization threshold given by equation
(33) with the bifurcations lines changing the dimension of the local unstable manifold W loc

0 (Ū , ε).

examining the effect of the coupling strength of the network on the dimension of the unstable
manifold of a non-trivial stationary solution. A spectrum perturbation principle for non-bounded
operators has been applied, which, up to our knowledge, represents a novelty in the study of
the asymptotic behavior of infinite dimensional dissipative systems. This method also proves its
efficiency, since it allows to exhibit a sequence of bifurcations which affect the dimension of the
global attractor. Our results show that there exists a non-empty parameter regime for which
synchronization occurs in non-trivial attractors. However, many questions are still unresolved.
Indeed, it seems very delicate to estimate the optimal level of instability which is compatible
with synchronization. Furthermore, the topology of the graph underlying the network has been
subject to some technical assumptions of symmetry, thus the case of non-symmetric networks,
which are known to provoke original dynamics, is undoubtedly a promise for original discoveries.
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