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Laboratoire de Mathématiques Appliquées du Havre, Normandie University
FR CNRS 3335, ISCN, 76600 Le Havre, France

M. A. Aziz-Alaoui

Laboratoire de Mathématiques Appliquées du Havre, Normandie University
FR CNRS 3335, ISCN, 76600 Le Havre, France

(Communicated by Changfeng Gui)

Abstract. The asymptotic behavior of dissipative evolution problems, deter-

mined by complex networks of reaction-diffusion systems, is investigated with

an original approach. We establish a novel estimation of the fractal dimension
of exponential attractors for a wide class of continuous dynamical systems,

clarifying the effect of the topology of the network on the large time dynamics

of the generated semi-flow. We explore various remarkable topologies (chains,
cycles, star and complete graphs) and discover that the size of the network does

not necessarily enlarge the dimension of attractors. Additionally, we prove a

synchronization theorem in the case of symmetric topologies. We apply our
method to a complex network of competing species systems modeling an het-

erogeneous biological ecosystem and propose a series of numerical simulations
which underpin our theoretical statements.

1. Introduction. In this article, we aim to bring a novel contribution to the study
of the asymptotic behavior of dissipative evolution problems, by establishing an in-
novative estimation of the dimension of their possible attractors. We focus on evolu-
tion problems determined by complex networks of reaction-diffusion systems. Those
complex networks can be constructed in concordance with a finite graph, whose ver-
tices are associated with non-identical instances of a given reaction-diffusion system,
as will be shown below. Under reasonable assumptions which cover a wide class
of systems, we show that such complex networks generate continuous dynamical
systems whose asymptotic behavior can be described by a family of exponential
attractors of finite fractal dimension. Furthermore, we establish an estimate of this
dimension in terms of the topology of the graph associated to the complex network.
Up to our knowledge, this estimate has never been proved before.

A huge number of studies have been devoted to complex networks of dynami-
cal systems given by ordinary differential equations (ODE), but only a few works
are studying complex networks of dynamical systems given by partial differential
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equations (PDE). Those studies are motivated by numerous applications of great
interest, including neural networks, epidemiological networks or geographical net-
works (see for instance [2, 5, 7, 8, 40]). Complex networks can also be applied to
ecological models, since they can reproduce the heterogeneity of biological environ-
ments fragmented by urban and industrial expansion, which threats the natural
equilibrium of biodiversity [19]. Emergent properties and self-organization, such as
synchronization, which is a form of control of the asymptotic behavior, are some of
the topics which are commonly analyzed (see [3, 4, 10, 17] or [35]); but the question
to determine the dynamics of the network, assuming that the dynamics of each
vertex is known and that the topology of the subsequent graph is given, remains
open in the general case. Furthermore, complex networks of reaction-diffusion sys-
tems have also been studied in [6], in order to approximate a fourth order parabolic
problem, which shows again the wide potential of application of complex networks.
In the case of the finite dimension, that is, when the complex network is determined
by a system of ODE, it is sometimes possible to describe partially the asymptotic
behavior of the resulting dynamical system. Nevertheless, in the case of the infinite
dimension, that is, when the complex network is given by a system of PDE, only
sporadic results have been proved. Recently, the asymptotic behavior of solutions of
Keller–Segel equations in network shaped domains has been studied in [23], where
the convergence towards stationary solutions is investigated. In another recent pa-
per, conditions of synchronization have been obtained in [2] for a neural network
built with the FitzHugh–Nagumo reaction-diffusion system. Thus it appears es-
sential to develop a novel approach in order to analyze the asymptotic behavior of
complex networks in the case of infinite dimension and to generalize what has been
proved in particular cases.

Here, we establish an upper bound on the fractal dimension of exponential attrac-
tors for complex networks of reaction-diffusion systems. Our main result is stated
in Theorem 4.1, in which we prove the following asymptotic estimate

dF (M) ≤ 1 + C |Ω|
(
Cg
)d/2

where dF (M) denotes the fractal dimension of an exponential attractor M of the
complex network, Cg is the Lipschitz constant of the coupling operator of the net-
work, Ω is a bounded domain in Rd with d ∈ {1, 2, 3} and C is a positive constant.
Additionally, the Lipschitz constant Cg is estimated in terms of the number of ver-
tices in the network and the maximal coupling strength (see Proposition 3). In
order to derive the estimate of dF (M), we revisit the method proposed in [14]. This
technique has been used several times for the analysis of various parabolic prob-
lems in a Hilbert setting (see [16] for instance) and has been extended to Banach
spaces and non-autonomous systems (for instance in [15, 25]). Furthermore, this
method overcomes the well-known defects of robustness of the global attractor (see
[26, 29, 30] or [38]). Here, the main difficulty we face consists in isolating the ef-
fect of the topology of the graph underlying the complex network, with respect to
other parameters of the system. Estimating the dimension of attractors for com-
plex networks can be of great interest in regard to the synchronization topic, which
also makes our contribution original; roughly speaking, complex networks admitting
small attractors are susceptible to exhibit synchronization. However, we emphasize
that synchronization is likely to occur even in the case of complex networks ad-
mitting large attractors; the most relevant example of that situation is analyzed in
[3], where it is shown that chaotic dynamics can be synchronized. Here, we prove
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that synchronization can be reached in the case of symmetric topologies (i.e. with
bi-directed couplings) , in particular for the complete bi-directed graph topology;
this result is stated in Theorem 4.2 below. Furthermore, we analyze the effect of
remarkable asymmetric topologies corresponding to oriented chains, cycles and star
graphs, and discover that the number of vertices does not necessarily enlarge the
size of the attractors (see Proposition 4). Our framework is concentrated around
reaction-diffusion systems which admit a rich variety of solutions, and can model a
great number of real-world applications (see for instance [13, 24, 31, 41]). In par-
ticular, we apply our theoretical results to a complex network built with multiple
instances of a competing species model (presented in [22] or [27]) for which the
coupling is relevant and adapted to the metapopulation approach [20]. However,
our method can easily be applied to other parabolic problems.

This paper is organized as follows. In the next section, for the self-sufficiency
of the paper, we recall some important results of functional analysis concerning
interpolation spaces, sectorial operators and semi-linear equations. We also present
the concept of exponential attractor of finite fractal dimension and recall the main
assumptions required for using the technique given by [14]. In section 3, we show
how to construct a complex network of non-identical systems, stemming from a
reaction-diffusion system and a finite graph. We briefly demonstrate the existence
and uniqueness of local solutions, and set a minimal number of hypotheses under
which the complex network generate a continuous dynamical system admitting a
family of exponential attractors. Our main results are presented in section 4, where
we establish an estimate of the fractal dimension of those attractors in terms of
the coupling parameters. Additionally, we establish sufficient conditions on the
topology for synchronization in the network. We complete our results with the
analysis of several remarkable asymmetric topologies. In the final section, we apply
our theoretical statements to a competing species model embedded in a complex
network structure which reproduces an heterogeneous biological environment, and
we illustrate our approach with numerical simulations.

2. Preliminaries. In this section, we present some important results of functional
analysis that will be used in the present work, so as to guaranty the self-sufficiency
of the article and the comfort of the reading.

2.1. Functional spaces and interpolation theory. Throughout this paper, the
symbol C will denote an absolute positive constant, whereas the symbol Cα will
design a positive constant depending on a given object α.

We will use the classical notations for Lebesgue spaces Lp(Ω) and Sobolev spaces
W k,p(Ω), where Ω denotes an open bounded domain in Rd with regular boundary
∂Ω, p ∈ [1, ∞] and k ∈ N. Those functional spaces are Banach spaces whose norms
will be denoted ‖·‖Lp(Ω) and ‖·‖Wk,p(Ω) respectively. For p = 2, we simply note

Hk(Ω) = W k,2(Ω); Hk(Ω) is a Hilbert space whose inner product will be denoted(
· , ·
)
Hk(Ω)

.

Let X0 and X1 denote two Banach spaces, with dense and continuous embed-
ding X1 ⊂ X0. Several methods have been proposed (see for instance [1, 39] or
[32]) in order to construct a family of Banach spaces which are called interpola-
tion spaces and denoted

(
[X0, X1]α

)
0≤α≤1

. The interpolation spaces satisfy the

following properties:

(i) [X0, X1]0 = X0 and [X0, X1]1 = X1 with isometries;
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(ii) X1 ⊂ [X0, X1]α ⊂ X0 with dense and continuous embeddings, for all α ∈]0, 1[;

(iii) for α ∈]0, 1[, it holds that ‖x‖[X0, X1]α
≤ ‖x‖1−αX0

‖x‖αX1
,∀x ∈ X1;

(iv) [X0, X1]β ⊂ [X0, X1]α with dense and continuous embeddings, for all coeffi-
cients α, β such that 0 ≤ α < β ≤ 1.

Those interpolation spaces can be used in order to define Sobolev of fractional order
Hs(Ω) where exponent s ≥ 0 is not necessarily an integer. In order to avoid any
misunderstanding, it is worth noting that some authors prefer to write (X1, X0)α
instead of [X0, X1]α.

2.2. Continuous dynamical systems generated by semi-linear parabolic
equations. Here, we recall the definition of a sectorial operator and present an
existence theorem for semi-linear parabolic equations. We refer to [42] or [18] for
details concerning this class of equations. Then we show how semi-linear parabolic
equations can generate a continuous dynamical system.

Let X be a Banach space and A a closed linear operator, densely defined in X.
Assume that the spectrum of A satisfies

σ(A) ⊂ {λ ∈ C∗, |arg(λ)| < ω},
for ω ∈]0, π] and furthermore that∥∥(λ−A)−1

∥∥
L (X)

≤ M

|λ|
,

for all λ ∈ C such that |arg(λ)| ≥ ω, with M ≥ 1. Then A is said to be sectorial
in X. If A is a sectorial operator in X, it is seen that there exists a minimum
coefficient ω satisfying the above properties; it is denoted ωA and called angle of
A. Sectorial operators admit fractional powers whose domains can be described in
terms of interpolation spaces (see for instance [42], Theorems 16.7 and 16.9). Let A
be a sectorial operator in X of angle ωA <

π
2 and F a non-linear operator defined in

D(Aη) (where η is an exponent such that 0 < η < 1) with values in X. We consider
the Cauchy problem 

du

dt
+Au = F (u), t > 0,

u(0) = u0,
(2.1)

with u0 ∈ X. We assume that F enjoys the property:

‖F (u)− F (v)‖X ≤ CF (1 + ‖Aηu‖X + ‖Aηv‖X) ‖u− v‖X , (2.2)

for all u, v ∈ D(Aη), for a positive constant CF . The following theorem is proved
in [42].

Theorem 2.1. For all u0 ∈ X, there exists Tu0 > 0 such that problem (2.1) admits
a unique solution u = u(t, u0) in function space

u ∈ C
(
(0, Tu0

] ; D(A)
)
∩ C

(
[0, Tu0

] ; X
)
∩ C 1

(
(0, Tu0

] ; X
)
,

where Tu0 depends only on ‖u0‖X . Furthermore, u satisfies

‖u(t)‖X + t ‖Au(t)‖X ≤ Cu0
, 0 < t ≤ Tu0

,

where Cu0
> 0 depends only on ‖u0‖X .

Note that many other existence results have been established for semi-linear
equations using semi-groups methods (see for instance [28] or [33]).

Now we continue with the presentation of the concept of continuous dynamical
system generated by a semi-linear parabolic equation. If Φ is a compact subset of
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X such that the solutions of problem (2.1) stemming from initial conditions in Φ
are global and remain in Φ, then Φ is said to be positively invariant. In that case,
one can define the mapping

G : (0, +∞)× Φ −→ Φ
(t, u0) 7−→ S(t)u0

(2.3)

where S(t) denotes the semi-flow generated by problem (2.1), defined by

S(t)u0 = u(t, u0),

for all u0 ∈ Φ and t ≥ 0. Note that S(t) satisfies S(0) = Id (identity in X) and
S(t) ◦S(s) = S(t+ s) for all non-negative t and s. Furthermore, Φ admits a metric
structure since it can be equipped by the distance induced by X. If the mapping G
is continuous in (0, +∞) × Φ, then the triplet

(
S(t), Φ, X

)
is called a continuous

dynamical system. X is called the universal space and Φ is called the phase space.

2.3. Exponential attractors of finite fractal dimension. Let X be a Banach
space and

(
S(t), Φ, X

)
denote a continuous dynamical system with compact phase

space Φ ⊂ X. It is well-known (see for instance [38]) that
(
S(t), Φ, X

)
possesses a

global attractor A = ∩t≥0S(t)Φ, which is used in order to describe the asymptotic
behavior of the considered dynamical system. However, it is seen that the global
attractor A may present some defects. Indeed, the rate of convergence of the solu-
tions towards the global attractor A is not always known; furthermore, A can react
discontinuously to a small perturbation of the dynamical system. For those reasons,
the concept of exponential attractor has been proposed in [14]. Namely, a subset
M ⊂ Φ is said to be an exponential attractor of

(
S(t), Φ, X

)
if it is a positively

invariant, compact subset of Φ containing the global attractor A, which attracts
bounded subsets of Φ at an exponential rate for the Haussdorff pseudo-distance ρH
defined by

ρH(A, B) = sup
a∈A

inf
b∈B
‖a− b‖X .

Note that M is not unique, since its image by S(t) is another exponential attractor.
Since M is compact, for any ε > 0, it can be covered by a finite number of closed

balls of radius ε. Let N(ε) denote the minimal number of balls of radius ε which
cover M. Then the fractal dimension of M is defined by

dF (M) = lim sup
ε→0

logN(ε)

log 1
ε

.

The existence of exponential attractors can be established by virtue of the following
theorem, which is proved in [14].

Theorem 2.2. Assume that the mapping G defined by (2.3) satisfies the Lipschitz
condition

‖G(t, u)−G(s, v)‖X ≤ C
(
|t− s|+ ‖u− v‖X

)
, t > 0, s > 0, u, v ∈ Φ,

for a given positive constant C. Assume furthermore that there exists a positive
time t∗, a real coefficient δ∗ ∈

(
0, 1

8

)
and an orthogonal projection P ∗ of rank N∗

such that either

‖S(t∗)u− S(t∗)v‖X ≤ δ
∗ ‖u− v‖X (2.4)

or ∥∥(Id− P ∗)
(
S(t∗)u− S(t∗)v

)∥∥
X
≤
∥∥P (S(t∗)u− S(t∗)v

)∥∥
X

(2.5)
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holds for each pair u, v ∈ Φ. Then the dynamical system
(
S(t), Φ, X

)
admits an

exponential attractor M of finite fractal dimension dF (M). Moreover, the following
estimate holds

dF (M) ≤ 1 +N∗max

1,
log
(

1 + 2L∗

δ∗

)
log
(

1
4δ∗

)
 , (2.6)

where L∗ denotes the Lipschitz constant of S(t∗) on Φ.

The dichotomy principle (2.4)-(2.5) is usually called the squeezing property. We
shall apply the latter theorem in Section 4 in order to derive an estimate of the frac-
tal dimension of exponential attractors for complex networks of reaction-diffusion
systems. Note that the squeezing property is proved in [42] for a wide class of
systems, but the fractal dimension is not estimated.

3. Semi-flow generated by the complex network. In this section, we first
show how to construct a complex network of dynamical systems, stemming from
a reaction-diffusion system and a finite graph. Then we prove that the complex
network problem admits local in time solutions and present reasonable assumptions
under which the solutions are global.

3.1. Construction of the complex network problem. Let Ω denote an open
domain in Rd with d ∈ {1, 2, 3}. We assume that Ω admits a regular boundary ∂Ω
and we consider a reaction-diffusion system of the form

∂u

∂t
= D∆u+ ϕ(u) in Ω× (0, ∞),

∂u

∂ν
= 0 on ∂Ω× (0, ∞),

u(x, 0) = u0(x) in Ω.

(3.1)

Here, u = (u1, . . . , um)T is defined in Ω×(0, ∞) with values in Rm; D is a diagonal
matrix of order m with positive entries; ϕ is a non-linear operator whose form will
be detailed below and u0 is a given initial condition.

Additionally, we consider a graph G =
(
N , E

)
made with a finite set N of n

vertices (n ∈ N∗) and a finite set E of edges. We associate each vertex j of G with
an instance of the latter reaction-diffusion system (3.1), and we define a coupling
operator g as follows. We define the matrix of connectivity L =

(
Li,j

)
1≤i,j≤n, in

concordance with the set E of edges, by setting

Lj,k = +1 if (k, j) ∈ E with k 6= j, Lk,k = −
n∑

j=1,j 6=k

Lj,k, (3.2)

thus L is a matrix of order n whose sum of coefficients of each column is null. We
assume that the set of edges E does not possess any loop (we recall that a loop is
an edge that connects a vertex to itself). We also introduce a matrix of coupling
strengths H of order m defined by

H = diag
(
σ1, . . . , σm

)
, (3.3)

with σi ≥ 0, 1 ≤ i ≤ m. We introduce the notation

Huj =
(
σ1u1,j , . . . , σmum,j

)T
, 1 ≤ j ≤ n,
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and finally define the coupling operator g by setting

gj(u) =

n∑
k=1

Lj,kHuk, 1 ≤ j ≤ n. (3.4)

In this way, the equations of the complex network can be written
∂uj
∂t

= Dj∆uj + ϕj(uj) + gj(u1, . . . , un) in Ω× (0, ∞),

∂uj
∂ν

= 0 on ∂Ω× (0, ∞),

uj(x, 0) = uj,0(x) in Ω,

(3.5)

for 1 ≤ j ≤ n, where uj = (u1,j , . . . , um,j)
T is defined in Ω× (0, +∞) with values

in Rm. In our notation ui,j , the first subscript i (1 ≤ i ≤ m) refers to the i-th
component of uj , whereas the second subscript j refers to the vertex j (1 ≤ j ≤ n)
of G associated with one instance of system (3.1). The subscript j in Dj and
ϕj means that the values of the parameters involved in D and ϕ can be different
from one instance of system (3.1) to another, which justifies the expression complex
network of non-identical systems.

Remark 3.1. We emphasize that the n instances of the reaction-diffusion system
(3.1), which compose the complex network problem (3.5), are all set in the same
domain Ω, thus problem (3.5) can be seen as a multi-layer model, in which the
couplings are understood to be point-wise. The case of a complex network of systems
defined in distinct domains Ω1, . . . , Ωn with non point-wise couplings is delicate and

should be handled in
(
L2(Ω1×· · ·×Ωn)

)m×n
; this case will be treated in a separate

paper.

Remark 3.2. Complex networks of the form (3.5) have been considered for a great
number of applications. For instance, in neural networks of FitzHugh–Nagumo type,
we have u = (v, w), where v is the membrane voltage and w is a recovery variable
of a given neuron; in that case, the couplings correspond to chemical exchanges
which occur for instance in the synapses. Otherwise, in epidemiological networks,
u stores the states of several subgroups of a population affected by a disease; in that
second example, the couplings correspond to point-wise physical displacements of
individuals from one vertex in the network to another. In the final section of this
paper, we will apply our method to a network of competing species models, where
the couplings will similarly correspond to migrations of biological individuals.

3.2. Abstract formulation of the complex network problem. We handle the
complex network problem (3.11) in Hilbert space

X =
(
L2(Ω)

)n×m
,

equipped with the product norm defined by

‖u‖X =

 n∑
j=1

m∑
i=1

‖ui,j‖2L2(Ω)

 1
2

,

for all u ∈ X. For each j ∈ {1, . . . , n}, we consider the diagonal operator Aj =
diag {A1,j , . . . , Am,j}, where Ai,j , 1 ≤ i ≤ m, is the realization of −Di,j∆ui,j +ui,j
in L2(Ω), under Neumann boundary condition on ∂Ω. The operators Ai,j , 1 ≤ i ≤
m, are sectorial and positive definite self-adjoint operators of L2(Ω), with angles
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strictly lesser than π
2 (see for instance [42], Theorem 2.6). They admit a common

domain given by

H2
N (Ω) =

{
u ∈ H2(Ω) ;

∂u

∂ν
= 0 on ∂Ω

}
. (3.6)

Hence, A = diag {Ai, 1 ≤ i ≤ n} is a sectorial and positive definite self-adjoint
operator of the product space X, with angle strictly lesser than π

2 .

We fix η ∈
(

3
4 , 1

)
, and consider the fractional power operator Aη, whose domain

is given by the interpolation space (see [42], Theorem 16.7):

D(Aη) =
([
L2(Ω), H2

N (Ω)
]
η

)nm
=
(
H2η
N (Ω)

)nm
, (3.7)

with the norm equivalence:

1

C
‖u‖H2η(Ω) ≤ ‖(Ai,j)

ηu‖L2(Ω) ≤ C ‖u‖H2η(Ω) , (3.8)

for all u ∈ D ((Ai,j)
η), 1 ≤ i ≤ m, 1 ≤ j ≤ n, for a given constant C > 0. Since

2η > 3
2 and Ω is bounded, the embedding theorems for Sobolev spaces [1] guarantee

that:

H2η(Ω) ⊂ C
(
Ω
)
, (3.9)

with continuous embedding. Additionally, due to the boundedness of Ω, it is clear
that

C
(
Ω
)
⊂ L∞(Ω) ⊂ L2(Ω), (3.10)

with continuous embeddings.
The complex network problem (3.5) can be written

du

dt
+Au = f(u) + g(u), t > 0,

u(0) = u0,
(3.11)

where u, f and g are given by

u =
(
(ui,1)1≤i≤m, . . . , (ui,n)1≤i≤m

)T
,

f(u) =
(
u1 + ϕ1(u1), . . . , un + ϕn(un)

)T
,

g(u) =
(
g1(u), . . . , gn(u)

)T
.

Next, we assume that the non-linear operator f satisfies the estimation

‖f(u)− f(v)‖X ≤ Cf (1 + ‖Aηu‖X + ‖Aηv‖X) ‖u− v‖X , (3.12)

for all u, v in D(Aη). In parallel, we assume that the coupling operator g satisfies

‖g(u)− g(v)‖X ≤ Cg ‖u− v‖X , (3.13)

for all u, v in X. Obviously, assumption (3.13) is always fulfilled by virtue of the
definition (3.4) of g; we will see below that Cg can be estimated in terms of the
number of vertices in the network and the maximal coupling strength.

The following theorem guarantees the existence and uniqueness of local solutions
for the complex network problem (3.11).

Theorem 3.1. For any u0 ∈ X, there exists Tu0 > 0 such that the abstract problem
(3.11) admits a unique solution u in the function space

C
(
(0, Tu0 ], D(A)

)
∩ C

(
[0, Tu0 ], X

)
∩ C 1

(
(0, Tu0 ], X

)
. (3.14)
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Furthermore, u satisfies the estimate

‖u(t)‖X + t ‖Au(t)‖X ≤ Cu0
, ∀t ∈]0, Tu0

], (3.15)

where Cu0
is a positive constant depending only on ‖u0‖X .

Proof. We have already noticed that A is a sectorial operator of X with angle lesser
than π

2 . Now, let u, v ∈ D(Aη). We have

‖(f + g)(u)− (f + g)(v)‖X ≤‖f(u)− f(v)‖X + ‖g(u)− g(v)‖X
≤Cf (1 + ‖Aηu‖X + ‖Aηv‖X) ‖u− v‖X + Cg ‖u− v‖X
≤(Cf + Cg) (1 + ‖Aηu‖X + ‖Aηv‖X) ‖u− v‖X .

for all u, v in D(Aη). The conclusion directly follows from Theorem 2.1.

3.3. Energy estimates and global existence. Here, we investigate sufficient
conditions for proving that the local solutions of the complex network problem
(3.11) are global in time. It is well-known that the solutions of reaction-diffusion
systems can explode in finite time. However, it can be proved that the solutions
are global if the non-linearities satisfy an under-polynomial growth property (see
for instance the survey given in [34]). Entropy methods have also been used for
studying this feature (see e.g. [12]). Recently, global existence of weak solutions
has been established for reaction-diffusion systems under the assumption that the
non-linearities enjoy a quadratic growth property [36]. Nevertheless, the analysis
of the asymptotic behavior of the solutions requires stronger hypotheses in order to
guaranty the existence of exponential attractors. For instance, weak solutions can
be global in time, while blowing up in L∞ infinitely many times. Thus we assume in
the present work an a priori L2-type estimation of the local solutions, and we list the
consequences of that estimation: global existence of the local solutions, generation
of a continuous dynamical system, existence of a family of exponential attractors.

Proposition 1. Let u(t, u0) denote the solution of the complex network problem
(3.11) stemming from u0 ∈ X. Assume that there exist positive constants C1, C2

and δ such that

‖u(t, u0)‖X ≤ C1e
−δt ‖u0‖X + C2, 0 < t ≤ Tu0 . (3.16)

Then the solution u(t, u0) is global in X, that is Tu0
= +∞. Furthermore, the

mapping
G : (0, +∞)×X −→ X

(t, u0) 7−→ u(t, u0)

generates a continuous dynamical system
(
S(t), Φ, X

)
defined in X, whose phase

space Φ is a compact subset of X and a bounded subset of D(A). Finally, the
continuous dynamical system

(
S(t), Φ, X

)
admits exponential attractors.

Remark 3.3. We emphasize that the dissipation assumption (3.16) is fulfilled for a
wide class of models, provided that the non-linear operator ϕ involved in the initial
problem (3.1) admits an under-polynomial growth and that the coupling operator g
satisfies a conservation law. This is the case of the competing species model which
shall be presented in section 5.

Proof. First, it is clear that the a priori estimate (3.16) implies that the solution
u(t, u0) stemming from u0 ∈ X is global in X. Next, the continuity of the mapping
G is a consequence of Proposition 6.2 in [42]. Afterwards, let us consider a bounded
subset B ⊂ X. One can find a positive constant CB such that ‖u‖X ≤ CB for all u
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in B. Since δ > 0, there exists tB > 0 such that e−δtCB < 1. Indeed, it suffices to
set tB = 1+logCB

δ . We obtain

sup
u0∈B

sup
t≥tB
‖u(t, u0)‖X ≤ C1 + C2.

By virtue of Proposition 6.1 in [42], the latter inequality implies that the stronger
dissipative condition holds:

sup
u0∈B

sup
t≥tB
‖u(t, u0)‖D(A) ≤ C3, (3.17)

where C3 is a positive constant. Now we consider the closed ball

B = B
D(A)

(0, C3),

where the closure is in D(A). By virtue of Proposition 6.4 in [42], it is seen that B is
a compact set of X. Furthermore, inequality (3.17) implies that B is an absorbing
set. Finally, we consider

Φ =
⋃
t≥tB

S(t)B
X

, (3.18)

where the closure is in X, and tB denotes a positive time such that S(t)B ⊂ B
for all t ≥ tB. We easily verify that Φ is an invariant set for the semi-flow S(t)
induced by the complex network problem (3.11). In this way, we have proved that(
S(t), Φ, X

)
is a continuous dynamical system. Finally, since Φ is a compact set of

X and a bounded set of D(A), we deduce from [42] (Section 5.3) that
(
S(t), Φ, X

)
admits exponential attractors. The proof is complete.

Energy estimates of type (3.16) can sometimes be established after proving that
the solutions of the complex network problem (3.11) satisfy the non-negativity prop-
erty, that is, solutions stemming from non-negative initial data remain non-negative
in the future. This preservation of the non-negativity can be demonstrated by as-
suming that the non-linear operator f is quasi-positive. To that aim, we recall that
a non-linear operator F = (Fi)1≤i≤m defined on Rm (with m ∈ N∗) is said to be
quasi-positive if it satisfies the property

Fi(u1, . . . , ui−1, 0, ui+1, . . . , um) ≥ 0, (3.19)

for all u = (u1, . . . , um) ∈ (R+)m and for all i ∈ {1, . . . , m}. Let us introduce the
space of initial conditions

X0 = {u ∈ X ; u(x) ≥ 0, ∀x ∈ Ω}, (3.20)

where the inequality u ≥ 0 has to be understood component-wise. We easily show
that the sum of two quasi-positive operators is quasi-positive. Thus we directly ob-
tain the following proposition, which we shall invoke in the final section for analysing
the solutions of a complex network of competing species models.

Proposition 2. The coupling operator g defined by (3.4) is quasi-positive. Suppose
moreover that f is quasi-positive. Let u0 ∈ X0 and u be the solution of problem
(3.11) starting from u0, defined on [0, Tu0 ]. Then, its components are non-negative
on [0, Tu0 ].

4. Fractal dimension of exponential attractors. In this section, we explore
the influence of the topology of the graph underlying the complex network problem
(3.11), and of the coupling strengths σ1, . . . , σm, on the dimension of the exponen-
tial attractors whose existence is guaranteed by proposition 1.
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4.1. Estimate of the fractal dimension of exponential attractors for the
complex network problem. Let

(
S(t), Φ, X

)
denote the continuous dynamical

system generated by the complex network problem (3.11). Under the assumptions
(3.12), (3.13) and (3.16), it has been proved in Proposition 1 that

(
S(t), Φ, X

)
admits a family of exponential attractors. In the sequel, we denote by M one of
those exponential attractors. For estimating the fractal dimension of M, we shall
apply the method given in [14]. This method requires that the non-linearity f + g
involved in (3.11) satisfies an estimation of the type

‖(f + g)(u)− (f + g)(v)‖X ≤ C
∥∥Aβ(u− v)

∥∥
X
,

for all u, v in Φ, with an exponent β lesser than 1
2 . Obviously, the coupling operator

g defined by (3.4) satisfies this requirement with β = 0. However, the non-linear
operator f satisfies a weaker estimate given by (3.12). We may obtain a stronger
estimate of f , remarking that the phase space Φ is a bounded subset of D(A), which
guarantees that there exists a positive constant CΦ such that

‖Au‖X ≤ CΦ, u ∈ Φ. (4.1)

Using the above estimates, we obtain the following theorem.

Theorem 4.1. There exists a positive constant C∗ > 0 such that the fractal di-
mension of the exponential attractor M satisfies

dF (M) ≤ 1 + C |Ω|
(
C∗
)−d/2

. (4.2)

Furthermore, C∗ is given by

C∗ =
1− exp

{
− C2

A

[
Cg + Cf (1 + 2CA,ηCΦ)

]}
C2
A

[
Cg + Cf (1 + 2CA,ηCΦ)

]2 , (4.3)

where the positive constants Cf , Cg, CΦ are defined by (3.12), (3.13) and (4.1)
respectively. The positive constant CA depends only on the diffusion operator A and
the constant CA,η depends only on A and η, where the exponent η is fixed in ( 3

4 , 1).

|Ω| denotes the diameter of the open bounded domain Ω ⊂ Rd with d ∈ {1, 2, 3}.
In particular, the following asymptotic estimate holds:

dF (M) ≤ 1 + C |Ω|
(
Cg
)d/2

, (4.4)

as Cg tends to infinity, where C is a positive constant.

Proof. Our goal is to prove that there exists t∗ > 0 such that S∗ = S(t∗) satisfies
the squeezing property (2.4)-(2.5). The proof is divided into three steps. First, we
estimate the Lipschitz constant L∗ of S∗ on Φ, and we choose properly t∗. Next, we
estimate the squeezing coefficient δ∗ involved in (2.4)-(2.5) and finally, we choose
the projection rank N∗ defined in Theorem 2.2 sufficiently large in order to guaranty
that δ∗ < 1

8 .
Step 1: estimation of the Lipschitz constant L∗. Let us consider a basis

of X composed with eigenvectors of operator A:

Awk = λkwk, k ≥ 1,

with 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λk → +∞. We set Xk = Span(w1, . . . , wk); we consider
the orthogonal projection Pk on Xk, and Qk = I − Pk. Let t∗ > 0. Our aim is to
show that for all δ > 0, there exists N∗ such that for all u, v in Φ:

‖QN∗(S∗u− S∗v)‖X > ‖PN∗(S∗u− S∗v)‖X ,
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implies
‖S∗u− S∗v‖X < δ ‖u− v‖X .

We consider u0, v0 in Φ, and we denote u(t) = S(t)u0, v(t) = S(t)v0. Since Φ is
positively invariant, we have u(t) ∈ Φ and v(t) ∈ Φ for all t > 0. We introduce

w(t) = u(t)− v(t), λ(t) =

∥∥A1/2w(t)
∥∥2

X

‖w(t)‖2X
, w∗ = w(t∗), λ∗ = λ(t∗).

First, it is easily seen that λ∗ > 1
2λN∗+1, where λN∗+1 denotes the smallest eigen-

value of A over QN∗+1X. Next, since u and v satisfy (3.11), the inner product of
dw
dt and w in X leads to

1

2

d

dt
‖w‖2X + λ ‖w‖2X =

(
f(u)− f(v), w

)
X

+
(
g(u)− g(v), w

)
X
,

where we omit the time dependence in order to lighten our notations. By virtue of
assumption (3.13), we have∣∣(g(u)− g(v), w

)
X

∣∣ ≤ Cg ‖w‖2X .
Now our aim is to estimate the inner product

(
f(u)− f(v), w

)
X

. We have∣∣(f(u)− f(v), w
)
X

∣∣ ≤ ‖f(u)− f(v)‖X ‖w‖X ≤ Cf
(
1 + ‖Aηu‖X + ‖Aηv‖X

)
‖w‖2X .

The continuous embedding D(A) ⊂ D(Aη) guarantees that there exists a positive
constant CA,η such that ‖Aηu‖X ≤ CA,η ‖Au‖X for all u in D(A). It follows that∣∣(f(u)− f(v), w

)
X

∣∣ ≤ Cf(1 + CA,η ‖Au‖X + CA,η ‖Av‖X
)
‖w‖2X .

By virtue of (4.1), we finally obtain∣∣(f(u)− f(v), w
)
X

∣∣ ≤ Cf (1 + 2CA,ηCΦ) ‖w‖2X , t > 0.

Consequently, we have

1

2

d

dt
‖w‖2X + [λ− Cg − Cf (1 + 2CA,ηCΦ)] ‖w‖2X ≤ 0, t > 0.

It follows from Gronwall lemma that

‖w(t)‖X ≤ δ(t) ‖w(0)‖X , t > 0,

where

δ(t) = exp

{
−
∫ t

0

λ(τ)dτ +
[
Cg + Cf (1 + 2CA,ηCΦ)

]
t

}
.

Consequently, the Lipschitz constant of S(t) on Φ can be estimated by

LipΦ

(
S(t)

)
≤ exp

{[
Cg + Cf (1 + 2CA,ηCΦ)

]
t
}
.

Now we introduce t∗ > 0 given by

t∗ =
1

Cg + Cf (1 + 2CA,ηCΦ)
. (4.5)

The Lipschitz constant L∗ of S∗ on Φ is finally estimated by

L∗ ≤ e. (4.6)

Step 2: estimation of δ∗. Now we estimate the quantity λ(τ) for τ ≤ t∗. Let

us introduce ξ(t) = w(t)× ‖w(t)‖−1
X . We have

1

2

d

dt
λ(t) =

1

‖w‖2X

[(
∂w

∂t
, Aw

)
X

−
(
∂w

∂t
, w

)
X

λ(t)

]
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=
1

‖w‖X

(
−Aw +

[
f(u)− f(v) + g(u)− g(v)

]
, (A− λ)ξ

)
X
.

Basic computations show that 1
‖w‖X

(Aw, (A − λ)ξ)X = ‖(A− λ)ξ‖2X , from which

we obtain

1

2

d

dt
λ(t) + ‖(A− λ)ξ‖2X ≤

1

‖w‖X
‖f(u)− f(v) + g(u)− g(v)‖X × ‖(A− λ)ξ‖X

≤ 1

‖w‖X

[
Cg + Cf (1 + 2CA,ηCΦ)

]
‖w‖X × ‖(A− λ)ξ‖X .

Now the continuous embedding D(A1/2)⊂X guarantees that a positive constant CA
can be found such that ‖w‖X≤CA

∥∥A1/2w
∥∥
X

for all w in D(A1/2). It follows that

1

2

d

dt
λ(t) + ‖(A− λ)ξ‖2X ≤ CA

[
Cg + Cf (1 + 2CA,ηCΦ)

]√
λ× ‖(A− λ)ξ‖X .

By virtue of Young inequality, we obtain

1

2

d

dt
λ(t) + ‖(A− λ)ξ‖2X ≤ C

2
A

[
Cg + Cf (1 + 2CA,ηCΦ)

]2λ
2

+
‖(A− λ)ξ‖2X

2
,

and consequently
d

dt
λ(t) ≤ θ λ(t), t > 0,

where θ = C2
A

[
Cg + Cf (1 + 2CA,ηCΦ)

]2
. Applying once again Gronwall lemma

leads to

λ(t) ≤ λ(s) exp

{∫ t

s

θdτ

}
,

for all s and t such that 0 ≤ s < t. Setting t = t∗ and inverting the above inequality
leads to

λ(s) ≥ λ(t∗) exp

{
−
∫ t∗

s

θdτ

}
,

for all s ∈ [0, t∗). Since λ(t∗) > 1
2λN∗+1, we obtain∫ t∗

0

λ(s)ds ≥ 1

2
λN∗+1

∫ t∗

0

exp

{
−
∫ t∗

s

θdτ

}
ds.

Now we compute∫ t∗

0

exp

{
−
∫ t∗

s

θdτ

}
ds =

∫ t∗

0

exp
{
C2
A

[
Cg + Cf (1 + 2CA,ηCΦ)

]2
(s− t∗)

}

=

exp
{
C2
A

[
Cg + Cf (1 + 2CA,ηCΦ)

]2
(s− t∗)

}
C2
A

[
Cg + Cf (1 + 2CA,ηCΦ)

]2
t
∗

0

=
1− exp

{
− C2

A

[
Cg + Cf (1 + 2CA,ηCΦ)

]2
t∗
}

C2
A

[
Cg + Cf (1 + 2CA,ηCΦ)

]2
=

1− exp
{
− C2

A

[
Cg + Cf (1 + 2CA,ηCΦ)

]}
C2
A

[
Cg + Cf (1 + 2CA,ηCΦ)

]2 .
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Let us introduce the positive constant C∗ defined by

C∗ =
1− exp

{
− C2

A

[
Cg + Cf (1 + 2CA,ηCΦ)

]}
C2
A

[
Cg + Cf (1 + 2CA,ηCΦ)

]2 . (4.7)

Note that C∗ depends on f , g, η, A and Φ. It follows that∫ t∗

0

λ(s)ds ≥ C∗

2
λN∗+1,

and consequently we obtain the following estimation of δ∗:

δ∗ ≤ exp

{
−C

∗

2
λN∗+1 + 1

}
.

Additionally, basic computations show that the following asymptotic estimate holds
C∗ ∼ C−1

g as Cg tends to infinity.

Step 3: choice of N∗. Now, in order to guaranty δ∗ < 1
8 , it suffices to choose

N∗ so that

λN∗+1 >
2(1 + log 8)

C∗
.

It is well-known [39] that

λN∗+1 = C

(
N∗

|Ω|

)2/d

,

so we choose a constant C > 0 such that

N∗ = C |Ω|
[

2(1 + log 8)

C∗

]d/2
implies δ∗ < 1

8 . It follows that there exists a positive constant C̃ such that

N∗ ∼ C̃ |Ω|
(
Cg
)d/2

as Cg tends to infinity, which leads to the expected estimate of dF (M) and completes
the proof.

Remark 4.1. Estimate (4.4) shows that the fractal dimension of M is likely to grow
with Cg. We shall investigate in the next paragraph the effect of the topology and
of the coupling strengths on the Lipschitz constant Cg. The optimality of estimate
(4.4) is not discussed in the present work. In a separate paper, we aim to establish a
lower bound of dF (M), by applying another method, which requires to construct the
unstable manifold of an unstable equilibrium of the complex network problem (3.11).
However, it is observed in numerous cases that the lower bounds of exponential
attractors can have a commensurate order with upper bounds (see [16] for instance).

4.2. Influence of the topology and of the coupling strengths on the cou-
pling operator. Now our aim is to estimate the Lipschitz constant Cg of the cou-
pling operator g defined by (3.4), in terms of the number of vertices of the graph
underlying the complex network problem (3.11), and of the coupling strengths σi
(with 1 ≤ i ≤ m) stored in the matrix H defined by (3.3). The following proposition
establishes a first bound which is valid for any topology.

Proposition 3. Let σmax = max(σi, 1 ≤ i ≤ m). The Lipschitz constant Cg of the
coupling operator g defined by (3.4) satisfies

Cg ≤ n(n− 1)σmax,
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where n denotes the number of vertices of the graph G underlying the complex net-
work problem (3.11).

Proof. Let u, v ∈ X. By virtue of (3.4), we have for each j ∈ {1, . . . , n}

gj(u)− gj(v) =

n∑
k=1

Lj,kH(uk − vk).

Using (3.3), we obtain for 1 ≤ j ≤ n and 1 ≤ i ≤ m:∥∥(gj(u)− gj(v)
)
i

∥∥2

L2(Ω)

=

∥∥∥∥∥
n∑
k=1

Lj,kσi(ui,k − vi,k)

∥∥∥∥∥
2

L2(Ω)

≤ σ2
max(n− 1)2

∥∥∥∥∥
n∑
k=1

(ui,k − vi,k)

∥∥∥∥∥
2

L2(Ω)

≤σ2
max(n− 1)2

(
n∑
k=1

‖ui,k − vi,k‖L2(Ω)

)2

≤ σ2
max(n− 1)2n

n∑
k=1

‖ui,k − vi,k‖2L2(Ω) ,

since (x1 + x2 + · · · + xn)2 ≤ n(x2
1 + x2

2 + · · · + x2
n) for all (x1, . . . , xn) ∈ Rn.

Consequently, we have

‖gj(u)− gj(v)‖2L2(Ω)m

=

m∑
i=1

∥∥(gj(u)− gj(v)
)
i

∥∥2

L2(Ω)
≤ σ2

max(n− 1)2n

m∑
i=1

n∑
k=1

‖ui,k − vi,k‖2L2(Ω)

≤σ2
max(n− 1)2n

n∑
k=1

m∑
i=1

‖ui,k − vi,k‖2L2(Ω) ≤ σ
2
max(n− 1)2n

n∑
k=1

‖uk − vk‖2L2(Ω)m

≤σ2
max(n− 1)2n ‖u− v‖2X .

Finally, we obtain

‖g(u)− g(v)‖2X ≤ σ
2
max(n− 1)2n

n∑
j=1

‖u− v‖2X ≤ σ
2
max(n− 1)2n2 ‖u− v‖2X ,

which leads to the desired estimate of Cg.

It is worth noting that in the latter proof, each diagonal coefficient of the matrix
of connectivity L has been estimated by (n − 1). However, we can obtain better
estimates of the constant Cg when the topology of the graph admits a particular
structure. The following proposition establishes a bound for the cases of an oriented
chain, an oriented cycle and an oriented star (see figure 1). We emphasize that in
the case of an oriented chain, an oriented cycle or a star oriented from exterior
toward interior, the upper bound of the Lipschitz constant does not depend on the
number of vertices of the graph G .

Proposition 4. If the graph G is given by an oriented chain, an oriented cycle or
a star oriented from exterior toward interior, we have

Cg ≤ 2σmax.

If the graph G is given by a star of n vertices (n ≥ 3) oriented from interior toward
exterior, we have

Cg ≤ σmax

√
n2 − n− 2.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1. Several graph topologies. (a) Star oriented from inte-
rior toward exterior. (b) Oriented chain. (c) Oriented cycle. (d)
Oriented complete topology. (e) Star oriented from exterior to-
ward interior. (f) Bi-directed chain. (g) Bi-directed cycle. (h)
Bi-directed complete topology.

Proof. Let u, v ∈ X. First, assume that the graph G is given by an oriented chain.
After rearranging the labels of the vertices of G , we may without loss of generality
assume that the oriented chain has the form

(1)→ (2)→ · · · → (n).

Consequently, the matrix of connectivity L can be written

L =



−1 0 0 . . . 0
+1 −1 0 0

0 +1
. . .

. . .
...

...
. . .

. . . −1 0
0 . . . 0 +1 0

 . (4.8)

Hence we have for each i ∈ {1, . . . , m}

∥∥(g1(u)− g1(v)
)
i

∥∥2

L2(Ω)
= σ2

i

∥∥∥∥∥
n∑
k=1

L1,k(ui,k − vi,k)

∥∥∥∥∥
2

L2(Ω)

= σ2
i ‖ui,1 − vi,1‖

2
L2(Ω) ,

since |L1,1| = 1 whereas L1,k = 0 for k > 1. We can deduce from the latter
inequality that

‖g1(u)− g1(v)‖2L2(Ω)m ≤ σ
2
max ‖u1 − v1‖2L2(Ω)m .

Similarly, we have for 1 < j < n

‖gj(u)− gj(v)‖2L2(Ω)m ≤ 2σmax

(
‖uj−1 − vj−1‖2L2(Ω)m + ‖uj − vj‖2L2(Ω)m

)
,

where we have used the inequality (a+ b)2 ≤ 2(a2 + b2) for all a, b ∈ R. Finally, we
have for j = n:

‖gn(u)− gn(v)‖2L2(Ω)m ≤ σ
2
max ‖un−1 − vn−1‖2L2(Ω)m .

We obtain

‖g(u)− g(v)‖2X
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≤σ2
max

[
‖u1 − v1‖2L2(Ω)m + 2

∑
1<j<n

(
‖uj−1 − vj−1‖2L2(Ω)m + ‖uj − vj‖2L2(Ω)m

)
+ ‖un−1 − vn−1‖2L2(Ω)m

]
≤ 4σ2

max ‖u− v‖
2
X ,

which yields the desired estimate of Cg in the case of an oriented chain. For an
oriented cycle, L can be written

L =



−1 0 . . . 0 +1
+1 −1 0 . . . 0

0 +1
. . .

. . .
...

...
. . .

. . . −1 0
0 . . . 0 +1 −1

 . (4.9)

For an oriented star, L can be written

L =


−(n− 1) 0 . . . 0

+1 0 . . . 0
...

...
...

+1 0 . . . 0

 or L =



0 +1 +1 . . . +1
0 −1 0 . . . 0
...

. . . −1
. . .

...
...

. . .
. . . 0

0 . . . . . . 0 −1

 , (4.10)

for a star oriented from interior toward exterior and from exterior toward interior
respectively. The other estimates are obtained using similar computations.

4.3. Symmetric topologies and synchronization. Here we focus on symmetric
topologies (i.e. topologies corresponding to bi-directed edges) and prove that the
attractor M, even if large, is likely to contain synchronization states, provided the
coupling strengths σi (1 ≤ i ≤ m) are sufficiently strong. Those synchronization
states correspond to the situation when all the vertices of the complex network,
whose evolutions are determined by the variables uj ∈ L2(Ω)m, exhibit the same
asymptotic dynamics, that is

‖uj(t)− uk(t)‖L2(Ω)m → 0 as t→ +∞,

for 1 ≤ j, k ≤ n (the latter definition corresponds to identical synchronization [3]).
We assume that the topology of the complex network is determined by a symmetric
graph, such that the diagonal coefficients of the matrix L satisfy

Lj,j = −p, 1 ≤ j ≤ n, (4.11)

with 1 ≤ p ≤ n− 1, and such that

Lj,l = Lk,l, 1 ≤ l ≤ n, l 6= j, l 6= k, (4.12)

for all j, k in {1, . . . , n}. One example of a topology satisfying the above properties
is that of a complete bi-directed graph (see figure 1 (h)); in that case, the matrix
of connectivity can be written

L =


−(n− 1) +1 . . . +1

+1
. . .

. . .
...

...
. . .

. . . +1
+1 . . . +1 −(n− 1)

 .
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We assume that the non-linear operator ϕ involved in the native reaction-diffusion
system (3.1) satisfies

‖ϕ(u)− ϕ(v)‖L2(Ω)m ≤ Cϕ ‖u− v‖L2(Ω)m , (4.13)

for all u, v in D(ϕ), where Cϕ denotes a positive constant; note that this requirement
is straightly satisfied if the non-linear operator f enjoys property (3.12). Further-
more, we assume that the matrices of diffusion Dj , 1 ≤ j ≤ n, are identical, that
is

Dj = D, ∀j ∈ {1, . . . , n}. (4.14)

Note that condition (4.14) does not imply that the diffusion coefficients of the com-
ponents uj,1, . . . , uj,m should be identical (1 ≤ j ≤ n). More precisely, assumption
(4.14) implies that di,j = di,k for all i ∈ {1, . . . , m} and j, k ∈ {1, . . . , n}, but we
can still have di1,j 6= di2,j for some i1, i2 ∈ {1, . . . , m} and j ∈ {1, . . . , n}; thus
non trivial dynamics leading for example to the formation of Turing patterns are
likely to occur. The following theorem generalizes the result presented in [2].

Theorem 4.2. Assume that L is a symmetric matrix and that properties (4.11)-
(4.12)-(4.13)-(4.14) are fulfilled. Then for any u0 ∈ Φ, the solution u(t, u0) syn-
chronizes in the following sense

‖uj(t)− uk(t)‖L2(Ω)m → 0 as t→ +∞,

for all j, k ∈ {1, . . . , n}, provided the coupling strengths satisfy

2(p− 1)σi > 1 + C2
ϕ, (4.15)

for all i ∈ {1, . . . , m}.

Remark 4.2. In the case of a bi-directed complete topology, the sufficient condition
(4.15) becomes

2(n− 2)σi > 1 + C2
ϕ,

for all i ∈ {1, . . . , m}. Roughly speaking, this condition is satisfied in small net-
works with a strong coupling strength (that is, n small and σi large), or in large
networks with weak coupling (that is, n large and σi small). Hence the size of
the network and the coupling strength are linked by an inverse power law which is
characteristic of emergent properties of complex systems (see [2] for instance).

Proof. Let us introduce the energy functions defined by

Ei,j,k =
1

2

∫
Ω

(ui,j − ui,k)2dx,

for i ∈ {1, . . . , m} and j, k ∈ {1, . . . , n}. We compute the derivative of Ei,j,k with
respect to t:

dEi,j,k
dt

=

∫
Ω

(ui,j − ui,k)
∂(ui,j − ui,k)

∂t
dx

=

∫
Ω

(ui,j − ui,k)
(
di,j∆ui,j − di,k∆ui,k

)
dx

+

∫
Ω

(ui,j − ui,k)
(
ϕi,j(uj)− ϕi,k(uk)

)
dx

+

∫
Ω

(ui,j − ui,k)
(
gi,j(u)− gi,k(u)

)
dx.
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By virtue of assumption (4.14), we have di,j = di,k, from which we can deduce∫
Ω

(ui,j − ui,k)
(
di,j∆ui,j − di,k∆ui,k

)
dx = −di,j

∫
Ω

|∇(ui,j − ui,k)|2 dx ≤ 0.

Next, using assumption (4.13) and Young inequality, we have∫
Ω

(ui,j − ui,k)
(
ϕi,j(uj)− ϕi,k(uk)

)
dx

≤Ei,j,k +
1

2
‖ϕi,j(uj)− ϕi,k(uk)‖2L2(Ω) ≤ (1 + C2

ϕ)Ei,j,k.

Finally, we examine the effect of the coupling operator:

gi,j(u)− gi,k(u) =σi

(
n∑
l=1

Lj,lui,l −
n∑
l=1

Lk,lui,l

)

=σi

∑
l 6=j

Lj,lui,l − pui,j −
∑
l 6=k

Lk,lui,l + pui,k


=σi

( ∑
l 6=j,l 6=k

Lj,lui,l + ui,k − pui,j −
∑

l 6=k,l 6=j

Lk,lui,l − ui,j + pui,k

)
=− σi(p− 1)(ui,j − ui,k).

We obtain
dEi,j,k
dt

+
[
2(p− 1)σi − 1− C2

ϕ

]
Ei,j,k ≤ 0, t > 0.

Applying Gronwall lemma leads to the conclusion.

5. Application to a complex network of competing species models. In this
section, we handle a complex network problem built with non-identical instances
of a competing species model, which takes into account the heterogeneity of the
biological environment of the species. This model is set in a bounded domain
Ω ⊂ R2, whose boundary ∂Ω is assumed to be regular; it is given by the following
system of two reaction-diffusion equations:

∂u

∂t
= d1∆u+ α1u− β1u

2 − γ1uv,

∂v

∂t
= d2∆v + α2v − β2v

2 − γ2uv.

(5.1)

Here, u and v correspond to the densities of some biological individuals. The coeffi-
cients di, αi, βi and γi (i ∈ {1, 2}) are assumed to be positive. The terms α1u−β1u

2

and α2v−β2v
2 correspond to the logistic growths of both species, whereas the terms

γ1u v and γ2u v represent competition between those two species. One can find a
detailed presentation of the dynamics of system (5.1) in [22] or [27] for instance.
Recently, special attention has been paid to the role of heterogeneity in space or
resource on the dynamics of such models (see for example [9] or [21]). Here, so as
to take into account spatial heterogeneity of the biological environment in which
the competing species evolve, we study a complex network of multiple instances
of system (5.1), with Neumann boundary condition modeling the situation where
biological individuals cannot leave the domain Ω. Such heterogeneous environments
can be viewed through the metapopulation approach [20]; they can for instance cor-
respond to natural habitats fragmented by urban and industrial expansion, which
threats the equilibrium of natural ecosystems and thus the diversity of wildlife [19].
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Here, we choose to model migrations of biological individuals from one region to
another by point-wise couplings (see Remark 3.1). The heterogeneity of the biolog-
ical environment also appears through the fact that the multiple instances of the
competing species model are non-identical, which means that the biological param-
eters of each instance can differ from one region of the ecosystem to another. This
heterogeneity in biological parameters is likely for example to favour one of the two
species in a given region of the ecosystem, and the other species in another region
of the ecosystem.

System (5.1) can be rewritten

∂U

∂t
= D∆U + ϕ(U),

with U = (u, v)T , D = diag {d1, d2} and

ϕ(U) =
(
α1u− β1u

2 − γ1uv, α2v − β2v
2 − γ2uv

)T
.

Following the framework presented in section 2, we consider a graph G of n vertices
and build a complex network problem by introducing

U = (U1, . . . , Un)T , Uj = (uj , vj)
T , 1 ≤ j ≤ n,

fj(Uj) =

(α1,j + 1)uj − β1,ju
2
j − γ1,jujvj

(α2,j + 1)vj − β2,jv
2
j − γ2,jujvj

 ,

f(U) =
(
f1(U1), . . . , fn(Un)

)T
,

αj = max(α1,j ; α2,j), (5.2)

βj = max(β1,j ; β2,j),

γj = max(γ1,j ; γ2,j), 1 ≤ j ≤ n.

Finally, we consider the Hilbert space X = L2(Ω)2n, the diffusion operators Ai,j
defined in X by Ai,j = −di,j∆uj+uj with Neumann boundary condition (i ∈ {1, 2},
1 ≤ j ≤ n) and the diagonal operator

A = diag {Ai,j , 1 ≤ i ≤ 2, 1 ≤ j ≤ n} .

5.1. Existence and fractal dimension of exponential attractors. First we
show that the non-linear operator f defined in (5.2) satisfies property (3.12). We
emphasize that the constant Cf in estimation (5.3) below depends on the number
n of vertices in G .

Proposition 5. The non-linear operator f defined in (5.2) satisfies∥∥∥f(U)− f(Ũ)
∥∥∥
X
≤ Cf

(
1 + ‖AηU‖X +

∥∥∥AηŨ∥∥∥
X

)∥∥∥U − Ũ∥∥∥
X
, (5.3)

for all U, Ũ ∈ D(Aη), with

Cf ≤ C
√
n max

1≤j≤n
(αj , βj , γj),

where C denotes an absolute positive constant.

Proof. Let U, Ũ ∈D(Aη), with U=(U1, . . . , Un)T , Uj=(uj , vj)
T and Ũ=(Ũ1, . . . ,

Ũn)T , Ũj=(ũj , ṽj)
T . Using the identity a2−b2 = (a−b)(a+b) for a, b∈R and the

continuous embedding H2η(Ω) ⊂ L∞(Ω) (see (3.9) and (3.10)), we obtain∥∥u2
j − ũ2

j

∥∥
L2(Ω)

≤
(
‖uj‖L∞(Ω) + ‖ũj‖L∞(Ω)

)
‖uj − ũj‖L2(Ω)
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≤
(
‖(A1,j)

ηuj‖L2(Ω) + ‖(A1,j)
ηũj‖L2(Ω)

)
‖uj − ũj‖L2(Ω) ,

for each j ∈ {1, . . . , n}. Similarly, using the triangular inequality, we can write

‖ujvj − ũj ṽj‖L2(Ω)

≤‖uj‖L∞(Ω) ‖vj − ṽj‖L2(Ω) + ‖ṽj‖L∞(Ω) ‖uj − ũj‖L2(Ω)

≤‖(A1,j)
ηuj‖L2(Ω) ‖vj − ṽj‖L2(Ω) + ‖(A2,j)

η ṽj‖L2(Ω) ‖uj − ũj‖L2(Ω) ,

for 1 ≤ j ≤ n. Summing the latter inequalities for 1 ≤ j ≤ n leads to the desired
estimate.

Estimate (5.3) guarantees that Theorem 3.1 can be applied. Hence the com-
plex network of non-identical systems (5.1) admits local solutions in function space
(3.14). Afterwards, we easily verify that the non-linear operator f defined in (5.2)
is quasi-positive. By virtue of proposition 2, we can deduce that the solutions of
the complex network enjoy the non-negativity preservation property. We shall use
this preservation property in order to derive an estimation in X of the solutions;
this result is stated in the following proposition.

Proposition 6. Let U0 ∈ X denote any initial condition with non-negative compo-
nents. There exist positive constant δ, C1 and C2 which do not depend on U0, such
that the solution U(t) of the complex network of multiple instances of system (5.1)
stemming from U0 satisfies

‖U(t)‖X ≤ C1e
−δt ‖U0‖X + C2, t > 0. (5.4)

Proof. We introduce

E1(t) =

n∑
j=1

1

2

∫
Ω

u2
j (x, t)dx =

1

2

n∑
j=1

‖uj‖2L2(Ω) , t > 0.

We compute the derivative of E1 with respect to t:

dE1

dt
(t) =

n∑
j=1

uj
∂uj
∂t

dx

=

n∑
j=1

∫
Ω

uj

(
d1,j∆uj + α1,juj − β1,ju

2
j − γ1,jujvj + σ1

n∑
k=1

Lj,kuk

)
dx,

where we omit the variables x and t in order to lighten our notations. The maximum
principle for diffusion operators with Neumann boundary condition implies that∫

Ω

uj∆ujdx = −
∫

Ω

|∇uj |2 dx ≤ 0, 1 ≤ j ≤ n.

Furthermore, the non-negativity of the solution guarantees that∫
Ω

(−γ1,jujvj)dx ≤ 0, 1 ≤ j ≤ n.

We obtain

dE1

dt
(t) ≤

n∑
j=1

∫
Ω

α1,ju
2
j − β1,ju

3
j + σ1Lj,ju

2
j + σ1

∑
k 6=j

Lj,kukuj

 dx
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≤
n∑
j=1

∫
Ω

α1,ju
2
j − β1,ju

3
j + σ1Lj,ju

2
j +

σ1

2

∑
k 6=j

Lj,ku
2
j +

σ1

2

∑
k 6=j

Lj,ku
2
k

 dx,

where we have used the Young inequality ujuk ≤
u2
j

2 +
u2
k

2 , and the non-negativity
of the off-diagonal terms Lj,k for j 6= k. After rearranging the finite sums over k
and j, we obtain

dE1

dt
(t) ≤

n∑
j=1

∫
Ω

(ζ1,ju
2
j − β1,ju

3
j )dx,

with ζ1,j ∈ R, 1 ≤ j ≤ n. Next, we use the polynomial inequality

ζ1,ju
2
j − β1,ju

3
j ≤ −

1

2
u2
j +

(2ζ1,j + 1)3

27β2
1,j

, 1 ≤ j ≤ n,

which leads to
dE1

dt
(t) + E1(t) ≤ |Ω|

n∑
j=1

(2ζ1,j + 1)3

27β2
1,j

,

and consequently, by using Gronwall lemma
n∑
j=1

‖uj(t)‖2L2(Ω) ≤ e
−t

n∑
j=1

‖uj(0)‖2L2(Ω) + 2 |Ω|
n∑
j=1

(2ζ1,j + 1)3

27β2
1,j

.

We can similarly obtain
n∑
j=1

‖vj(t)‖2L2(Ω) ≤ e
−t

n∑
j=1

‖vj(0)‖2L2(Ω) + 2 |Ω|
n∑
j=1

(2ζ2,j + 1)3

27β2
2,j

,

with ζ2,j ∈ R, 1 ≤ j ≤ n. Summing the above inequalities leads to the desired
estimate of ‖U(t)‖X , with

δ = 1, C1 = 1, C2 = 2 |Ω|
n∑
j=1

(
(2ζ1,j + 1)3

27β2
1,j

+
(2ζ2,j + 1)3

27β2
2,j

)
.

Estimate (5.4) guarantees that proposition 1 and Theorem 4.1 can be applied.
Consequently, the complex network of systems (5.1) generates a continuous dynam-
ical system

(
S(t), Φ, X

)
which admits a family of exponential attractors of finite

fractal dimension. Furthermore, the fractal dimension of those attractors can be
estimated by (4.2). It is the purpose of the next section to illustrate the estimate
of the fractal dimension by numerical simulations.

5.2. Numerical simulations. Here, we present a series of numerical simulations
of the complex network of competing species models (5.1). Those numerical sim-
ulations have been obtained by the implementation of a splitting scheme with dis-
cretization of time and finite elements in space (see [11], [37]). The computations
have been performed with the free software FreeFem++, on the calculation server
of the Laboratory of Applied Mathematics of Le Havre Normandy, in a GNU/Linux
environment. It is worth noting that attractors of infinite dimensional dynamical
systems cannot be easily observed; thus our aim is not to completely visualize the
attractors, but only to illustrate the estimate of the fractal dimension, by showing
that the couplings are likely to create new equilibrium states. We also show a numer-
ical simulation of a complete bi-directed topology with strong coupling strengths,
in order to illustrate the synchronization theorem (Theorem 4.2).
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We consider a circular domain Ω of radius L = 250 and a graph of four ver-
tices. We experiment 4 topologies: the first topology corresponds to the absence of
coupling, whereas the three other topologies are depicted in figure (2).

(a) (b) (c)

Figure 2. Three topologies for a complex network of competing
species. (a) Oriented chain. (b) Star oriented from center toward
periphery. (c) Bi-directed complete graph.

We set the diffusion coefficients to the non trivial case d1 6= d2 with

d1 = 15, d2 = 1, (5.5)

for each vertex; the numerical values of other parameters of the competing species
model (5.1) are indicated in table 1.

Table 1. Values of the parameters for a complex network of 4
non-identical competing species models.

Vertex 1 Vertex 2
Parameter Value

α1,1 1.0
α2,1 1.0
β1,1 0.1
β2,1 1.0
γ1,1 0.1
γ2,1 1.0

Parameter Value
α1,2 1.0
α2,2 1.0
β1,2 1.0
β2,2 0.1
γ1,2 1.0
γ2,2 0.1

Vertex 3 Vertex 4
Parameter Value

α1,3 0.5
α2,3 0.5
β1,3 0.1
β2,3 0.1
γ1,3 0.5
γ2,3 0.5

Parameter Value
α1,4 10.0
α2,4 10.0
β1,4 5.0
β2,4 5.0
γ1,4 4.0
γ2,4 4.0

Finally, we introduce various possible initial conditions by setting

ψ1(x, y) =
20

1 + 0.1(x− 3L/4)2 + 0.1(y − L/2)2
,

ψ2(x, y) =
20

1 + 0.1(x− L/4)2 + 0.1(y − L/2)2
,



24 GUILLAUME CANTIN AND M. A. AZIZ-ALAOUI

ψ3(x, y) =
20

1 + 0.1(x− L/2)2 + 0.1(y − L/2)2
.

The numerical results of the first scenario, corresponding to the absence of cou-
plings, are presented in figure 3, in which we give the values of u1, u2, u3 and u4

for 3 different times.
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2
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0
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u1(x), t = 8
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·10−3
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u4(x), t = 4
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1.1114

Figure 3. Numerical simulation of a complex network of compet-
ing species models in absence of coupling, showing the densities u1,
u2, u3 and u4 for three different times (similar computations would
show the densities v1, v2, v3 and v4): u1 persists on vertex (1),
whereas u2 vanishes on vertex (2); in parallel, u3 and v3 coexist on
vertex (3), and similarly, u4 and v4 coexist on vertex (4).

We observe that u1 persists on vertex (1), whereas u2 vanishes on vertex (2).
In parallel, u3 and v3 coexist on vertex (3), and similarly, u4 and v4 coexist on
vertex (4). Note that the asymptotic phase is rapidly reached on vertex (4). Those
dynamics can obviously be predicted by examining the values of the parameters
chosen for each vertex (see table 1).

The numerical results of the complex network built on an oriented chain (4) →
(1)→ (2)→ (3) are presented in figure 4. The coupling strengths have been set to
σ1 = 0.5 and σ2 = 0.0. First, we remark that the transitional phase is completely
modified. Additionally, the asymptotic phase is perturbed: the domination of u1

on vertex (1) is attenuated; u2 seems to persist on vertex (2), whereas u2 vanishes
in absence of coupling; u3 dominates on vertex (3), whereas u3 and v3 coexist in
absence of coupling; u4 and v4 still coexist. Changing the order of the vertices
in the oriented chain generates other dynamics. This example illustrates that the
couplings of the complex network create new equilibrium states, which roughly
speaking corresponds to an enlarged attractor.
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Remark 5.1. From the biological point of view, those new equilibrium states can
be interpreted as perturbations of the natural equilibrium of wildlife caused by the
fragmentation of the initial habitat of the species. In particular, the coexistence of
two competing species can be affected, as shown in figures 3 and 4 for the third
vertex, for which the species coexist in absence of couplings, whereas one of the
species vanishes for non trivial couplings.

u1(x), t = 0

2

4

6

8

u2(x), t = 0

2

4

6

8

u3(x), t = 0

2

4

u4(x), t = 0

2

4

u1(x), t = 4

3

3.5

4

4.5

u2(x), t = 4

0.5

1

1.5

u3(x), t = 4

1

2

3

4

u4(x), t = 4

0.837

0.838
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4
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u4(x), t = 5

0.834
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Figure 4. Numerical simulation of a complex network of compet-
ing species models, built on an oriented chain: the domination of
u1 on vertex (1) is attenuated; u2 seems to persist on vertex (2),
whereas u2 vanishes in absence of coupling; u3 dominates on vertex
(3), whereas u3 and v3 coexist in absence of coupling; u4 and v4

still coexist.

Next we present in figure 5 the numerical results obtained with a star centered at
vertex (4), oriented towards vertices (1), (2) and (3). The coupling strengths have
been set to σ1 = 0.1 and σ2 = 0.9. Once again, we observe that the asymptotic
dynamics are modified; in particular, u2 persists on vertex (2), whereas u2 vanishes
in absence of coupling.

Finally, we present in figure 6 the numerical results obtained with a bi-directed
complete graph topology. The coupling strengths have been set to σ1 = σ2 =
2.0. The synchronization of the four vertices is eloquent and occurs rapidly, which
illustrates Theorem 4.2. As mentioned before, we recall that synchronization is not
contradictory with enlarged attractors.

Remark 5.2. From the biological point of view, the synchronization state of the
complex network equipped with a bi-directed complete graph topology and strong
couplings might signify that the homogeneity of an ecosystem is preserved, despite
fragmentation, if the migrations of the species from one region to another are of
sufficient intensity.
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Figure 5. Numerical simulation of a complex network of com-
peting species models, built on a star oriented from center toward
periphery: the asymptotic dynamics are modified; in particular, u2

persists on vertex (2), whereas u2 vanishes in absence of coupling.
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Figure 6. Numerical simulation of a complex network of compet-
ing species models, built on a bi-directed complete graph topology.
After a brief transitional phase, synchronization of the four vertices
occurs rapidly, which illustrates Theorem 4.2.
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Conclusion. In this paper, we have studied the asymptotic behavior of complex
networks of reaction-diffusion systems. Under reasonable assumptions which cover
a wide class of systems, we have proved that those complex networks generate
continuous dynamical systems which admit exponential attractors of finite fractal
dimension. An innovative estimate of the fractal dimension of those attractors
has been established, which clarifies the effect of the topology on the asymptotic
dynamics of the complex network. Furthermore, we have proved that a symmetric
topology with strong couplings leads to synchronization and we have investigated
the effect of asymmetric topologies.

In a future work, we aim to complete the main result of the present work, by
establishing a lower bound of the fractal dimension of exponential attractors for
similar complex networks of reaction-diffusion systems. It is known that such an
estimation can be obtained by approximating the dimension of the unstable man-
ifold of a given equilibrium of the system. It is reasonable to expect that such a
lower bound would reveal what kind of topology would enlarge the dimension of
attractors.
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