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This paper is devoted to the analysis of the asymptotic behaviour of a complex network of reaction–
diffusion systems for a geographical model, which was proposed recently, in order to better understand
behavioural reactions of individuals facing a catastrophic event. After stating sufficient conditions for the
problem to admit a positively invariant region, we establish energy estimates and prove the existence of
a family of exponential attractors. We explore the influence of the size of the network on the nature of
those attractors, in correspondence with the geographical background. Numerical simulations illustrate
our theoretical results and show the various possible dynamics of the problem.
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1. Introduction

The Panic–Control–Reflex (PCR) system is a mathematical model for understanding behavioural
reactions of individuals facing catastrophic events (Cantin et al., 2016; Provitolo et al., 2015) that
can have a natural or industrial cause. The original association of geographers, computer scientists
and mathematicians has produced this new model, which is given by the following system of ordinary
differential equations, where the unknown functions r, c, p and q denote, respectively, the subpopulations
of individuals in ‘reflex’, ‘control’, ‘panic’ and ‘daily’ behaviours:

u̇ = Φ(u, t), (1.1)

where u = (r, c, p, q)T and Φ is defined by

Φ(u, t) =

⎛⎜⎜⎝
−Br + γ (t)q(1 − r) + frc + grp

B1r − C2c + C1p − frc + hcp − ϕ(t)c(r + c + p + q)

B2r − C1p + C2c − grp − hcp
−γ (t)q(1 − r)

⎞⎟⎟⎠ , (1.2)

© The Author(s) 2019. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
at/advance-article-abstract/doi/10.1093/im

am
at/hxz022/5574708 by U

niversité du H
avre user on 27 Septem

ber 2019



2 G. CANTIN ET AL.

Fig. 1. Flux diagram for the PCR system, showing behavioural evolutions and imitation phenomena among the subgroups q (daily
behaviour before the catastrophe), r (reflex), c (control), p (panic) and b (daily behaviour after the catastrophe). Source: Provitolo
et al. (2015).

with positive bounded functions γ (t), ϕ(t), which model, respectively, the beginning and the end of
the catastrophic event, positive coefficients Bi > 0, Ci > 0, i ∈ {1, 2}, B = B1 + B2, which model the
evolution processes among the behavioural subgroups, and real coefficients f , g, h, which correspond
to the imitation phenomena that act in parallel. The PCR system is derived from the following five
equations system:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ṙ = −Br + γ (t)q(1 − r) + frc + grp

ċ = B1r − C2c + C1p − frc + hcp − ϕ(t)c(bm − b)

ṗ = B2r − C1p + C2c − grp − hcp

q̇ = −γ (t)q(1 − r)

ḃ = +ϕ(t)c(bm − b),

(1.3)

where b denotes the subpopulation of individuals in daily behaviour ‘after’ the catastrophic event, which
is assumed to occur for a limited time. The distinction between b and the subgroup q of individuals
before the catastrophe corresponds to the assumption that individuals who have been subject to a
behavioural loop caused by the catastrophic event, and who succeed to return to the daily behaviour,
will not be subject to a second behavioural loop. Finally, bm corresponds to the maximal number of
individuals who can evolve from the control behaviour c to the daily behaviour b. The whole process
occurring among the behavioural subgroups is depicted in Fig. 1. We suppose that the maximal capacity
bm coincides with the total population, i.e.

bm = r + c + p + q + b. (1.4)

We emphasize that bm can be a function of time t, especially in the case of coupled networks of PCR
systems. Equation (1.4) implies the reduction bm − b = r + c + p + q, which leaves the fifth equation
in (1.3) governed by the rest of the system, thus we eliminate it, and finally obtain system (1.1).
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COMPLEX NETWORKS OF REACTION–DIFFUSION SYSTEMS 3

The PCR system has been studied in collaboration with geographers and computers scientists, in
order to analyse various situations of catastrophic events. Its mathematical analysis is presented in
Cantin et al. (2016), where the authors show that the system admits two classes of solutions, depending
on whether the value of the evolution parameter C1 from panic behaviour to control behaviour is positive
or null. In the first case, i.e. C1 > 0, it is proved that the solution converges to the trivial equilibrium,
which corresponds to the expected situation when all individuals return to a daily behaviour. In the
second case, when C1 = 0, the system exhibits a persistence of panic, which is the situation that must
be avoided, at the risk to worsen the impact of the catastrophic event. In that latter case, it was shown
that the quadratic imitation terms can inhibit or exacerbate the persistence of panic, according to the
direction of the imitation process from panic to control or from control to panic, respectively. The
example of an earthquake in Japan is studied in Verdière et al. (2015). Since in Japan, the risk culture is
well established, the population is trained to react quickly, thus the causality process from reflex or panic
to control is important with respect to the other processes, even for a zone that is closed to the epicentre
of the earthquake. The consideration of the geographical relief of the zone impacted by the catastrophe
naturally leads to the study of coupled networks. Specific questions arise in the study of complex
systems defined by such coupled networks, among them ‘synchronization’, or the relationship between
the topology of the network and the dynamics of the system. In a recent conference paper (see Cantin
et al., 2017), another example concerning the particular risk of tsunami on the Mediterranean coast has
been studied. It is shown in this latter article that the evacuation of high-risk zones corresponding to the
beach places, towards the refuge zones situated in the city centre, plays a very decisive role. For instance,
a plugged corridor can provoke a persistence of panic. At the opposite, an additional evacuation path
from the beach towards the city centre can help individuals return to the daily behaviour. In Cantin
(2017), those patterns are generalized in the case of any network.

In this paper, our aim is to improve the model, by taking into account the local displacements of
individuals. Following the ‘random walk’ approach, we add a spatial diffusion term, as it has frequently
been done in numerous mathematical models, with a physical, chemical, biological or ecological
background (Murray, 2002; Okubo, 1980). Our approach results in a coupled network of reaction–
diffusion systems, with a Neumann boundary condition that models the impossibility for individuals to
leave or enter the area impacted by the catastrophe. It is well known that a richness of dynamics, such
as travelling waves or Turing patterns, can occur in reaction–diffusion systems (Li et al., 2013; Ruan,
1998; Sherratt, 2008), whereas it cannot be observed in systems involving only one of the two parts of
the reaction–diffusion process. Nevertheless, original questions arise in the study of the dynamics of the
network. Thus, we address at each step of our reasoning, a particular attention on the influence of the
nature of the network.

This paper is organized as follows. In the next section, we present the two reaction–diffusion
problems that we focus on, which are the PCR system with diffusion, and the corresponding network
problem endowed with linear coupling terms. We indicate the functional spaces context, show that
those problems are well-posed and demonstrate the non-negativity of the solutions starting from
initial conditions with non-negative components. In Section 3, we explore sufficient conditions for the
solutions to evolve in positively invariant regions, which guarantees their existence in the large, and we
analyse their asymptotic behaviour, by stating energy estimates and proving the existence of a family
of exponential attractors. Each theorem is discussed in relationship with the geographical background
of our model. In the final section, we show various numerical simulations in order to illustrate our
theoretical results. Those simulations have been prepared with the collaboration of geographers (see
Cantin et al., 2017; Provitolo et al., 2015) and are related to the realistic scenario of a tsunami on the
Mediterranean coast.
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4 G. CANTIN ET AL.

2. Problem statement and preliminaries

2.1 PCR system with diffusion

Let us consider an open bounded subset Ω ⊂ R
2 with regular boundary ∂Ω and the initial-boundary

value problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rt = d1Δr − Br + γ q(1 − r) + frc + grp in Ω × (0, ∞)

ct = d2Δc + B1r − C2c + C1p − frc + hcp − ϕc(r + c + p + q) in Ω × (0, ∞)

pt = d3Δp + B2r − C1p + C2c − grp − hcp in Ω × (0, ∞)

qt = d4Δq − γ q(1 − r) in Ω × (0, ∞)

∂r

∂ν
= ∂c

∂ν
= ∂p

∂ν
= ∂q

∂ν
= 0 on ∂Ω × (0, ∞)

r(x, 0) = r0(x), c(x, 0) = c0(x),

p(x, 0) = p0(x), q(x, 0) = q0(x) in Ω ,

(2.1)

where the diffusion rates di are positive (> 0), 1 � i � 4, B1, B2, B = B1 + B2, C1, C2 are positive
coefficients. For simplicity, we reduce our study to the case where the functions γ , ϕ are positive
constants such that

0 < γ � 1, 0 < ϕ � 1, (2.2)

which implies that system (2.1) is autonomous. This reduction is reasonable, since it is proved in Cantin
(2017) that replacing γ and ϕ by positive constants does not change the asymptotic dynamics of the
system. However, we indicate that this assumption can be weakened (see Yagi, 2009, Section 6 in
Chapter IV for existence results, and Efendiev et al., 2005 or Caraballo et al., 2006 for the concept of
attractor for non-autonomous systems). The coefficients f , g, and h involved in the interactions among
the three behavioural subgroups r, c and p, are assumed to satisfy

− 1 � f � 1, −1 � g � 1, −1 � h � 1. (2.3)

Finally, ∂
∂ν

denotes the derivative with respect to the outward normal tangent to ∂Ω .

Remark 1 The domain Ω models the zone that is impacted by the catastrophe. Its shape and size
have an influence on the spectral properties of the diffusion operator Δ and can vary according to the
geographical landscape. In the example of a tsunami on the Mediterranean coast, the steps corridors
between the beach places and the city centre are of particular interest. Their dimensions represent a key
factor in the evacuation of the high-risk zones. Typically, the values of the diffusion rates di, 1 � i � 4,
will be different for each behavioural subgroup. More precisely, we will focus on the situation when the
diffusion rate d2 corresponding to the control behaviour is larger than the diffusion rate d3 corresponding
to the panic behaviour, whereas the diffusion rates d1 and d4 corresponding to the reflex and daily
behaviours, will have a small value. Nevertheless, it is worth noting that this modelling choice represents
a rough approximation, since the panic behaviour subgroup could be divided into different sub-classes,
for instance ‘flight’ panic or ‘prostration’ panic.
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COMPLEX NETWORKS OF REACTION–DIFFUSION SYSTEMS 5

2.2 Abstract formulation of the PCR system

Following Yagi (2009), we formulate system (2.1) as a Cauchy problem for a semi-linear equation.
Thus, we consider the Banach space of complex valued functions

X =
(

L2(Ω)
)4

, (2.4)

equipped with the product norm of L2(Ω), defined by

‖u‖ X =
(

4∑
i=1

∥∥ui

∥∥ 2
L2(Ω)

) 1
2

,

for all u = (ui)1�i�4 ∈ X. Next we introduce the diagonal operator

A = diag(Ai, 1 � i � 4),

where Ai, 1 � i � 4, are the realizations of −d1Δ + B, −d2Δ + C2, −d3Δ + C1 and −d4Δ + γ ,
respectively, in L2(Ω), under Neumann boundary conditions on ∂Ω .

The operators Ai, 1 � i � 4, are positive definite self-adjoint operators of L2(Ω) (see Yagi, 2009,
Theorem 2.6), with domain

H2
N(Ω) =

{
u ∈ H2(Ω);

∂u

∂ν
= 0 on ∂Ω

}
. (2.5)

Hence, A is a positive definite self-adjoint operator of the product space X.

We fix η ∈
]

3
4 , 1

[
, and consider the fractional power operator Aη, whose domain is given by the

interpolation space (see Yagi, 2009, Theorem 16.7)

D(Aη) =
([

L2(Ω), H2
N(Ω)

]
η

)4

=
(

H2η
N (Ω)

)4
, (2.6)

with the norm equivalence
1

c0
‖u‖ H2η(Ω) �

∥∥Aη
i u

∥∥
L2(Ω) � c0 ‖u‖ H2η(Ω), (2.7)

for all u ∈ D
(
Aη

i

)
, 1 � i � 4, for a given constant c0 > 0. Since 2η > 1 and Ω is bounded, the

embedding theorems for Sobolev spaces (Adams & Fournier, 2003; Yagi, 2009) guarantee that

H2η(Ω) ⊂ C
(
Ω

)
, (2.8)

with continuous embedding. Additionally, due to the boundedness of Ω , it is clear that

C
(
Ω

) ⊂ L∞(Ω) ⊂ L2(Ω), (2.9)

with continuous embeddings.
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6 G. CANTIN ET AL.

Next we consider the nonlinear operator F = (
Fi

)
1�i�4 defined on D (Aη) by

F(v) =

⎛⎜⎜⎝
γ q(1 − r) + frc + grp

B1r + C1p − f (rc + hcp − ϕc(r + c + p + q)

B2r + C2c − grp − hcp
γ qr

⎞⎟⎟⎠ , (2.10)

for all t > 0 and v = (r, c, p, q)T ∈ D (Aη). Finally, we introduce the space of initial values, defined by

X0 =
{

U0 = (r0, c0, p0, q0)
T ∈ X; r0 � 0, c0 � 0, p0 � 0, q0 � 0

}
. (2.11)

Thus, we can formulate (2.1) as a semi-linear parabolic equation in X:

(I)

⎧⎨⎩
dU

dt
+ AU = F(U), t > 0,

U(0) = U0.
(2.12)

Remark 2 The choice of exponent η ∈
]

3
4 , 1

[
corresponds to a double constraint. On the one hand,

η > 3
4 guarantees embedding (2.8), which in turn implies

H2η(Ω) ⊂ L∞(Ω).

On the other hand, η < 1 enables the use of a contraction mapping theorem for showing the existence
and uniqueness of a local in time solution (see Theorems 1 and 2 below).

2.3 Coupled network problem

In this section, our aim is to model the geographical area impacted by the catastrophic event, by taking
into account the heterogeneous distribution of individuals on different places. Thus, we define a coupled
network problem by considering a graph G = (

N , E
)

made with a finite set N of n nodes (n ∈
N

∗) and a finite set E of edges. This network model has already been studied in Cantin (2017), in
the case of ordinary differential equations. Here we intend to improve the network model by coupling
multiple instances of reaction–diffusion system (2.1). Let us describe how nodes and edges can model
the geographical landscape.

First, each node of the network is associated with one region of the geographical area, which can
be modelled by a bounded domain Ωi ⊂ R

2, 1 � i � n. For instance, those domains can correspond
to beaches, step corridors or city centre places. For the sake of simplicity, we reduce our analysis by
assuming that the domains Ωi, 1 � i � n are identical to a generic domain Ω . We emphasize that this
assumption is common in the study of coupled networks of reaction–diffusion systems, among them
neural networks (see Yang et al., 2013; Wang et al., 2018; Ambrosio et al., 2019). The dynamics of
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COMPLEX NETWORKS OF REACTION–DIFFUSION SYSTEMS 7

each node is determined by a reaction–diffusion process involving the function Φ(i) defined by

Φ(i)(Ui) =

⎛⎜⎜⎝
−B(i)ri + γ qi(1 − ri) + frici + gripi

B(i)
1 ri − C(i)

2 ci + C(i)
1 pi − frici + hcipi − ϕci(ri + ci + pi + qi)

B(i)
2 ri + C(i)

2 ci − C(i)
1 pi − gripi − hcipi−γ qi(1 − ri)

⎞⎟⎟⎠ ,

where Ui = (ri, ci, pi, qi)
T determines the state of node i (1 � i � n) and an above index (i) that

indicates that the parameters B1, B2, C1 and C2 are not necessarily equal for different nodes. This
implies that two distinct nodes in the network can exhibit two different dynamics, according to the
corresponding parameters values. For instance, some nodes associated with exposed areas could present
a persistence of panic, while other nodes associated with refuge zones would present a return to the
daily behaviour. In particular, we are interested in finding sufficient conditions on the topology of the
network so that the persistence of panic is limited at an arbitrary level.

Next each edge of the network is associated with one connection between a pair of nodes and models
physical displacements of individuals from one node to another. For instance, one edge can model a
street connecting a beach to a city centre place. We fix ε > 0, and we introduce the matrix of connectivity
L = (

Li,j

)
1�i,j�n by setting

Lj,i = ε if (i, j) ∈ E with i �= j, Li,i = −
n∑

j=1
j �=i

Lj,i, (2.13)

thus L is a matrix of order n whose sum of coefficients of each column is null (Hale, 1997). We assume
that the set of edges E does not possess any loop. We also consider the coupling matrix H of order 4
defined by

H = diag
(
1, 1, 1, 0

)
, (2.14)

which indicates that the components r, c and p are coupled, but not q, since the individuals in daily
behaviour are almost concerned with an instantaneous evolution towards the reflex behaviour, rather
than moving to other places.

The equations of the network problem read

∂Ui

∂t
= DΔUi + Φ(i)(Ui) +

n∑
j=1

Li,jHUj, 1 � i � n, in Ω × (0, ∞), (2.15)

where Ui = (ri, ci, pi, qi)
T , D = diag(d1, d2, d3, d4), with the Neumann boundary condition

∂ri

∂ν
= ∂ci

∂ν
= ∂pi

∂ν
= ∂qi

∂ν
= 0, 1 � i � n, on ∂Ω × (0, ∞), (2.16)
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8 G. CANTIN ET AL.

and initial conditions

ri(x, 0) = ri,0(x), ci(x, 0) = ci,0(x),

pi(x, 0) = pi,0(x), qi(x, 0) = qi,0(x), 1 � i � n, in Ω .
(2.17)

2.4 Abstract formulation of the network problem

We can write the network problem (2.15) as a Cauchy problem in Xn:

(II)

⎧⎪⎨⎪⎩
dU

dt
+ A U = F

(
U

)
, t > 0,

U (0) = U0,

(2.18)

where U = (U1, . . . , Un)
T , A is the diagonal operator defined by

A = diag(A(i), 1 � i � n), (2.19)

with domain D(A ) = (
H2

N(Ω)
)n, where

A(i) = diag(−d1Δ + B(i), −d2Δ + C(i)
2 , −d3Δ + C(i)

1 , −d4Δ + γ ), 1 � i � n.

Furthermore, F is the nonlinear operator defined in D (A η) by

F (U ) = (
F(i)(Ui)

)
1�i�n + L(U ), (2.20)

where η is fixed as previously such that 3
4 < η < 1, U0 ∈ Xn

0, L is given by

L(U ) =
⎛⎝ n∑

j=1

Li,jHUj

⎞⎠
1�i�n

, (2.21)

and F(i) coincides with the operator F defined by (2.10), except that the parameters B1, B2, C1 and C2
are supposed to depend on i.

In the rest of this paper, the symbols ki, i ∈ N, denote positive constants. In order to lighten our
notations, we will write L2, H2, H2η, etc. instead of L2(Ω), H2(Ω), H2η(Ω), respectively. We shall
need the following lemma for integrating differential inequalities (Yagi, 2009).

Lemma 1 Assume that α, β and u are smooth real-valued functions defined on [0, T], such that

u̇(t) + α(t)u(t) � β(t), t ∈ [0, T].

Then we have

u(t) � u(0)e− ∫ t
0 α(s)ds +

∫ t

0
β(s)e− ∫ t

s α(θ)dθds, t ∈ [0, T].
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COMPLEX NETWORKS OF REACTION–DIFFUSION SYSTEMS 9

2.5 Existence and uniqueness of local solutions

In this section, we state and prove our first results that guarantee the existence and uniqueness of local
solutions for the two previous problems (2.12) and (2.18). To that aim, we look for Lipschitz-type
estimations of the nonlinear operators F and F by fractional powers of A and A , respectively. We
begin with an estimation of the first component of F.

Lemma 2 There exists a positive constant κ1 such that

∥∥F1(v) − F1(ṽ)
∥∥

L2 � κ1

[ ∥∥Aη(v − ṽ)
∥∥

X + ( ∥∥Aηv
∥∥

X + ∥∥Aηṽ
∥∥

X

) ‖v − ṽ‖ X

]
,

for all v, ṽ ∈ D(Aη).

Proof. Let us consider v = (r, c, p, q)T , ṽ = (r̃, c̃, p̃, q̃)T ∈ D (Aη). We write

∥∥F1(v) − F1(ṽ)
∥∥

L2 � ‖γ q − γ q̃‖ L2 + ‖γ qr − γ q̃r̃‖ L2 + ‖frc − f r̃c̃‖ L2 + ‖grp − gr̃p̃‖ L2 .

First, we have

‖γ q − γ q̃‖ L2 � γ ‖q − q̃‖ L2 � ‖q − q̃‖ L2 � k1

∥∥Aη(v − ṽ)
∥∥

X ,

and analogously,

‖γ qr − γ q̃r̃‖ L2 � ‖qr − qr̃‖ L2 + ‖qr̃ − r̃q̃‖ L2

� k2

[
‖q‖ H2η ‖r − r̃‖ L2 + ‖r̃‖ H2η ‖q − q̃‖ L2

]
� k3

( ∥∥Aηv
∥∥

X + ∥∥Aηṽ
∥∥

X

) ‖v − ṽ‖ X .

In the mean time, we have

‖frc − f r̃c̃‖ L2 � |f | ‖rc − r̃c̃‖ L2

� k4

[
‖rc − rc̃‖ L2 + ‖rc̃ − r̃c̃‖ L2

]
� k5

( ∥∥Aηv
∥∥

X + ∥∥Aηṽ
∥∥

X

) ‖v − ṽ‖ X ,

and similarly,

‖grp − gr̃p̃‖ L2 � k6

( ∥∥Aηv
∥∥

X + ∥∥Aηṽ
∥∥

X

) ‖v − ṽ‖ X .

It follows that

∥∥F1(v) − F1(ṽ)
∥∥

L2 � k7

[ ∥∥Aη(v − ṽ)
∥∥

X + ( ∥∥Aηv
∥∥

X + ∥∥Aηṽ
∥∥

X

) ‖v − ṽ‖ X

]
.

�
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10 G. CANTIN ET AL.

Following the same method, we obtain similar estimations for Fi, involving positive constants κi,
2 � i � 4. Finally, we introduce κ0 = max(κi, 1 � i � 4), which leads to

‖F(v) − F(ṽ)‖ X � κ0

[ ∥∥Aη(v − ṽ)
∥∥

X + ( ∥∥Aηv
∥∥

X + ∥∥Aηṽ
∥∥

X

) ‖v − ṽ‖ X

]
, (2.22)

for all v, ṽ ∈ D(Aη).

Theorem 1 For any U0 ∈ X0, there exists TU0
> 0 such that the semi-linear Cauchy problem (2.12)

admits a unique solution U in the function space

C
(
(0, TU0

],D(A)
) ∩ C

(
[0, TU0

], X
) ∩ C 1((0, TU0

], X
)
. (2.23)

Furthermore, U satisfies the estimate

t ‖AU(t)‖ X � CU0
, ∀ t ∈]0, TU0

], (2.24)

where CU0
is a positive constant depending on U0.

Proof. The operator A is sectorial with angle ωA < π
2 (see Haase, 2006; Yagi, 2009). Following Yagi

(2009, Chapter 4, Theorem 4.4), we can deduce from the Lipschitz estimation (2.22) the existence and
uniqueness of a local solution U in space (2.23), with estimation (2.24). �

Similarly, we show that the network problem (2.18) admits local solutions.

Theorem 2 For any U0 ∈ Xn
0, there exists TU0

> 0 such that the semi-linear Cauchy problem (2.18)
admits a unique solution U in the function space

C
(
(0, TU0

],D(A )
) ∩ C

(
[0, TU0

], Xn) ∩ C 1((0, TU0
], Xn). (2.25)

Furthermore, U satisfies the estimate

t ‖A U (t)‖ X � CU0
, ∀ t ∈]0, TU0

], (2.26)

where CU0
is a positive constant depending on U0.

Proof. We examine the coupling terms stored in F . For vi, ṽi ∈ D(Aη), we have

∥∥∥∥∥∥
n∑

j=1

Li,jHvi −
n∑

j=1

Li,jHṽi

∥∥∥∥∥∥ X � ‖L‖ Mn(R)

n∑
j=1

∥∥vi − ṽi

∥∥
X , (2.27)
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COMPLEX NETWORKS OF REACTION–DIFFUSION SYSTEMS 11

for each i such that 1 � i � n, where ‖·‖ Mn(R) denotes any norm on the space of matrices of order n
with real coefficients. Combined, with the estimation (2.22), we obtain

‖F (v) − F (ṽ)‖ Xn � k8

[ ∥∥A η(v − ṽ)
∥∥

Xn + ( ∥∥A ηv
∥∥

Xn + ∥∥A ηṽ
∥∥

Xn

) ‖v − ṽ‖ Xn

]
,

for all v, ṽ ∈ D(A η). The operator A being sectorial with angle ωA < π
2 , we obtain as previously the

expected statements. �
In the rest of the paper, the letters U and U will be reserved for the solutions of problems (2.12) and

(2.18), respectively.

3. Sufficient conditions for the existence of an invariant region

3.1 Non-negativity

In this section, we prove the non-negativity of the solutions U and U of both problems (2.12) and
(2.18) starting from U0 ∈ X0 and U0 ∈ Xn

0, respectively, which is an obvious property to be satisfied for
a population dynamics model.

We recall that a nonlinear operator Φ = (Φi)1�i�m defined on R
m (with m ∈ N

∗) is said to be
‘quasi-positive’ if it satisfies the property

Φi(u1, . . . , ui−1, 0, ui+1, . . . , um) � 0, (3.1)

for all u = (u1, . . . , um) ∈ (R+)m and for all i ∈ {1, . . . , m}. The quasi-positivity of the nonlinear
operator Φ defined by (1.2) is a necessary and sufficient condition for proving the non-negativity
property of the solutions of system (2.1) (Pierre, 2010; Rothe, 1984).

Proposition 1 Let U0 ∈ X0, and U be the solution of problem (2.12) starting from U0, defined on
[0, TU0

]. Then its components r, c, p and q are non-negative on [0, TU0
].

Proof. Let (r, c, p, q)T ∈ (R+)4. We have

Φ1(0, c, p, q) = γ q � 0,

Φ2(r, 0, p, q) = B1r + C1p � 0,

Φ3(r, c, 0, q) = B2r + C1c � 0,

Φ4(r, c, p, 0) = 0,

which means that Φ is quasi-positive and implies the non-negativity of r, c, p and q on [0, TU0
]. �

In the same manner, we easily prove the non-negativity property for the solution U of the network
problem (2.18).

Proposition 2 Let U0 ∈ Xn
0, and U be the solution of problem (2.18) starting from U0, defined on

[0, TU0
]. Then its components ri, ci, pi and qi, 1 � i � n are non-negative on [0, TU0

].
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12 G. CANTIN ET AL.

Proof. Let (ri, ci, pi, qi)1�i�n ∈ (R+)4n. The form of the connectivity matrix L defined by (2.13) and
of the matrix H defined by (2.14) leads to

Φ
(i)
1

(
(r1, c1, p1, q1), . . . , (0, ci, pi, qi), . . . , (rn, cn, pn, qn)

) = γ qi +
n∑

j=1
j �=i

Li,jrj � 0,

Φ
(i)
2

(
(r1, c1, p1, q1), . . . , (ri, 0, pi, qi), . . . , (rn, cn, pn, qn)

) = B(i)
1 ri + C(i)

1 pi +
n∑

j=1
j �=i

Li,jcj � 0,

Φ
(i)
3

(
(r1, c1, p1, q1), . . . , (ri, ci, 0, qi), . . . , (rn, cn, pn, qn)

) = B(i)
2 ri + C(i)

1 ci +
n∑

j=1
j �=i

Li,jpj � 0,

Φ
(i)
4

(
(r1, c1, p1, q1), . . . , (ri, ci, pi, 0), . . . , (rn, cn, pn, qn)

) = 0,

for all i ∈ {1, . . . , n}, which guarantees the non-negativity of each component of U on [0, TU0
]. �

3.2 Invariant regions and existence in the large

Our aim in this section is to give sufficient conditions for the two problems (2.12) and (2.18) to admit
an invariant region. We introduce for α > 0 and β > 0 the compact subset Rα,β of R4 defined by

Rα,β = [0, 1] × [0, α] × [0, β] × [0, 1]. (3.2)

Let μ = max
( |f | , |g| , |h| ), and assume μ � ϕ

2 .

Theorem 3 Suppose that the following assumptions hold:

μ(α + β) < B, (3.3)

B1 � (ϕ − μ)α, C1 � (ϕ − μ)α, (3.4)

μ <
C1

1 + α
, β >

B2 + C2α

C1 − μ(1 + α)
. (3.5)

Then the compact set Rα,β is positively invariant under the flow induced by the problem (2.12).

Remark 3 The assumptions of the latter theorem are in conformity with the geographical background
of our model and do not represent a major constraint. Indeed, the second assumption always holds
provided α is chosen sufficiently large. Furthermore, the first and third assumptions are satisfied if μ is
sufficiently small, which means that the imitation processes that take place among the three behavioural
subgroups are of lesser intensity than the evolution phenomena, and if β is sufficiently large. The size
of the compact set Rα,β varies with α and β. If the action of ϕ is weak, then the value of α is required to
be large with respect to B1 and C1. This means that the control component c can admit large values in
the case of a weak behavioural purge. Meanwhile, if the value of the evolution parameter C1 from panic
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COMPLEX NETWORKS OF REACTION–DIFFUSION SYSTEMS 13

to control is small, then the value of β is required to be large with respect to B2 and C2, thus a difficult
evolution from panic to control can provoke a high level of panic.

Proof of Theorem 3. For U0 ∈ X0, let U = (r, c, p, q)T be the solution of problem (2.12), defined on
[0, TU0

]. We successively examine each component of the solution U = (r, c, p, q), so the proof is
divided into four steps. It suffices to verify that the vector field corresponding to the reaction part of the
system strictly points into the interior of Rα,β (see Smoller, 1994). If it is tangent in some places of its
boundary, we can use a cut-off method (see Yagi, 2009).

First step. The first equation in the system (2.12) reads

∂r

∂t
= d1Δr + Φ1(U),

with Φ1(U) = −Br + γ q(1 − r) + frc + grp [see equation (1.2)]. If there exists t∗ such that r(t∗) = 1,
then we have

Φ1

(
U(t∗)

) = −B + fc(t∗) + gp(t∗) � −B + μ(α + β) < 0,

according to equation (3.3), which guarantees that r(t) � 1 for all t ∈ [0, TU0
]. We have already proved

the non-negativity of U, so we obtain

0 � r(t) � 1, t ∈ [0, TU0
].

Second step. Next we consider the fourth equation in the system (2.12):

∂q

∂t
= d4Δq + Φ4(U),

with Φ4(U) = −γ q(1 − r). We introduce ξ = 1 − q and the function ρ defined by

ρ(t) =
∫

Ω

χ(ξ)dx,

where χ is a cut-off function defined on R by

χ(x) =
{

0 ifx > 0,
1
2 x2 ifx � 0.

(3.6)

It is continuously differentiable on R, with χ ′(x) = 0 if x > 0, χ ′(x) = x if x � 0, and it satisfies the
properties

χ(x) � 0, χ ′(x) � 0, 0 � χ ′(x) x � 2χ(x), ∀ x ∈ R. (3.7)

We have ρ(0) = 0 because q(0) � 1, and obviously ρ(t) � 0 for all t ∈ [0, TU0
]. We compute the

derivative of ρ(t):

ρ′(t) =
∫

Ω

χ ′(ξ)
[ − d4Δq + γ q(1 − r)

]
dx = d4

∫
Ω

χ ′(ξ)Δξdx + γ

∫
Ω

χ ′(ξ)q(1 − r)dx.
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14 G. CANTIN ET AL.

Since we have ∫
Ω

χ ′(ξ)Δξdx = −
∫

Ω

∣∣∇χ ′(ξ)
∣∣ 2dx � 0,

and additionally r � 1, we conclude that ρ ≡ 0, i.e.

0 � q(t) � 1, t ∈ [0, TU0
].

Third step. Similarly, we set ξ = α − c and consider ρ(t) = ∫
Ω

χ(ξ)dx. We have successively

∂ξ

∂t
= −∂c

∂t

= −d2Δc − B1r + C2c − C1p + frc − hcp + ϕc(r + c + p + q)

= d2Δξ + C2c + ϕ(c2 + cq) − (B1 − ϕc − fc)r − (C1 − ϕc + hc)p.

It follows that

ρ′(t) = d2

∫
Ω

χ ′(ξ)Δξdx +
∫

Ω

χ ′(ξ)
[
C2c + ϕ(c2 + cq)

]
dx

−
∫

Ω

χ ′(ξ)
[
(B1 − ϕc − fc)r + (C1 − ϕc + hc)p

]
dx.

Assumption (3.4) leads to

χ ′(ξ)(B1 − ϕc − fc)r � 0, χ ′(ξ)(C1 − ϕc + hc)p � 0,

so we obtain

−
∫

Ω

χ ′(ξ)
[
(B1 − ϕc − fc)r + (C1 − ϕc + hc)p

]
dx � 0,

thus ρ ≡ 0 and finally,

0 � c(t) � α, t ∈ [0, TU0
].

Fourth step. Using assumption (3.5), we prove in the same manner that

0 � p(t) � β, t ∈ [0, TU0
].

�
Now, we continue with the research of invariant regions for the network problem (2.18). In order to

prove that the product set

R =
∏

1�i�n

Rαi,βi
(3.8)

is a positively invariant region for the flow induced by (2.18), we need to make additional assumptions on
the network, which are similar to Kirchoff-type requirements frequently met in graph theory (see Chen
et al., 2014). For each node i ∈ {1, . . . , n} of the network, let us introduce the subset Ji ⊂ {1, . . . , n}
composed with all other nodes j (j �= i), which enter into i, and inversely, the total coupling strength
exiting from the node i, defined by Ei = −Li,i [see equation (2.13)].
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COMPLEX NETWORKS OF REACTION–DIFFUSION SYSTEMS 15

Theorem 4 Suppose that assumptions (3.3)–(3.5) hold for i ∈ {1, . . . , n} and that additionally we have

μ(αi + βi) +
∑
j∈Ji

Li,j < B(i) + Ei, (3.9)

∑
j∈Ji

Li,j < Ei + C(i)
2 + ϕαi, (3.10)

B(i)
2 + C(i)

2 αi + μ(1 + αi)βi + βi

∑
j∈Ji

Li,j < Eiβi + C(i)
1 βi, (3.11)

for each node i ∈ {1, . . . , n}. Then the compact set R defined by (2.17) is positively invariant under the
flow induced by the network problem (2.18).

The proof can be made by repeating the same arguments, so we omit it.

Remark 4 The Kirchoff-type requirements (3.9)–(3.11) of Theorem 4 are easily satisfied for a node
that plays the role of a ‘source’. In that case, we have Ei > 0 and in the mean time,

∑
Ji

Li,j = 0. At the
opposite, those requirements could be violated for a node that would play the role of a dead end. For
those nodes, it is crucial that the value of the parameter C(i)

1 is sufficiently large in counterpart of Ei = 0.
In our application, the zones that are situated in a dead end are often refuge zones, which favours the
evolution process from panic to control, thus a sufficiently large value of parameter C1. In other words,
the assumptions (3.9)–(3.11) are compatible with our model.

The latter statements allow us to construct semi-groups of nonlinear operators for both problems
(2.12) and (2.18). Under the assumptions of Theorem 3, we have shown that the compact region Rα,β is
positively invariant. We set

Z = L2(Ω , Rα,β), Z = L2(Ω , R).

For U0 ∈ Z, let U(t, U0) be the solution of the problem (2.12) defined for all t � 0. We introduce the
family of operators S(t) acting on Z by setting

S(t)U0 = U(t, U0), (3.12)

for all t � 0 and U0 ∈ Z. The family
(
S(t)

)
t�0 defines a nonlinear semi-group acting on Z. Similarly,

for U0 ∈ Z , let U (t, U0) be the solution of the problem (2.18) defined for all t � 0. We set

S (t)U0 = U (t, U0), (3.13)

for all t � 0 and U0 ∈ Z .

4. Energy estimates and existence of attractors

In this section, our aim is to study the asymptotic behaviour of the solutions U and U of the problems
(2.12) and (2.18). We suppose that U and U evolve in Rα,β and R, respectively.
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16 G. CANTIN ET AL.

Proposition 3 Assume that the assumptions of Theorem 3 hold. Let

δ0 = min
(γ

2
, 2B − 3 − 2μ(α + β)

)
,

δ1 = 2C2 − B1 − C1,

δ2 = 2C1 − B2 − C2.

(4.1)

Assume that δi > 0 for 0 � i � 2, δ0 �= δ1 and δ0 �= δ2. Then there exist positive constants Ki,
1 � i � 4, such that

γ

2
‖r(t)‖ 2

L2 + ‖q(t)‖ 2
L2 �

(γ

2

∥∥r0

∥∥ 2
L2 + ∥∥q0

∥∥ 2
L2

)
e−δ0t

‖c(t)‖ 2
L2 �

∥∥c0

∥∥ 2
L2e−δ1t + K3

e−δ0t − e−δ1t

δ1 − δ0
+ K1

δ1

‖p(t)‖ 2
L2 �

∥∥p0

∥∥ 2
L2e−δ2t + K4

e−δ0t − e−δ2t

δ2 − δ0
+ K2

δ2
,

(4.2)

for all t > 0.

Proof. We introduce

R(t) = 1

2

∫
Ω

(
r(t)

)2dx, C(t) = 1

2

∫
Ω

(
c(t)

)2dx,

P(t) = 1

2

∫
Ω

(
p(t)

)2dx, Q(t) = 1

2

∫
Ω

(
q(t)

)2dx,

where we omit the space variable x in order to lighten our notations. We first compute the derivative
of R:

R′(t) =
∫

Ω

r(t)
∂r

∂t
(t)dx

=
∫

Ω

d1r(t)Δr(t)dx − B
∫

Ω

(
r(t)

)2dx + γ

∫
Ω

q(t)r(t)
[
1 − r(t)

]
dx

+
∫

Ω

[
f
(
r(t)

)2
c(t) + g

(
r(t)

)2
p(t)

]
dx

� −2BR(t) + γ

∫
Ω

q(t)r(t)dx − γ

∫
Ω

q(t)
(
r(t)

)2dx + 2μ(α + β)R(t)

�
( − 2B + 1 + 2μ(α + β)

)
R(t) + Q(t),

for all t > 0, using the non-negativity of q(t) and the inequality ab � a2

2 + b2

2 , a, b ∈ R. It follows that

γ

2
R′(t) � γ

2

( − 2B + 1 + 2μ(α + β)
)
R(t) + γ

2
Q(t),
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COMPLEX NETWORKS OF REACTION–DIFFUSION SYSTEMS 17

for t > 0. Similarly, we obtain

Q′(t) � −γ Q(t) + γ R(t), t > 0,

which leads to, after summing the two latter inequalities,

γ

2
R′(t) + Q′(t) �

( − 2B + 3 + 2μ(α + β)
)γ

2
R(t) − γ

2
Q(t), t > 0.

We introduce δ0 = min
( γ

2 , 2B − 3 − 2μ(α + β)
)
, thus

γ

2
R′(t) + Q′(t) � −δ0

(γ

2
R(t) + Q(t)

)
, t > 0,

which yields, by virtue of Lemma (1),

γ

2
‖r(t)‖ 2

L2 + ‖q(t)‖ 2
L2 �

(γ

2

∥∥r0

∥∥ 2
L2 + ∥∥q0

∥∥ 2
L2

)
e−δ0t,

for all t > 0. Next we compute C′(t) and P′(t):

C′(t) =
∫

Ω

c(t)
∂c

∂t
(t)dx

=
∫

Ω

c(t)
[
d2Δc(t) − C2c(t) + B1r(t) + C1p(t)

]
dx

+
∫

Ω

[ − f × r(t)
(
c(t)

)2 + h × (
c(t)

)2
p(t)

]
dx − ϕ

∫
Ω

c(t)2[r(t) + c(t) + p(t) + q(t)
]
dx

� −2C2C(t) + B1R(t) + B1C(t) + C1P(t) + C1C(t) + μα2(1 + β) |Ω|
� −(2C2 − B1 − C1)C(t) + B1R(t) + C1P(t) + μα2(1 + β) |Ω|
� −δ1C(t) + k9e−δ0t + K1,

for t > 0, with δ1 = 2C2 − B1 − C1 and

K1 =
[
β2C1

2
+ μα2(1 + β)

]
|Ω| , (4.3)

and we obtain the desired estimate

‖c(t)‖ 2
L2 �

∥∥c0

∥∥ 2
L2e−δ1t + K3

e−δ0t − e−δ1t

δ1 − δ0
+ K1

δ1
,

for all t > 0, by using Lemma (1). In the same manner, we have

P′(t) � −δ2P(t) + k10e−δ0t + K2,
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18 G. CANTIN ET AL.

for t > 0, with δ2 = 2C1 − B2 − C2 and

K2 =
[
α2C2

2
+ μβ2(1 + α)

]
|Ω| , (4.4)

which leads to

‖p(t)‖ 2
L2 �

∥∥p0

∥∥ 2
L2e−δ2t + K4

e−δ0t − e−δ2t

δ2 − δ0
+ K2

δ2
,

for all t > 0. The proof is complete. �
Remark 5 The first estimation in (4.2) guarantees that the components r and q for the reflex and daily
behaviours exponentially tend to 0 if δ0 > 0, at a speed that increases with B and γ , which concords with
the observations of geographers. At the opposite, the estimates for the control and panic behaviours c
and p, as given by the expressions (4.2), contain residual terms that let various asymptotic behaviours be
possible. The constants K1 and K2 given by (4.3) and (4.4) are proportional to |Ω|. Hence, when the size
of Ω tends to 0, it is reasonable to expect that c and p converge to 0, accordingly to the behaviour of the
solution of the ODE system in the general case C1 > 0 mentioned in our introduction. In the estimate
for the control component c, the residual term is the ratio K1

δ1
. But δ1 increases with the value of the

parameter C2, which models the evolution process from control to panic. Thus, the residual term for the
estimate of the control component c is as small as C2 is large. In the estimate for the panic component p,
the residual term is the ratio K2

δ2
. If C1 tends to 0, δ2 can be negative, and the estimate fails to prove that p

converges to 0. In the mean time, β can increase [see Remark (3)], which implies a larger value for K1,
thus a possible positive limit for c. Roughly speaking, a small value for C1 can provoke a persistence
of panic and that persistence can postpone the decrease of c. Once again, the evolution parameter from
panic to control C1 is identified to play a crucial role in the asymptotic behaviour of our model.

Next we state energy estimates for the solution U of the network problem (2.18). Similar arguments
are used for the proof. For that reason, we may omit it.

Proposition 4 Assume that the assumptions of Theorem 4 hold. Then the solution U of the network
problem (2.15) starting form U0 ∈ Z satisfies

‖U (t)‖ 2
Xn �

∥∥U0

∥∥ 2
Xn e−2k0t + Z0

2k0
, (4.5)

for t > 0, with k0 = min(B(i), C(i)
2 , C(i)

1 , γ , 1 � i � n), and Z0 is given by

Z0 = 4n max(1, αi, βi, 1 � i � n) |Ω|
(

max
1�i�n

sup
Rαi ,βi

∣∣∣F(i)
∣∣∣ + sup

R
|L|

)
. (4.6)

Remark 6 The energy estimate (4.5) and the expression (4.6) for Z0 highlight the influence of the
size of the network on its dynamics, through the number n of its nodes, and the impact of the topology,
through the factor

sup
R

|L| ,
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COMPLEX NETWORKS OF REACTION–DIFFUSION SYSTEMS 19

where L is the coupling operator defined by (2.21). Thus, it is reasonable to expect that a large network
would exhibit various complex dynamics. Furthermore, it is seen that the constant k0 can approach 0

if only one node i in the network admits a low value for one of its parameters B(i), C(i)
2 or C(i)

1 . Such a
node could drive the rest of the network to an inappropriate dynamics, with a propagation of panic for
instance.

Now we are ready to prove the existence of attractors for both problems (2.12) and (2.18). If(
S(t), Z, X

)
denotes a continuous dynamical system defined in a Banach space X, with phase space

Z ⊂ X, we recall that a subset a ⊂ Z is a ‘global attractor’ of
(
S(t), Z, X

)
if a is compact, invariant and

attracts bounded subsets of Z (Yagi, 2009; Temam, 2012). May it exist, such an attractor is necessarily
unique. Furthermore, a subset m ⊂ Z is said to be an ‘exponential attractor’ of

(
S(t), Z, X

)
if it is a

positively invariant, compact subset of Z containing the global attractor, which attracts bounded subsets
of Z at an exponential rate.

Theorem 5 Under the assumptions of Theorem 3 and Proposition 3, the semi-group of nonlinear
operators S(t) defined by (3.12) determines a continuous dynamical system (S(t), Z̃, X) with a compact
phase space Z̃ ⊂ Z, which admits a global attractor a, and a family m of exponential attractors that
contain a.

Proof. The estimates (4.2) guarantee that the semi-group S(t) is continuous in L2(Ω , Rα,β). Further-
more, since X is a Hilbert space, and D(A) is compactly embedded in X, it is proved in Yagi (2009,
Chapter 6, Section 5.4) that the so-called ‘squeezing property’ follows from the energy estimates (4.2).
Then by Theorem 6.15 in Yagi (2009), we can conclude that there exists a compact subset Z̃ of Z such
that (S(t), Z̃, X) admits a family m of exponential attractors that contain a. �

We have a similar result for the network problem (2.18).

Theorem 6 Under the assumptions of Theorem 4 and Proposition 4, the semi-group of nonlinear
operators S (t) defined by (3.13) determines a continuous dynamical system

(
S (t), Z̃ , X

)
with a

compact phase space Z̃ , which admits a global attractor A and a family M of exponential attractors
that contain A.

It is worth noting that the latter attractors a, m, A and M, which describe all the possible asymptotic
behaviours of the corresponding semi-groups, have a finite fractal dimension (see Efendiev et al., 2004;
Temam, 2012; Miranville & Quintanilla, 2015), which can be evaluated in terms of the parameters
involved in the corresponding systems. The exponential attractors of both families m and M are larger
than the global attractors a and A, respectively, but they are more robust to a variation of the parameters
contained in the systems. Furthermore, it is known (see Eden et al., 1994) that this fractal dimension can
be estimated by a proportional to |Ω| quantity, for some particular reaction–diffusion equations. Thus,
it seems reasonable to expect that the fractal dimension of the exponential attractors, in the case of the
network problem, should be estimated by a quantity that would be proportional to the number n of nodes
in the subsequent graph. This work in progress will be presented in a separate paper.

5. Numerical simulations

In this section, we illustrate our theoretical results by numerical simulations of both problems (2.12)
and (2.18) using a splitting scheme (see Strang, 1964 or Descombes, 2001). As mentioned above, those
simulations have been prepared with the collaboration of geographers (Provitolo et al., 2015; Cantin
et al., 2017) and are related to the realistic scenario of a tsunami on the Mediterranean coast.
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Fig. 2. Numerical simulation of problem (2.12) on a domain Ω that models a beach of the Mediterranean coast evacuated by a
corridor (first case). At t = 0, individuals in daily behaviour q are located on the beach or within the corridor, and individuals in
control behaviour c are located within the corridor. The presence of individuals in control behaviour c within the corridor tempers
the spreading of panic p on the beach.

Fig. 3. Numerical simulation of problem (2.12) on a domain Ω that models a beach of the Mediterranean coast evacuated by a
corridor (second case). At t = 0, individuals in daily behaviour q are located only on the beach. We observe that panic spreads on
the beach, and it seems that individuals are incapable of finding the exit of the area exposed to the risk.

5.1 Simulation of panic on a beach evacuated by a corridor

We begin with a numerical simulation of problem (2.12) on a domain Ω (depicted on Figs 2 and 3),
which models a beach of the Mediterranean coast, evacuated by a corridor. This scenario is of great
interest, since it is known that a submarine fracture, located at about 50 km from the littoral, can provoke
submarine earthquakes which in turn generate tsunamis of middle intensity (see Ioualalen et al., 2014).
The landscape of the coast is characterized by small beaches, which are connected to urban installations
by step corridors of variable sizes. For example, the beaches of Nice city (France) are connected to the
famous avenue ‘Promenade des Anglais’ by dozens of step corridors. Furthermore, the urban areas that
are located behind the beaches admit an elevation with respect to the sea level; this elevation seems to
be sufficient to favour a feeling of security, which is likely to bring individuals to evolve from panic to
control behaviour.

We fix γ = ϕ = 1, B1 = B2 = 0.4, C1 = C2 = 0.2; f = g = 0, h = 0.5, which means that
we neglect imitation between control and reflex or between panic and reflex, and favour imitation from
panic to control; d2 = 25, d1 = d3 = d4 = 1, which means that we suppose that displacements of
individuals in control behaviour are faster than displacements of individuals in other behaviours. The
domain Ω is obtained by juxtaposition of a rectangle of dimensions L × 1

2 L (with L = 20.0) modelling
the beach, and a smaller rectangle of dimensions 1

5 L × 1
2 L modelling the corridor of evacuation.

Furthermore, we distinguish two cases for the initial conditions.
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First case. We assume for t = 0 that individuals in daily behaviour q are located on the beach or
within the corridor, and individuals in control behaviour c are located within the corridor, thus we set

q0(x, y) =
[

1 +
(

x − 3L
4

)2 + (
y − L

5

)2
]−1

+
[

1 + (
x − L

2

)2 +
(

y − 4L
5

)2
]−1

,

c0(x, y) =
[

1 + (
x − L

2

)2 +
(

y − 4L
5

)2
]−1

,

r0 = p0 ≡ 0.

The results of the numerical simulation, for the panic behaviour p at t = 2, t = 30, t = 50, are shown
in Fig. 2. We observe that the presence of individuals in control behaviour within the corridor tempers
the spreading of panic on the beach, which seems to be the consequence of the imitation phenomenon
modelled by the quadratic term +hcp in the second equation of system (2.1).

Second case. We assume for t = 0 that individuals in daily behaviour q are located only on the
beach, thus we set

q0(x, y) =
[

1 +
(

x − 3L
4

)2 + (
y − L

5

)2
]−1

,

r0 = c0 = p0 ≡ 0.

The results of the numerical simulation, for the panic behaviour p at t = 2, t = 30, t = 50, are shown in
Fig. 3. In this second case, it is clear that panic spreads on the beach, and it seems that individuals are
incapable of finding the exit of the area exposed to the risk.

5.2 Effect of the evolution parameter from panic to control

We continue with a simulation of problem (2.12), on a circular domain Ω of radius ρ = 10. Here,
our aim is to show that one can reproduce with the reaction–diffusion system (2.1) the dynamics of
the original PCR, defined by a system of ordinary differential equations [see equation (1.1)], for which
it has been proved that a persistence of panic occurs when the evolution parameter C1 (from panic to
control) is null. Thus, we fix

γ = ϕ = 1, B1 = B2 = 0.4, C1 = 0.02 or 0.6,

C2 = 0.6, d1 = d3 = d4 = 1, d2 = 5, ρ = 10,

and we determine the initial conditions by setting

q0(x, y) = [
1 + (x − ρ)2 + (y − ρ)2]−1, r0 = c0 = p0 ≡ 0,

which corresponds to the situation when all individuals are in the daily behaviour q before the
catastrophe, with a population localized at the centre of the domain Ω . The values of B1 and B2
mean that the evolution processes from reflex to control, and from reflex to panic, respectively, are
of similar intensity and are dominated by the evolution process from control to panic, modelled by C2.
As explained previously, the diffusion rate d2 for the control behaviour is larger than the other diffusion
rates.
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Fig. 4. Decrease of panic for a large value of the evolution parameter C1 from panic to control after a transitional phase
corresponding to the action of the catastrophe, during which the panic behaviour spreads in the affected population. The energy
estimates given in Proposition (3) guarantee that the panic component exponentially decreases.

Fig. 5. Persistence of panic for a low value of the evolution parameter C1 from panic to control. After the transitional phase, the
panic level does not converge to 0, in particular in the neighbourhood of the boundary of Ω .

The results for the panic component p are depicted in Fig. 4 in the case C1 = 0.6, and in Fig. 5 in
the case C1 = 0.02. As mentioned above, it is proved in Cantin et al. (2016) that a low value of the
parameter C1 is expected to provoke a high level of panic in the Ordinary Differential Equation (ODE)
model. This pattern is recovered in the reaction–diffusion model (2.1), as illustrated in Fig. 5, where the
level of the density of individuals in panic behaviour exhibits high values, whereas Fig. 4 shows that the
panic level decreases for a higher value of C1, after a transitional phase corresponding to the action of
the catastrophe, during which the panic behaviour spreads in the affected population.

According to Proposition 3, we can compute the coefficients δ1 and δ2 involved in the energy
estimates (4.1). In the case C1 = 0.02, we have δ1 = 0.78 > 0, δ2 = −0.96 < 0, which is coherent
with the fact that the panic behaviour does not decrease to 0. In particular, it is observed that the panic
level increases in the neighbourhood of the boundary of Ω . However, the existence of an invariant
region is guaranteed by Theorem 3, thus forbids an explosion in finite time for the panic behaviour. In
the case C1 = 0.6, we have δ1 = δ2 = 0.2 > 0, which accounts for the decrease of the panic behaviour
observed in Fig. 4. This numerical experimentation shows that the spatial-temporal model given by the
reaction–diffusion system (2.1) is able to reproduce basic patterns concretely discussed by geographers.

5.3 Effect of the coupling orientation in a four nodes network

We continue with numerical simulations of problem (2.18) in the case of a network composed with
4 nodes and experiment the effect of an inversion of the coupling orientation. We consider two nodes
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Fig. 6. PCR network composed with four nodes. (a) Evacuation of individuals of the nodes that are likely to exhibit a high level
of panic in absence of coupling (nodes 1 and 2, coloured in dark red) towards the nodes that are known to have the capacity of
absorbing the panic behaviour (nodes 3 and 4, coloured in light green). (b) Other configuration of the four nodes network, with a
displacement of individuals towards a node that admits a high level of panic in absence of coupling.

(coloured in red in Fig. 6) for which the evolution parameter from panic to control C1 admits a low
value, coupled with two additional nodes for which C1 is larger (coloured in green in Fig. 6). The initial
conditions for each node are given by

q0(x, y) = [
1 + (x − ρ)6 + (y − ρ)6]−1, r0 = c0 = p0 ≡ 0,

which corresponds to a pick of individuals in daily behaviour at the centre of the domain before the
action of the catastrophe. The values of the parameters are

γ = ϕ = 1, B1 = 0.15, B2 = 0.9, C1 = 0 or 0.3,

C2 = 0.2, d1 = d2 = d3 = d4 = 1, ε = 1, ρ = 10.

The first situation, depicted in Fig. 6a, corresponds to an evacuation of individuals of the nodes that
are likely to exhibit a high level of panic in absence of coupling, towards the nodes that are known to
have the capacity of absorbing the panic behaviour. The numerical results for the panic components p1
and p2 of the nodes 1 and 2, respectively, are shown in Fig. 7. It is observed that the panic level decreases
on the two nodes 1 and 2, and the rate of decrease is faster on the node 2, due to the double evacuation
of that node.

The second situation, presented in Fig. 6b, corresponds to another configuration of the coupling
orientation. More precisely, we experiment a displacement of individuals of the nodes 2, 3 and 4 towards
the node 1, which is likely to admit a high level of panic. The numerical results, given in Fig. 8, show
that the panic behaviour is exacerbated on that node, whereas the panic behaviour on the node 2 is
inhibited.

5.4 Effect of a high ratio in diffusion rates with nonlinear imitation

Finally, we experiment the possible emergence of spatial instabilities in the case of a high ratio in the
diffusion rates. Thus, we consider a simple network of two nodes, with an imitation on the node 2 from
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24 G. CANTIN ET AL.

Fig. 7. Numerical results for the situation depicted in Fig. 6a. The first line shows the evolution of the panic density p1 on the
first line, and p2 is depicted on the second line. The panic level decreases on the two nodes 1 and 2, and the rate of decrease is
faster on the node 2, due to the double evacuation of that node.

Fig. 8. Numerical results for the situation depicted in Fig. 6b. The panic behaviour p1 on the node 1 (first line) is exacerbated,
whereas the panic behaviour p2 on the node 2 (second line) is inhibited.
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Fig. 9. Numerical simulation of a two-nodes networks with nonlinear imitation and a high ratio in the diffusion rates. Complex
dynamics occur.

control towards panic, modelled by the nonlinear term h c2 p2. The values of the parameters are

γ = 1, ϕ = 0.01, B1 = 0.15, B2 = 0.9, C1 = 0.01, C2 = 0.2,

ε = h = 0.95, d1 = 15, d2 = 25, d3 = 0.1, d4 = 5, ρ = 25.

We choose the diffusion rates by favouring the displacement of individuals in control behaviour, which
corresponds to a rough approximation of the geographical observations. The initial conditions are given
on each node by

q0(x, y) = [
1 + 1

10 (x − ρ)6 + 1
10 (y − 1

2ρ)6]−1 + [
1 + 1

10 (x − ρ)6 + 1
10 (y − 3

2ρ)6]−1

+ [
1 + 1

10 (x − 3
2ρ)6 + 1

10 (y − ρ)6]−1 + [
1 + 1

10 (x − 1
2ρ)6 + 1

10 (y − ρ)6]−1,

and r0 = c0 = p0 ≡ 0, which represents four picks of individuals in daily behaviour at the centre of the
domain, before the action of the catastrophe.

The numerical results for the control component c2 of the node 2 are presented in Fig. 9. We observe
that the areas where the control behaviour admits a high level at the beginning of the evolution process
are subject to the nonlinear imitation process from control to panic, thus a reversal of the proportions
in the panic and control behaviours. Meanwhile, the entering coupling with the node 1 guarantees an
intake of individuals on the node 2, the weak value of ϕ inhibits the behavioural purge, and the high
diffusion rate d2 for the control behaviour provokes the diffusion of individuals in control behaviour in
the whole domain Ω , at a speed that is greater than the diffusion of individuals in panic behaviour. Thus,
the level of control behaviour becomes predominant at the centre of the domain, where the nonlinear
imitation process from control to panic cannot occur, since the individuals in panic do not reach this
area sufficiently fast. Roughly speaking, the superposition of reaction, diffusion, coupling and nonlinear
imitation lets complex dynamics occur. It is a work in progress to exhibit other complex dynamics, such
as damped oscillations, in coupled networks of higher size.

6. Conclusion and perspectives

In this work, we have presented the mathematical analysis of an evolution problem given by a
coupled network of reaction–diffusion systems, modelling human behaviours during catastrophic
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events. Existence, uniqueness, non-negativity and boundedness, which are obvious properties to be
satisfied, are now rigorously proved. Numerical simulations concord with the geographical background
of our model. The study of the asymptotic dynamics is related to the existence of exponential attractors,
which follows from energy estimates. In a forthcoming paper, we shall present the continuation of our
research, with an estimation of the fractal dimension of those attractors, which seems to be linked
to the size of the network, an exploration of the possible bifurcations occurring in the system and
an improvement of our modelling obtained by coupling reaction–diffusion systems defined on non-
identical domains.
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