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This paper deals with the problem of optimal control of a deterministic model of tubercu-
losis (abbreviated as TB for tubercle bacillus). We first present and analyze an uncontrolled
tuberculosis model which incorporates the essential biological and epidemiological fea-
tures of the disease. The model is shown to exhibit the phenomenon of backward bifurca-
tion, where a stable disease-free equilibrium co-exists with one or more stable endemic
equilibria when the associated basic reproduction number is less than the unity. Based
on this continuous model, the tuberculosis control is formulated and solved as an optimal
control problem, indicating how control terms on the chemoprophylaxis and detection
should be introduced in the population to reduce the number of individuals with active
TB. Results provide a framework for designing the cost-effective strategies for TB with
two intervention methods.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

More than 36 million patients have been successfully treated via the World Health Organization (WHO) strategy for
tuberculosis control since 1995. Despite predictions of a decline in global incidence, the number of new cases continues
to grow, approaching 10 million in 2010 [1,2]. This rise has been attributed to the spread of HIV, the collapse of public health
programs, the emergence of drug-resistant strains of Mycobacterium tuberculosis [3–5] and exogenous re-infections, where a
latently-infected individual acquires a new infection from another infectious (see [6,7] and references therein). It is worth
emphasizing that mathematical analysis of biomedical and disease transmission models can contribute to the understanding
of the mechanisms of those processes and to design potential therapies (see [8–12] and references therein). A number of
theoretical studies have been carried out on the mathematical modelling of TB transmission dynamics [13–21].

Mathematical models can provide a powerful tool for investigating the dynamics and control of infectious diseases. Opti-
mal control theory provides a valuable tool to begin to assess the trade-offs between vaccination and treatment strategies
[22,23]. Optimal control is a mathematical technique derived from the calculus of variations. Anyhow we can give sugges-
tions to the public health authorities about the effects of a particular control policy with respect to others, and in this context
the analysis and simulation of mathematical models may become a powerful tool in the hands of the above authorities. How-
ever, the control of epidemic systems is not usually an easy task since in real situations it is rather difficult to implement the
control policies suggested by the mathematical analysis [24,27]. There are a number of different methods for calculating the
optimal control for a specific mathematical model [23,25,26,30]. For example, Pontryagin’s maximum principle [26] allows
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the calculation of the optimal control for an ordinary equation model system with a given constraint. Variations of
Pontryagin’s maximum principle have been derived for other types of models including partial differential equations and
difference equations [23,25]. These techniques are powerful when applied to disease models and can provide great insight
into the best pathway to reduce disease burden. For example, with a given mathematical model for a disease, one can cal-
culate the best vaccination schedule balancing the cost of the vaccine and the cost of the disease burden [23]. There have
been several articles considering optimal control applied to specific diseases [27–31].

The present contribution considers the optimal control problem of the dynamical transmission of tuberculosis. We first
formulate and analyze an uncontrolled tuberculosis model that incorporates the essential biological and epidemiological fea-
tures of the disease such as constant recruitment, slow and fast progression, effective chemoprophylaxis, diagnostic and
treatment of infectious and exogenous reinfections of latently-infected individuals. We show that the model exhibits the
phenomenon of backward bifurcation, where a stable disease-free equilibrium co-exists with one or more stable endemic
equilibria when the associated basic reproduction number is less than unity. Moreover, despite the development of a number
of effective treatments over the past half century, TB remains one of the most destructive bacteria infections in humans. All
levels of government and public health officials are searching for answers to identify the best strategies for intervention. We
sound to determine optimal control strategies that would minimize not only infectious but also latently-infected individuals.
We completely characterize the optimal controls and compute a numerical solution of the optimality system via analytic
continuation. An important result of this analysis is that a cost-effective balance of chemoprophylaxis and treatment meth-
ods can successfully control a TB, but that the balance of treatment is specific to the population.

The organization of the paper is as follows. In the next section, a model for the dynamics of TB is formulated and rigor-
ously analyzed. Section 3 presents the optimal control problem in which chemoprophylaxis of latently-infected individuals
and detection of infectious rates are the controls. We seek to minimize the number of individuals with active TB. We char-
acterize the optimal control using Pontryagin’s Maximum Principle. The resulting optimality have been solved numerically.
Section 4 discusses the epidemiological implications of the results established in this paper.
2. The model

2.1. Model construction

In this section, we process with the construction of a mathematical model for the spread of tuberculosis. Based on epi-
demiological status, the simplest models include classes of susceptible, infected and infective individuals, and hence are
known as SEI (Susceptible-Infected-Infective) models [27–38].

We consider a finite population of N people. The infective class is divided into two subclasses with different properties:
diagnosed and undiagnosed infectious. At any given time, an individual is therefore in one of the following states: suscep-
tible, latently infected (exposed to TB but not infectious), diagnosed infectious (has an active TB confirmed after a sputum
examination in the hospital), undiagnosed infectious (i.e., have an active TB not confirmed by a sputum examination in hos-
pital) and we will denote these states by S; E; I and J, respectively.

All recruitment is into the susceptible class and occurs at a constant rate K. The rate constant for non-disease related
death is l, thus, 1=l is the average lifetime. Diagnosed and undiagnosed infectious have addition death rates due to the dis-
ease with constant rates d1 and d2, respectively. Transmission of M. tuberculosis occurs due to adequate contacts between
susceptible, diagnosed and undiagnosed infectious. Then, susceptible individuals acquire TB infection from individuals with
active TB at a rate k, given by
k ¼ b
ðI þ eJÞ

N
; ð1Þ
where b is the effective contact rate of diagnosed or undiagnosed infectious that is sufficient to transmit infection to a sus-
ceptible, and the parameter e > 1 accounts for the high infectiousness of undiagnosed infectious with respect to diagnosed
infectious. On adequate contacts with active TB, a susceptible individual becomes infected but not yet infectious. Fraction p
of newly infected individuals is assumed to undergo a fast progression to TB, while the remainder is latently infected and
enters the latent class E. Among the newly infected individuals that undergo a fast progression to TB, a fraction f of them
is detected and will enter the diagnosed infectious class I and the remaining fraction 1� f is undetected and will be trans-
ferred in the undiagnosed infectious class J. Once latently infected with M. tuberculosis, an individual will remain so for life
unless reactivation occurs. Latently infected individuals are assumed to acquire some immunity as a result of infection,
which reduces the risk of subsequent infection but does not fully prevent it. To account for treatment, we define by r1E, la-
tently infected individuals that receive effective chemoprophylaxis, and r2 as the rate of effective per capita therapy of diag-
nosed infectious. We assume that the chemoprophylaxis of latently infected individuals reduces their reactivation at a
constant rate r1 and that the initiation of therapeutics of diagnosed infectious immediately removes individuals from the
active status I and places them into a latent state E. We also assume that undiagnosed infectious can naturally recover
and will be transfer in the latent class E at a constant rate r3 < r2. Indeed, there is a resistance to tuberculosis in human
beings which is called immunity. Most people possess it in some degree, but some to a much greater degree than others.
Some races possess it in a greater degree than others and some families possess it in a greater degree than others. The
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probabilities are that immunity is gradually developed by resistance to the disease, and that for this reason families and
races which have been fighting the disease in some of their members for long periods have great resistance. Note that there
is no permanence in immunity against tuberculosis in the individual, the family or in the race. It may be lost after many
generations in the family and it may be lost in the individual through depression in health. Racial immunity is probably
the most durable of all. Due to endogenous reactivation, a fraction 1� r1 of latently infected individuals who did not received
effective chemoprophylaxis become infectious at a constant rate k, and reinfected (exogenously) after effective contacts with
individuals in the active TB classes at a rate rk, where r is the factor reducing the risk of infection as a result of acquiring
immunity for latently infected individuals. Among latently infected individuals who become infectious, the fraction h of
them is diagnosed and treated, while the remaining 1� h is not diagnosed and enters the undiagnosed infectious class J.
The model flow diagram is shown in Fig. 1.

This yields the following differential equations:
_S ¼ K� kS� lS;
_E ¼ ð1� pÞkSþ r2I þ r3J � rð1� r1ÞkE� A1E;
_I ¼ pfkSþ hð1� r1Þðkþ rkÞE� A2I;
_J ¼ pð1� f ÞkSþ ð1� hÞð1� r1Þðkþ rkÞE� A3J;

8>>>><
>>>>:

ð2Þ
where A1 ¼ lþ kð1� r1Þ;A2 ¼ lþ d1 þ r2, and A3 ¼ lþ d2 þ r3.
System (2) can be written in the following compact form:
_x ¼ uðxÞ � kx;
_y ¼ k½B1xþ B2he2jyi� þ Ay;

�
ð3Þ
where x ¼ S 2 RP0 is a state representing the compartment of non transmitting individuals (susceptible),
y ¼ ðy1; y2; y3Þ ¼ ðE; I; JÞ

T 2 R3
P0 is the vector representing the state compartment of different infected individuals (latently-

infected individuals, diagnosed and undiagnosed infectious), uðxÞ ¼ K� lx is a function that depends on x, k ¼ he1jyi=N
is the force of infection, N ¼ xþ y1 þ y2 þ y3 is the size of the total population, e1 ¼ ð0; b; beÞ 2 R3; e2 ¼ ð1;0;0Þ 2 R3,
B1 ¼ ð1� p; pf ; pð1� f ÞÞT 2 R3;B2 ¼ ð�rð1� r1Þ;rhð1� r1Þ;rð1� hÞð1� r1ÞÞT 2 R3, h:j:i is the usual scalar product and A is
the 3� 3 constant matrix:
A ¼
�A1 r2 r3

khð1� r1Þ �A2 0
kð1� hÞð1� r1Þ 0 �A3

2
64

3
75;
with A1;A2 and A3 defined as in Eq. (2).
Fig. 1. Transfer diagram for a dynamical transmission of tuberculosis where k ¼ bðI þ eJÞ=N.
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We give the explicit expression of �A�1 since we will need it later.
Table 1
Numeri

Para

Recr
Tran
Fast
Fast
Infec
Rein
Slow
Natu
TB m
TB m
Chem
Dete
Trea
Reco
�A�1 ¼ 1
s

A2A3 r2A3 r3A2

hkð1� r1ÞA3 A1A3 � kr3ð1� hÞð1� r1Þ �hkr3ð1� r1Þ
kA2ð1� hÞð1� r1Þ kr2ð1� hÞð1� r1Þ A1A2 � hkr2ð1� r1Þ

2
64

3
75;
where
s ¼ A1A2A3 � kð1� r1Þ½hr2A3 þ A2r3ð1� hÞ�:
The TB model (2) was simulated with the parameters given in Table 1.

2.2. Properties of the model

2.2.1. Positivity and boundedness of solutions
For model system (2) to be epidemiologically meaningful, it is important to prove that all its state variables are non-

negative for all time. In other words, solutions of model system (2) with positive initial data remain positive for all time t > 0.
Suppose, for example that, the variable E becomes zero for some time �t > 0 , i.e., Eð�tÞ ¼ 0, while all other variables are

positive. Then, from the E equation, we have dEð�tÞ=dt > 0. Thus, EðtÞP 0 for all t > 0. Similarly, it can be shown that
SðtÞ > 0; IðtÞ > 0 and JðtÞ > 0 for all t > 0.

Now, adding all equations in the differential system (2) yields
_N ¼ K� lNðtÞ � d1 IðtÞ � d2JðtÞ: ð4Þ
Thus, one can deduce that _N 6 K� lNðtÞ. It then follows that lim
t!þ1

NðtÞ 6 K
l which implies that the trajectories of model sys-

tem (2) are bounded. On the other hand, solving the differential inequality _N 6 K� lNðtÞ gives NðtÞ 6 Nð0Þe�lt þ K
l ð1� e�ltÞ.

In particular NðtÞ 6 K
l if Nð0Þ 6 K

l. Then, the region:
X ¼ ðS; E; I; JÞ 2 R4
P0; NðtÞ 6 K

l

� �
; ð5Þ
is a compact forward invariant set for model system (2). So, we limit our study to this region.

2.2.2. Local stability of the disease-free equilibrium (DFE)
System (2) has a DFE given by Q0 ¼ K

l ;0;0;0
� �

. The stability of this equilibrium will be investigated using the next gen-
eration operator [34]. Using the notations in [34] on model system (2), the matrices F and V, for the new infection terms and
the remaining transfer terms are, respectively, given by
F ¼
0 b be
0 bpf bepf

0 bpð1� f Þ bepð1� f Þ

2
64

3
75 and V ¼ �A:
Then, the basic reproduction ratio is defined, following [34], as the spectral radius of the next generation matrix, FV�1:
R0 ¼ qðFV�1Þ ¼ b½ð1� pÞR01 þ pfR02 þ pð1� f ÞR03�
A1A2A3 � kð1� r1Þ½hr2A3 þ A2r3ð1� hÞ� ; ð6Þ
where q represents the spectral radius (the dominant eigenvalue in magnitude) of FV�1 and
cal values for the parameters of model system (2).

meters Symbol Estimate Source

uitment rate of susceptible K 397800/year [32]
smission rate b Variable Assumed
route to active TB p 0.015 Assumed
route to diagnosed infectious class f 0.7/year Assumed
tivity of undiagnosed infectious e 1.5 Assumed
fection parameter of latently infected individuals r 2 Assumed

route to active TB k 0.05/year Assumed
ral mortality l 0.019896/year [32]
ortality of diagnosed infectious d1 0.0575/year [33]
ortality of undiagnosed infectious d2 0.24/year Assumed
oprophylaxis of latently infected individuals r1 0.001/year [33]

ction rate of active TB h 0.69/year [33]
tment rate of diagnosed infectious r2 0.8625/year [33]
very rate of undiagnosed infectious r3 0.49/year Assumed
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R01 ¼ hkð1� r1ÞA3 þ eA2ð1� hÞð1� r1Þ;
R02 ¼ A1A3 � kr3ð1� hÞð1� r1Þ þ ekr2ð1� hÞð1� r1Þ;
R03 ¼ �hkr3ð1� r1Þ þ e½A1A2 � hkr2ð1� r1Þ�:
The basic reproductive number measures the average number of new infections generated by a single infected individual in a
completely susceptible population.

Now, let us analyze the effects of the transmission rate b and the detection rate h on the basic reproduction ratio R0.
Fig. 2 shows the effects of b and h on the basic reproduction ratio R0. All other parameters are as in Table 1. From this

figure, one can see that R0 decreases if b decreases even for large values of h. This means that if the transmission coefficient
b is sufficiently small, TB infection could be eliminated even if h ¼ 0. However, it is difficult to control b. Therefore, detection
of infectious is an efficient intervention. Thus, combining detection of infectious with the reduction of contacts can reduceR0

to be less than 1. Then, the optimal control strategy should be a combination of detection of infectious, chemoprophylaxis of
latently-infected individuals, and reduction of contacts.

The following result is established (from Theorem 2 of [34]):

Lemma 1. The disease-free equilibrium Q0 of model system (2) is locally asymptotically stable whenever R0 < 1, and instable if
R0 > 1.

Biologically speaking, Lemma 1 implies that TB can be eliminated from the community (whenR0 < 1) if the initial size of
the population of model system (2) are in the basin of attraction of Q 0. Since TB models may undergo the phenomenon of
backward bifurcation (see [6]), it is instructive to determine whether the present model exhibits this phenomenon.

2.3. Equilibria and bifurcation

Model system (2) has one disease-free equilibrium, Q0 ¼ S0; 0; 0; 0ð Þwith S0 ¼ K=l and one or two endemic equilibria of
the form Q � ¼ ðS�; E�; I�; J�Þ. On the other hand, from Lemma 1, the DFE of model system (2) is locally asymptotically stable
(LAS) ifR0 < 1. However, this equilibrium may not be globally asymptotically stable (GAS) in X forR0 < 1, owing to the pos-
sibility of the backward bifurcation phenomenon, where the stable DFE co-exists with a stable endemic equilibrium when
R0 < 1 (see for instance [35–38] and the references therein). The public health implication of the backward bifurcation phe-
nomenon is that the classical requirement of having the basic reproductive ratio less than the unity, although necessary, is no
longer sufficient for curtailing the outbreak of the disease [38]. The possibility of this phenomenon in model system (2) is
investigated below.

Let Q � ¼ ðx�; y�Þ be any arbitrary equilibrium point of model system (3). To find conditions for the existence of an equi-
librium for which TB is endemic in the population (steady state with y� non zero), all equations in model system (3) are set at
zero, i.e.,
uðx�Þ � k�x� ¼ 0;
k�½B1x� þ B2he2jy�i� þ Ay� ¼ 0;

�
ð7Þ
where
k� ¼ he1jy�i
N�

; ð8Þ
is the force of infection at the steady state. Multiplying the second equation of (7) by �A�1, one obtains
y� ¼ k�½x�ð�A�1ÞB1 þ ð�A�1ÞB2he2jy�i�: ð9Þ
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Fig. 2. Graphs of the basic reproduction number R0 of model system (2) in dependence of h and b. All other parameters are as in Table 1.
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From Eq. (9), one has
he1jy�i ¼ k�½x�a1 þ a2he2jy�i� and he2jy�i ¼ k�½a3x� þ a4he2jy�i�; ð10Þ
where
a1 ¼ he1jð�A�1ÞB1i ¼ R0; a2 ¼ he1jð�A�1ÞB2i;
a3 ¼ he2jð�A�1ÞB1i and a4 ¼ he2jð�A�1ÞB2i:
From Eq. (10), one can deduce that
he1jy�i ¼
x�k�½R0 þ ða2a3 � a4R0Þk��

1� a4k
� and he2jy�i ¼

a3k
�x�

1� a4k
� : ð11Þ
Combining the first equation of (11) and the force of infection at the steady state (8) yields
N� ¼ x�½R0 þ ða2a3 � a4R0Þk��
1� a4k

� : ð12Þ
Now, let e3 ¼ ð0;1;0Þ and e4 ¼ ð0;0;1Þ. Then, from Eq. (9), one has
I� ¼ he3jy�i ¼ k�½a5x� þ a6he2jy�i� and J� ¼ he4jy�i ¼ k�½a7x� þ a8he2jy�i�: ð13Þ
where
a5 ¼ he3jð�A�1ÞB1i; a6 ¼ he3jð�A�1ÞB2i;
a7 ¼ he4jð�A�1ÞB1i and a8 ¼ he4jð�A�1ÞB2i:
Combining Eqs. (11) and (13) gives
I� ¼ x�k�

1� a4k
� ½a5 þ ða3a6 � a4a5Þk�� and J� ¼ x�k�

1� a4k
� ½a7 þ ða3a8 � a4a7Þk��:
Now, using Eq. (4) at the endemic equilibrium and the above expressions of I� and J�, the size of the total population at the
endemic equilibrium can be written as
N� ¼ Kð1� a4k
�Þ � d1x�k�½a5 þ ða3a6 � a4a5Þk�� � d2x�k�½a7 þ ða3a8 � a4a7Þk��

lð1� a4k
�Þ : ð14Þ
Moreover, using the first equation of (7), one has
x� ¼ K
lþ k�

: ð15Þ
Equalizing Eqs. (12) and (14), and using Eq. (15), it can be shown that the non-zero equilibria of model system (3) satisfy the
following quadratic equation in term of k�:
c2ðk�Þ2 þ c1ðk�Þ þ c0 ¼ 0; ð16Þ
where
c2 ¼ d1ða4a5 � a3a6Þ þ d2ða4a7 � a3a8Þ � a4;

c1 ¼ 1þ la4ðR0 � 1Þ � d1a5 � d2a7 � la2a3;

c0 ¼ lð1�R0Þ:
Thus, positive endemic equilibria Q � are obtained by solving for k� from the quadratic Eq. (16) and substituting the result
(positive values of k�) into the expressions of the variables of model system (2) at the steady state. Clearly, c0 is positive
or negative depending whetherR0 is less than or greater than the unity, respectively. Thus, the number of possible real roots
of the polynomial (16) depends on the signs of c2; c1 and c0. This can be analyzed using the Descartes Rule of Signs on the
quadratic polynomial f ðk�Þ ¼ c2ðk�Þ2 þ c1ðk�Þ þ c0. The various possibilities for the roots of f ðk�Þ are tabulated in Table 2.

The following result follows from various possibilities enumerated in Table 2.

Lemma 2. The TB model (2)

(i) Could have a unique endemic equilibrium if R0 > 1 and whenever Cases 2 and 4 are satisfied.
(ii) Could have more than one endemic equilibrium if R0 > 1 and whenever Case 3 is satisfied.

(iii) Could have one or more unique endemic equilibria if R0 < 1 and whenever Cases 1, 2 and 3 are satisfied.
(iv) No endemic equilibria in all other cases.



Table 2
Number of possible real roots of f ðk�Þ for R0 < 1 and R0 > 1.

Cases c2 c1 c0 R0 Number of sign changes Number of possible positive real roots

1 � � � R0 > 1 0 0
� � + R0 < 1 1 1

2 + � � R0 > 1 1 1
+ � + R0 < 1 2 0,2

3 � + � R0 > 1 2 0,2
� + + R0 < 1 1 1

4 + + � R0 > 1 1 1
+ + + R0 < 1 0 0
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It should be pointed out that the case (iii) indicates the possibility of the backward bifurcation phenomenon (where the
locally asymptotically stable DFE co-exists with a locally asymptotically stable endemic equilibrium when R0 < 1, see for
instance, [45–49]) in the TB model (2) when R0 < 1. To check for this, the discriminant c2

1 � 4c2c0 is set to zero and solved
for the critical value of R0, denoted by Rc , given by
F

Rc ¼ 1� c2
1

4lc2
: ð17Þ
Thus, the backward bifurcation phenomenon would occur for values of R0 such that Rc < R0 < 1.
The backward bifurcation phenomenon is illustrated by simulating model system (2) with the parameters values of Table

1. The associated backward bifurcation diagram is depicted in Fig. 3. Fig. 4 presents the time series of model system (2) when
b ¼ 0:35 (so thatR0 ¼ 0:8733). It clearly appears that whenR0 < 1, the profiles can converge to either the disease-free equi-
librium or an endemic equilibrium point, depending on the initial sizes of the population of the model (owing to the phe-
nomenon of backward bifurcation). It is worth noting that, for the set of parameter values used, the simulations have be
performed for a long-time period (in hundred of years). We point out that the backward bifurcation is due to exogenous rein-
fections. Indeed, if r ¼ 0, the coefficients c2; c1 and c0 of Eq. (16) are reduced to c2 ¼ 0; c1 ¼ 1� d1a5 � d2a7 and
c0 ¼ lð1�R0Þ. Then, one can easily prove that model system (2) has a unique endemic equilibrium. Hence, when r ¼ 0,
no endemic equilibrium exists whenever R0 < 1. It then follows that, owing to the absence of multiple endemic equilibria
for model system (2) with r ¼ 0 and R0 < 1, a backward bifurcation is unlikely for model system (2) with r ¼ 0 andR0 < 1.

One important parameter that forms the core of this work is investigated numerically.
Fig. 5 shows the impact of varying the detection parameter h in model system (2) when b ¼ 0:5 (so that R0 > 1). The ini-

tial conditions and parameters are as in Fig. 4. From this figure, one can see that as the value of h increases, the population of
diagnosed infectious increases (Fig. 5(b)), while the populations of undiagnosed and latently infected individuals decrease
(Fig. 5(a) and (c)). This is due to the fact that diagnosis leads to the treatment of patients, resulting in less latently infected
individuals and undiagnosed infectious, that do not lead to an epidemic. This demonstrates the importance of diagnosis. Care
then should be taken to prevent a failure of treatment and a relapse of the disease after treatment.

3. Optimal control

Several kinds of interesting nonlinear dynamics behavior of model system (2) such as the backward bifurcation phenom-
enon has been studied in the previous section. Since, the backward bifurcation is due to exogenous reinfections, it is then
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ig. 3. Bifurcation diagram for the model (2). The notation EEP stands for endemic equilibrium point. All other parameters are as in Table 1.
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Fig. 4. Simulation of system (2). Time series of (a) susceptible individuals, (b) latently infected individuals, (c) diagnosed infectious and (d) undiagnosed
infectious when b ¼ 0:35 (so that R0 ¼ 0:8733). All other parameters are as in Table 1.
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desirable to reduce exogenous reinfections in model system (2) so that the number of latently infected individuals that may
develop an active TB will be lower. Moreover, it is important to point out that one of the main goal of a TB program is to
detect the maximum of infectious. This will certainly increase the treatment rate of infectious and reduce the source of infec-
tion. The aim of this section is to propose an optimal control strategy to reduce the burden of the disease.

3.1. Optimal control problem

Two intervention methods, called controls, are included in model system (2). Controls are represented as functions of
time and assigned reasonable upper and lower bounds. First, uðtÞ represents the effort on the chemoprophylaxis parameter
(r1) of latently infected individuals to reduce the number of individuals that may develop an active TB. Second, vðtÞ is the
effort on detection (h) of infectious. This will certainly increase the treatment rate of infectious and consequently, will reduce
the number of infectious and the source of infection.

Using the same parameters and class names as in model system (2), the system of differential equations describing the
controlled model is
_S ¼ K� kS� lS;
_E ¼ ð1� pÞkSþ r2I þ r3J � ð1� ur1Þðkþ rkÞE� lE;
_I ¼ pfkSþ vhð1� ur1Þðkþ rkÞE� A2I;
_J ¼ pð1� f ÞkSþ ð1� vhÞð1� ur1Þðkþ rkÞE� A3J;

8>>>><
>>>>:

ð18Þ
where k;A2 and A3 are defined as in Eq. (2).
A control scheme is assumed to be optimal if it minimizes the objective functional:
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Lðu;vÞ ¼
Z T

0
½B1IðtÞ þ C1JðtÞ þ B2u2ðtÞ þ C2v2ðtÞ�dt; ð19Þ
where the constants B1;B2;C1 and C2 have a dual role. They are needed to balance the units in the integrand because the
number of diagnosed and undiagnosed infectious will be measured in the hundreds in this paper. We assume that there
are practical limitations on the maximum rate at which latently-infected individuals that may treated via chemoprophylaxis
or infectious that may be detected in a given time period and we define positive constants umax and vmax accordingly.

Pontryagin’s Maximum principle [26] introduces adjoint functions that allow us to attach our state system, i.e., the S; E; I
and J differential equations, to our objective functional. After first showing the existence of optimal controls [24], this prin-
ciple can be used to obtain the differential equations for the adjoint variables, corresponding boundary conditions and the
characterization of an optimal control double �u and �v . This characterization gives a representation of an optimal control in
terms of the state and adjoint functions. Also, this principle converts the problem of minimizing the objective functional sub-
ject to the state system into minimizing the Hamiltonian with respect to the controls (bounded measurable functions) at
each time t.

Forming the Hamiltonien, H, we have
H ¼ B1IðtÞ þ C1JðtÞ þ B2u2ðtÞ þ C2v2ðtÞ þwS½K� kðtÞSðtÞ � lSðtÞ� þwE½ð1� pÞkðtÞSðtÞ þ r2IðtÞ þ r3JðtÞ � ð1
� uðtÞr1Þðkþ rkðtÞÞEðtÞ � lEðtÞ� þwI½pfkðtÞSðtÞ þ vðtÞhð1� uðtÞr1Þðkþ rkðtÞÞEðtÞ � A2IðtÞ� þwJ ½pð1
� f ÞkðtÞSðtÞ þ ð1� vðtÞhÞð1� uðtÞr1Þðkþ rkðtÞÞEðtÞ � A3JðtÞ�; ð20Þ
where wS;wE;wI and wJ are the adjoint functions associated with their respective states. Note that in H, each adjoint function
multiplies the right-hand side of the differential equation of its corresponding state function. The first terms in H comes from
the integrand of the objective functional. Thus, the adjoint variable wj; j ¼ S; E; I; J together with our state system determine
our optimality system.
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Given an optimal control double ð�u; �vÞ and the corresponding states ð�S; �E;�I;�JÞ, there exist adjoint functions satisfying
dwS
dt ¼

ðN�SÞk
N ½wS�ð1�pÞwE�pfwI�pð1� f ÞwJ �þlwSþ rð1�r1 uÞkE

N ½vhðwI�wJÞþwJ�wE�;
dwE
dt ¼ kS

N ½�wSþð1�pÞwEþpfwIþpð1� f ÞwJ �þlwEþð1� r1uÞðkþrkÞ½wE�vhwI�ð1�vhÞwJ �þrð1�r1uÞkE
N ½�wEþvhwIþð1�vhÞwJ �;

dwI
dt ¼B1� r2wEþA2wIþðb�kÞS

N ½wS�ð1�pÞwE�pfwI�pð1� f ÞwJ �þ rð1�r1uÞðb�kÞE
N ½wE�vhwI�ð1�vhÞwJ �;

dwJ

dt ¼C1� r3wEþA3wJ þðbe�kÞS
N ½wS�ð1�pÞwE�pfwI�pð1� f ÞwJ �þrð1�r1uÞðbe�kÞE

N ½wE�vhwI�ð1�vhÞwJ �;

8>>>>><
>>>>>:

ð21Þ
with the transversality conditions
wSðTÞ ¼ 0; wEðTÞ ¼ 0; wIðTÞ ¼ 0 and wJðTÞ ¼ 0: ð22Þ
Note that the right-hand side of wS differential equation is � @H
@S , and similarly for the other adjoint functions. The final time

boundary conditions (transversality conditions) are zero since there is no dependence on the states at the final time in the
objective functional.

Furthermore, the optimal controls are characterized by
�u ¼maxð0;minðûðtÞ;umaxÞÞ and �v ¼maxð0;minðv̂ðtÞ;vmaxÞÞ; ð23Þ
where
ûðtÞ ¼ r1ðkþrkÞ½2C2ðwEþwJÞ�h2ðkþrkÞðwI�wJÞ2E�E
4B2C2�r2

1h2ðkþrkÞ2ðwI�wJÞ2E2 ;

v̂ðtÞ ¼ hðkþrkÞðwI�wJ Þ½�2B2þr2
1ðkþrkÞðwJþwEÞE�E

4B2C2�r2
1

h2ðkþrkÞ2ðwI�wJÞ2E2 :
ð24Þ
The control characterization for �u comes from @H
@u ¼ 0 whenever 0 < �uðtÞ < umax and taking bounds into account, and similarly

for the control v.
The state system of differential equations and the adjoint system of differential equations together with the control char-

acterization above form the optimality system to be solved numerically. Since the state equations have initial conditions and
the adjoint equations have final time conditions, we cannot solve the optimality system directly by only sweeping forward in
time. Thus, an iterative algorithm, ‘‘forward–backward sweep method’’ [23], is used. An initial estimate for the controls is
made. The state system is then solved forward in time from the dynamics using a Runge–Kutta method of fourth order.
Resulting state values are placed in the right-hand sides of the adjoint differential equations. Then, the adjoint system with
the given initial conditions is solved backward in time, again employing a fourth order Runge–Kutta method. Both state and
adjoint values are used to update the control using the characterization, and then the process is repeated. This iterative pro-
cess terminates when the current state, adjoint, and control values converge sufficiently.

3.2. Optimal control numerical simulations

Numerical solutions to the optimality system comprising the state system (18) and the adjoint system (21) are carried out
using parameters and initial conditions of Fig. 4. With this strategy, the controls on chemoprophylaxis u and detection v are
optimized, with weight factors B1 ¼ 50;B2 ¼ 10;C1 ¼ 40 and C2 ¼ 20. Also, we take umax ¼ vmax ¼ 1. Cost coefficients are
fixed within the integral expression (19) and the optimal schedule of the two controls over T ¼ 5 year is simulated. We note
that this is not necessarily the only or most efficient homotopy path possible; however, it was sufficient to produce an accu-
rate answer in an acceptable amount of time. Numerical simulations are depicted in Figs. 6–8.

From Fig. 6, we can see that the optimal chemoprophylaxis and detection protocol have a very desirable effect upon the
population of infectious which decreases while the population of susceptible which increases for almost the entire length of
treatment and detection. Also, from Fig. 6(b) one can observe that the population of latently infected individuals decreases
during the 0.6 year of the beginning of the treatment and detection protocols and after begin to increase slowly. The inverse
phenomenon has been observed for the population of undiagnosed infectious (see Fig. 6(d)) who increases as the controls
start and begin to decrease after the 0.6 year of simulations. This is presumably because at the beginning of the optimal che-
moprophylaxis and detection protocol, the chemoprophylaxis control is at it upper bound (see Fig. 7(a)), while the detection
control is at its lower value 0 (see Fig. 7(b)).

As Fig. 7 illustrates, the optimal control results provide clearly different strategies for relative application of chemopro-
phylaxis of latently-infected individuals and detection of infectious in the host population. The optimal chemoprophylaxis
and detection protocol were applied on the interval ½0;5�. This means that the two controls will start at zero and after 5 years,
they will converge to zero. Fig. 7(a) illustrates that if one want to reduce the burden of the disease, the chemoprophylaxis of
latently infected individuals need to be apply intensively at the beginning of the proposed strategy of control. Note that
when the chemoprophylaxis control u is at its upper bound umax ¼ 1 through the 4.7 years of the simulations, very few
latently infected individuals will develop an active TB. This implies that the detection rate of patients will be low since there
will be no infectious to diagnose. This can be seen in Fig. 7(b) where the detection control v starts to converge to zero and
after 4.7 years of the simulations, grow rapidly at its upper bound vmax ¼ 1. Also, from Fig. 7(a), the chemoprophylaxis
control drops rapidly to zero after 4.7 years and then converges to zero until the end of the simulations because the strategy
of control has been applied over 5 years so that it remains to zero when T = 5 years. Thus, when the chemoprophylaxis
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Fig. 6. Dynamics of the model (18) showing the effect of chemoprophylaxis and detection rates on the host population. Time series of (a) susceptible
individuals, (b) latently infected individuals, (c) diagnosed infectious and (d) undiagnosed infectious.
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control converges to zero after 4.7 years, more people will develop an active TB and the maximum of them should be diag-
nosed if we want to fight against disease. This can be observed in Fig. 7(b) where the optimal detection control v is at its
upper bound vmax ¼ 1 after 4.7 years of the simulations and then drop rapidly to zero at the final time because the proposed
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strategy of control has been applied over 5 years. We believe that these phenomena are certainly due to the structure of the
terms that contain the chemoprophylaxis and detection controls in model system (18). Biologically speaking, with the pro-
posed model and parameter values, the chemoprophylaxis of latently infected individuals should be applied intensively at
the beginning of the control strategy so that it is not necessary to apply the detection protocol at the same time. However,
the detection of infectious should be applied just before the end of the control strategy. This will avoid many states to expend
too much money for the fight against a single disease.

In summary, for this population, chemoprophylaxis and detection greatly reduces death due to disease. Consequently,
fewer funds can be allow for chemoprophylaxis and detection in the optimal scheme; however, temporary maximum treat-
ment is advantageous at the onset of infection. In combination with other controls, high level of chemoprophylaxis is most
beneficial at the beginning of a TB control program to decrease the rate at which latently-infected individuals become infec-
tious, providing more time to effectively implement the diagnosis and the treatment. Recall that our analysis on the basic
reproduction ratio revealed that chemoprophylaxis, detection and treatment play a strong role on controlling the total num-
ber of infectious.

The time evolution of the adjoint variables wS;wE;wI and wJ associated to the state variables S; E; I and J are depicted in
Fig. 8(a)–(d), respectively. It clearly appears that the adjoint variables converge to the origin after 5 years.

4. Discussions

This paper presents a comprehensive, continuous and more realistic deterministic model for the transmission dynamics
of tuberculosis. In contrast to many TB models in the literature, we have included two infective classes emanating from diag-
nosed and undiagnosed infectious. The undiagnosed subclass is of particular importance in modeling TB in developing coun-
tries like sub-Saharan Africa where public health is under developed. In particular the proportion of individuals that present
themselves to medical facilities, h, is worth noting. This parameter can be used to measure successes of educational cam-
paigns that encourage individuals to go for TB screening. It can also be a measure of the level of awareness of the implications
of not having TB diagnosis.
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The model has been rigourously analyzed to gain insight into its qualitative dynamics. We have mainly found that the
model exhibits the phenomenon of backward bifurcation, where the stable disease-free equilibrium co-exists with a stable
endemic equilibrium, when the basic reproduction ratio is less than the unity. It is shown that this (backward bifurcation)
dynamics feature is caused by the re-infections of latently infected individuals.

An optimal control strategy has been presented. The proposed optimal control shows the result of optimally controlling
exogenous reinfections using chemoprophylaxis and detection of infectious in the reduction of the number of individuals
with active TB. Thought numerical simulations, we found that the infection level decreases, but is never eradicated. However,
at the end of the chemoprophylaxis and detection, the infection level cannot rise again. Also, the chemoprophylaxis control is
at its upper bound while, the detection control is at its lower bound at the beginning of the chemoprophylaxis and detection
protocol. We believe that these phenomena is directly dependent upon the action of the response of the treatment of diag-
nosed infectious, which occurs shortly after treatment initiation in response to the high infection level. An important result
of this analysis is that a cost-effective balance of chemoprophylaxis and detection methods can successfully control TB.
Treatment strategies such as interruption of drug therapy should also be considered. This can be tested clinically via drug
trails, but also mathematically using a periodic control.

From the practical viewpoint, the model formulated in this paper can be used to understand the transmission behaviors of
the disease and to forecast the disease trends, which can help health program planners to implement more preventive inter-
ventions in TB control during the period of higher risk of infection.
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