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In this paper we present a new version of Chen’s system: a piecewise linear (PWL) Chen system of fractional-order.
Via a sigmoid-like function, the discontinuous system is transformed into a continuous system. By numerical simulations,
we reveal chaotic behaviors and also multistability, i.e., the existence of small parameter windows where, for some fixed
bifurcation parameter and depending on initial conditions, coexistence of stable attractors and chaotic attractors is possible.
Moreover, we show that by using an algorithm to switch the bifurcation parameter, the stable attractors can be numerically

approximated.
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1. Introduction

There are several paradigmatic three-dimensional chaotic
flows. Aside from the ubiquitous Lorenz and Rossler systems,
one of the most intricate and widely studied systems is Chen’s
system, proposed in 1999.!! Each of these systems represents
a topological distinct genus of chaos. In 2002 Aziz-Alaoui and
Chen!?! presented a piecewise linear Chen system modeled by
the following initial value problem (IVP)

Xp=a(xn—x1),
Xy =(c—a—x3)sgn(x)) +cdxy, x(0)=xy, t€]0,7T],
ey

X3 =xysgn(xy) — bxs,

with xo € R3, T > 0, a,b,c,d some positive real parameters
verifying the condition a < c.
While the genuine Chen system!!! is a continuous system,
having the following mathematical model
X = a(XQ —xl),
Xp=(c—a)x;—xix3+cxp, x(0)=x9 7€][0,T],
X3 = x1x2 — bxz,

2

(with @ = 35, b = 3, and ¢ = 28), the system (1) is a piece-
wise linear (PWL) system. The detailed asymptotic analysis
of this system, including a study of the chaotic behavior with
the bifurcation parameter, is presented in Ref. [2].

Fractional calculus has been a topic for more than 300
years, but recently, systems of fractional-order have attracted
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much attention after the first numerical methods have been
performed. Fractional-order systems play an important role in
many fields of science and engineering (see e.g. Refs. [3]-[11]
or Refs. [12] and [13] with therein references). Also, piece-
wise continuous functions are used in the study of nonlinear
circuits and systems. They are also commonly employed in
the modeling of the memristor, leading to many novel studies
and applications (see e.g. Refs. [14]-[16]).

Motivated by the huge interest in Chen’s system of in-
tegers and fractional-order (see e.g. Refs. [1] and [17]), we
present in this paper a new and more general extension of the
PWL system (1): the PWL Chen system of fractional-order,
modeled by the following differential equations

Dix; =a(x;—xp),
D%xy = (c —a—x3)sgn(x;) +cdxa, x(0)=x, t€][0,T],
3)

DB x3 = x1sgn(xy) — bxs,

witha=1.15,b=0.15,c=2,and d =0.1.

DY (for ¢ = (q1,92,93)) stands for Caputo’s differential
operator of order g with starting point 0 (see e.g. Refs. [18]—
[20]). Recall that the Caputo differential operator: is a frac-
tional extension of differentiation defined forn—1 < g < n,
q € (0,00) \ N, n being some positive integer, defined as fol-
lows:

Y L A )
I'(n—gq) /0 (t—r)atin

DIf(t) =

dr,
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where I" is Euler’s function.

In contrast to alternative definitions of fractional dif-
ferentiation, Caputo’s derivative gives a physical interpreta-
tion to the included initial conditions, necessary in practical

21.22] Using this definition, one avoids the expres-

problems. !
sion of initial conditions with fractional derivatives and there-
fore the initial condition can be considered in the standard
form x(0) = xo.

As in the most practical examples, in this paper we con-
siderg; <1,i=1,2,3.

The chaotic behavior of PWL Chen’s system (3) as a
function of the commensurate order ¢ is revealed by the bi-
furcation diagram (BD) in Fig. 1(a)1). A few representative
attractors are plotted in Figs. 1(b)—1(e). As is well known, for
systems of commensurate order, chaos persists over a minimal
commensurate order gpi, < 1, i.e., a system order 3 X gpip < 3.
Revealed numerically by the BD, g, for our system is about
0.865, which indicates that chaos exists for a system order
greater than 3 X gmin = 2.575 (compare with the continuous

Chen’s system of fractional-order!!>17]),
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Fig. 1. Bifurcation diagram of Chen’s system (3) for the commensurate
fractional-order g € [0.84,1]; (a)-(e) Attractors corresponding to g = 0.86,
q=0.87,g=0.91, and g = 0.99 respectively.

Let us denote by p the single scalar bifurcation parame-

1) BDs are determined for positive values of the state variables.

ter, which for the considered system (3) can be any of the four
parameters a, b, ¢ or d. Two representative cases have been
considered here: p:=d, integer case ¢ = (1,1,1), and p:=a,
integer case ¢ = (1,1,1), and the incommensurate fractional-
order case ¢ = (0.99,0.98,0.97). For the sake of conciseness
we do not present results of computation here, but we have
found that the other two cases (p := b and p := c) demon-
strate a similar behavior. We find particularly rich bifurcation
behaviors, revealed by the BDs in Fig. 2. The results are for:
(a) p :=d in the integer-order case, witha = 1.15; (b) p:=a
in the integer order case; and (c) for p : = a with the fractional-

order case.

L4r (a) p:=d 0.6
q

max(x)

max(x)

max(x)

0.6

Fig. 2. Bifurcation diagrams of Chen’s system (3); (a) p:=d, ¢ = (1,1,1)
and a =1.15, ¢=2and b = 0.15; (b) p:=a, ¢ = (1,1,1) and b = 0.15,
c=2andd=0.1; (c) p=a,q=(0.99,0.98,0.97) and b = 0.15, c =2 and
d=0.1

It is easy to verify that, in addition to the origin, the sys-
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tem has two equilibrium points

x (=

(see Table 1). Because the equilibrium points reside in the plan

ab —bc
bed+1’

ab —bc a—c
bed+1"" bed+1

x1 = x2, X5 and X3 are not equilibrium points for this system
(see Ref. [1]). The coordinates present symmetries which are
also evident in the simulations of the state variables x; and x;.
These symmetries come from the invariance of the vector field
under rotation symmetry (x,y,z) — (—x,—y,z). To note that
for the chosen values of parameters a, b, ¢, and d, with a < c,
the state coordinate xj is positive while x’fy2 can be either pos-
itive and negative.

Table 1. Equilibrium points of the PWL Chen system (3).

sgn(xy) sgn(xz) X*(x7,x5,%%)

. ba—bc ba—bc a—c
B B 1<_bcd—1’_bcd—1’hcd—1>
. [ ba—bc ba—bc a—c
+ B 2 <bcd+l’bcd+l’7bcd+l>
. ba—bc ba—bc a—c
- s <7bcd+1’7bcd+1’7bcd+l>

x* ba—bc ba—bc a—c
4\ bed —1"bed —1" bed — 1

+ +

As can be seen from the detail in Figs. 2(a) and 2(b), for
p:=d and p := a respectively, a new characteristic has been
uncovered for this system, the multistability, i.e., the coexis-
tence of regular and chaotic motions in some parameter win-
dows (details D in Fig. 2(a) and D; in Fig. 2(b)). Therefore,
for a specific value p in these windows, depending on the basin
of attraction and initial conditions, we can find coexisting at-
tractors. For example, for a = 1.15, b = 0.15, ¢ = 0.1, and
with p :=d = 0.361 chosen in the window [0.345,0.370], we
found two different attractors: a chaotic one and a stable cycle
(see Dy in Fig. 2(a)). For b =0.15, c =2, d := 0.1 and with
p := a chosen in the window p € [0.7,0.8], the two attractors
are plotted in detail D, in Fig. 2(b).

In the remainder of this paper we show numerically, aided
by computer simulations, that every stable attractor of Chen’s
system (3) can be numerically approximated by a Parameter
Switching (PS) algorithm.!>3! The PS algorithm switches p
within a chosen set, while the IVP is numerically integrated
with some numerical scheme with fixed step size. The con-
vergence of the PS algorithm to some desired attractor is pre-
sented in Refs. [24] and [25].

The paper is structured as follows: in Section 2, the PS
algorithm is explained, Section 3 presents the continuous ap-
proximation of the IVP (3) and in Section 4 several stable at-
tractors of the PWL Chen system of fractional-order are ap-
proximated with the PS algorithm.

2. Parameter switching algorithm

Let a continuous system of fractional-order be modeled
by the following IVP

Dix=f(x)+pAx, t€lI=[0,T], x(0)=x9, @)

where: A € R"" is a real square constant matrix; f : R"” — R”
is a nonlinear, at least continuous function and ¢ < 1. The
great majority of known systems of integer or fractional-order,
including systems like: Lorenz, Chen, Rossler, Chua, Riki-
take, and many other systems, are modeled by the IVP (4).
In Refs. [24] and [25] it was proved analytically and verified
numerically that the PS algorithm allows the numerical ap-
proximation of any desired attractor, by switching the control
parameter within a chosen finite set of values while the under-
lying IVP is numerically integrated with some fixed step-size
numerical method.

Next, assume that the IVP enjoys the uniqueness Lip-
schitz continuity which is a common sufficient condition
for both integer and fractional case (see Ref. [26] Corollary
6.9 for FDE uniqueness). Furthermore, denote by Py =
{p1,p2,-..,pn} CR, N > 2, the switching values set.

Remark 1 Due to the uniqueness assumption, it is rea-
sonable to consider that to each p; € Py, i € {1,2,...,n}, it
corresponds to a unique attractor A,,. As usual for numerical
tests, in this paper we consider the attractors as being the tra-
jectory of the underlying numerical solution, after sufficiently
long transients are removed.

By choosing Py, while the underlying IVP is numerically
integrated with a fixed step-size A, PS switches in some deter-
ministic (periodic) way the control parameter within Py, for
relatively short time subintervals. The obtained “switched so-
lution” will approximate the “averaged solution” obtained for
p replaced with the average of switched values. Following
Remark 1, the attractor corresponding to the switched solu-
tion, will approximate as closely as desired (depending on the
numerical integration accuracy limitation), the attractor cor-
responding to the averaged solution. The numerical integra-
tions have been realized with the standard Runge—Kutta (RK4)
method for the integer-order case and the Adams—Bashforth—
Moulton (ABM) method??! for the fractional-order case (see
also Ref. [27]).

Schematically, for a chosen-set Py with the “weights”
set M = {my,my,...,my}, and a fixed step-size h, the way in
which PS algorithm works can be expressed schematically as
follows:

[mlplvaPZw-mePN]- (5)

The scheme (5) means that for the first m integration steps the
control parameter p will take the value pp, then, for the next
my integration steps, p = p», and so on until, for my times,
p = DN, after which, again p = p; for m; times, then p = p;
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for m, times and so on until the considered time integration
interval, [0,T], is covered. For example [2p;, p2] means that
while the IVP is integrated, p will take the values: p = py,
P =Pp1,p= P2, P=P1,P=Pp1, p= pa,and soon.

Let us denote the “weighted average” of the values of Py

by

pr= Z%l pimi. 6)

):i:] m;

Then, the “switched attractor”, A*, obtained with the PS algo-
rithm, will approximate the “averaged attractor”, A+, obtained
by integration of the underlying IVP with p replaced with p*.
The analytical proof of the convergence, for the integer-order
case, is presented in Refs. [24] and [25], while for fractional-
order systems the convergence has been computationally veri-
fied for several systems (see e.g. Ref. [23]).

Remark 2 The PS algorithm can be used both as a con-
trol and an anticontrol-like technique when, by some objective
reasons, some certain targeted parameter value p* cannot be
accessed directly. In this case, we have to select the set Py,
m;, i =1,2,...,N and an adequate scheme (5) to obtain, with
Eq. (6), the targeted value p*. For example, if the values of Py
generate chaotic behavior and p* generates a regular motion,
the PS algorithm acts like a control-like algorithm. However,
while most known control/anticontrol algorithms “force” the
trajectory to change its characteristics and behavior, the PS
algorithm allows us to obtain approximation of any desired
existing attractor.

Also, the PS algorithm can help to enrich our understand-
ing of what happens in some real systems when the control
parameter is switched by natural causes.

Finally, the PS algorithm proves that p switchings present
a robustness-like property in the following sense: for what-
ever sets Py, M, if pmin = min{Py} and ppax = max{Py},
the obtained values p* remains between ppin and pmax. Note
that the PS algorithm applies also for discrete-time real sys-
tems and some interesting results have been obtained for com-

125

plex discrete-time systems,>! although that is beyond what

we consider in this paper.

3. Continuous approximation of PWL Chen’s
system

The main obstacle in applying the PS algorithm to PWL
systems is the lack of numerical methods specifically devised
for fractional differential equations with discontinuous right-
hand side (Filippov-like systems of fractional-order). This is
one of the reasons that discontinuous systems of fractional-
order have been not rigorously studied. One possible approach
to surpass the obstacle of integration of discontinuous differ-
ential equations of fractional-order, is to approximate contin-
uously the underlying discontinuous IVP, based on the trans-
formation of the IVP into a set-valued one, which next can

be continuously approximated with a single-value IVP (see
Ref. [28]). Thus, piecewise constant components, like sgn,
can be continuously approximated globally (in small neigh-
borhoods of the graph) or locally (in a small neighborhood
centered at the discontinuity point x = 0). In this paper we use
the global sigmoid approximation sgn

sgn(x) = H_%x/g -1, (7
which approximates globally the sgn function, on small neigh-
borhoods of its graph. In Fig. 2(a), for clarity, & has been cho-
sen to be larger (8§ = 10~"), while in Fig. 3(b), sgn is drawn as
a function of two variables: x and §. The parameter 6 controls
the slope of the sigmoid function, near the discontinuity x = 0.
As proved in Ref. [28], for numerical purposes an adequate
choice is § =107,

sl (a) §=10"1
0.4f
0 xT
—0.4f
—0.8}
-5 0 5
p

Fig. 3. (color online) (a) Graph of the sigmoid function sgn for a large value
of §: § = 10~!; (b) graph of the sigmoid function depending on §.

Using the sigmoid approximation (7), Chen’s system (3)
becomes

D1x) =a(x; —x1),
D¥2xy=(c—a—x3)sgn(x;) + cdxy,

DZ3X3 :x1§gf1(x2) —b)C3. (8)

The cases studied in this paper are presented in Table 2.
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Table 2. PWL Chen systems analyzed in this paper.

p:=d pi=a

X1 =a(xy —xp), Di'x; = p(x, —x1),
X2 = (c—a—x3)sgn(x) +cpxa,

X3 = x1sgn(xz) — bxs,

DPxy = (c— p—x3)sgn(x1) + cdxa,
D¥x3 = x15gn(x) — bx3,

k= f(x)+pAx Dix = f(x)+ p(Ax+g(x)), ¢ <1

(2 —x1) 0

f@)=| c—a—x)sgaln) | f() = | esgalv) - xsga(x) +cdxr
X]@(Xz)-b](} X|SEH(X2)—bX3

000 -110

A=10cO A= 0 00

000 000
0

g(x) = | —sgn(x)

0

Even for p : = a, the system does not belong to the class of
systems modeled by the IVP (4), the PS algorithm still applies
to this more general class of systems modeled by the following
IVP (second column in Table 2)

Dix= f(x)+p(Ax+g(x)), t€I=10,T], x(0)=x0, (9)

where g(x) = (0, —sgn,0)".

4. Numerical results

As is well known, in contrast with integer-order deriva-
tives, if a function of class C" is periodic, its derivative
in the sense of Caputo, Riemann—Liouville, and Grunwald-
Letnikov, cannot be periodic with the same period (see e.g.
Ref. [29]). However, in this paper we deal with numerical ap-
proaches of the continuous approximation of the PWL Chen
system.

Next, we apply the PS algorithm to approximate stable
cycles of Chen’s PWL system of fractional-order (8), after it
has been continuously approximated, for p : = d integer-order
case, and p : = a integer and fractional-order cases. The case
p 1= a is an example of a new class of systems of integer and
fractional-order where the PS algorithm still applies. For this
purpose, we chose the sets P and M which generate the tar-
geted values p*, after which the PS algorithm applies via the
scheme (5). The targeted values for p* are chosen in the sta-
ble windows of BDs plotted in Fig. 2. For the phase plots, the
transients have been omitted. To underline numerically and
computationally the match between the two attractors, A* and
A+, overplotted phase plots and time series have been used.
The Hasudorff dimension, dy (see Ref. [30] p. 114), is for all
considered cases, of the order of 1073, which indicates a good
match between the two trajectories. In order to highlight the
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o R S IR S
0 0.1 0.2 0.3 0.4 0.5
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1.4 —A
(b) — A 1p
1.3
1.0
£ 12 05
5
1.1 0
1o —0.5
0.2 ,
0 —0.9-0.4-1.0
2, 0204 02 0 ~0% 0 100 200 300 400
2 t
A0.32
31 (c)
§ 2]
1.
1.0 ¢ o =2 Ym "0 100 200 300 400
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1.8
(d) Ap.as
1.7
4 o
8
516
1.5
1.4 cunbued e e, |
.
05045 —05 0 05
1 T

Fig. 4. (color online) PWL Chen’s attractor Ao 4, for p:=d, and ¢ = (1,1, 1),
approximated with PS algorithm with the scheme [1p;, 1p;] with p; = 0.32
and p; = 0.48; (a) bifurcation diagrams; (b) overplotted attractors A* (red)
and A+ (blue); (c) attractor Ag 32; (d) attractor Ag 48; (€)—(g) overplotted time
series corresponding to A* (red) and A+ (blue).

behavior characteristics of the utilized attractors, each illustra-
tive case is accompanied by the underlying BD, such that the
chaotic or regular motion character can be easily deduced.

All the computations were made ‘in Matlab, using the
RK4 and ABM methods for the integer-order and fractional-
order systems respectively, with the integration step-size of the
order of 1073.

(i) p:=d

Commensurate case ¢ =(1,1,1)

With a = 1.15, ¢ = 2, and b = 0.15, the system be-
haves chaotically (see BD in Fig. 2(a)). Let us choose P, =
{0.32,0.48} (Fig. 4(a)) and M = {1,1} with the underlying
scheme, [1p;,1p2]. The switched attractor A* approximates
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the averaged attractor A~ with p* given by Eq. (6): p* = 0.4.
The match between both attractors can be seen in the over-
plotted phase plots in Fig. 4(b) and overplotted time series in
Fig. 4(e)-4(g). The underlying attractors Ag3 and Ag4g are
chaotic and regular motion respectively (Figs. 4(c) and 4(d)).

(i) p:=a

Since the case p : = d represents the case of the class of
systems modeled by system (4), where the PS algorithm has
been extensively studied in previous works, next we consider
the case p : = a, which belongs to the class of systems modeled
by system (9), and where the PS algorithm has not been ap-
plied yet. For b=0.15,c =2, and d = 0.1, as can be seen from
the BD in Fig. 2(b), system dynamics are more complex than
that for p := d, presenting several direct and reverse period-
doubling bifurcations. In this case, due to the term psgn(x;),
the system is modeled by system (9). However, we will show

A" Ay
08 (y) (¥ q=(1,1,1)
L il N [1p1,pa), P1=0.9, po=1
0.6r _— : p=09
g
% 0.4
<
0.2f
0
0.6 1.6
—A" 2 *
—A
| (b) — Ay (e) — A
1.6
‘ 1
|
b | N
¥ 1.2 ;
‘ 0
|
0.8 : o !
0.5 -1 -1
9?1 0.5 ke 0 100 200t300 400 500

—05 0 05 -1 0 100 200 300 400 500
1'1 t
A —4
(d) 3 (2) — Ay |
1.6
€12
0.8 01{» 0
—0.5 0 05 —1® 0 100 200 300 400 500
1

Fig. 5. (color online) PWL Chen’s attractor Ags, for p :=a, g = (1,1,1),
approximated with PS algorithm with scheme [1p;, 1ps] with p; = 0.9 and
p2 = 1; (a) bifurcation diagram; (b) overplotted attractors A* (red) and Ap+
(blue); (c) attractor A o; (d) attractor Ay; (e)—(g) overplotted time series cor-
responding to A* (red) and A« (blue).

that the PS algorithm still applies for this more general case.

a) Commensurate case g = (1,1,1)

Choosing P> = {0.9,1}, (see BD in Fig. 5(a)), with
M = {1,1}, the relation (6) gives p* = 0.95, and with the
scheme [1py, 1p,] the PS algorithm generates the switched at-
tractor A*, which approximates the stable cycle A,« (see the
phase plot in Fig. 5(b) and time series in Figs. 5(e)-5(g)). Both
underlying attractors Aj ¢ and Ago (Figs. 5(c) and 5(d)) are
chaotic. Therefore, in this case, the PS algorithm acts as a
control-like method (see Remark 2).

The non-uniqueness of solutions for p* in the relation (6),
allows different ways to obtain some desired attractor Ap:.
For example, the same attractor Ag 95 obtained above with the
scheme [1py, 1p;] (with values p; = 0.9 and p, = 1, situated
in closed neighborhoods of p*), can be approximated by a
switched attractor A* obtained with p values situated relatively
distant from p*. For example, A( 95 can be approximated with

(a) AT Ay
0.87 ~Ager q=(1,1,1)
. [2p1,p2], p1 =0.67, p,=1.51
0.6 — | p =0.95

A1.51

1.6

<4 i 71
08+ © 7,0 10 100 200 300 400

2.0
1.8
1.6

T3

1.4

-10_¢5 0 _ 0 0.5 0 100 200 300 400
0.5—0.5
T Lo t

A1.5]
0.65. (d)
0.60

& 0.55
0.50

0.45]
1

.0
0
—1.0 _- 0 1.0 00 100 200 300 400
2, 1.0
Ty t

Fig. 6. (color onling) PWL Chen’s attractor Ag s, for p :=a, g = (1,1,1),
approximated with PS algorithm with scheme [2py, 1 p2] with p; = 0.67 and
p2 = 1.51; (a) bifurcation diagram; (b) overplotted attractors A* (red) and
Ap+ (blue); (c) attractor Age7; (d) attractor Ays1; (€)—(g) overplotted time
series.corresponding to A* (red) and A+ (blue).
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Py = {0.67,1.51} (Fig. 6(a)) and weights M = {2,1}, i.e.
the scheme [2p;,1p;]. Phase plots (Fig. 6(b)) and time series
(Figs. 7(a)-7(g)) reveal the approximation. This time, the sta-
ble cycle A* is obtained starting from parameter values which
generate stable cycles (Figs. 6(c) and 6(d)).

Also due to this same non-uniqueness, a set value p*

can be obtained with N > 2 elements. For example p* =
0.95 can be obtained with Ps = {0.6,0.7,0.8,1.09,1.32,1.4}
(see Fig. 7(a)) and M = {1,2,2,3,1,1}. By ap-
plying the PS algorithm with the underlying scheme
[1p1,2p2,2p3,3pa, 1 ps, 1 pg], one obtains again a good match
between the two attractors A* and A« (Figs. 7(a)-7(k)).
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6 VA [1p1, 2p2; 2ps, 3pa, 1ps5, 1pg)
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Fig. 7. (color online) PWL Chen’s attractor Aggs, for p := a, g = (1,1,1), approximated with PS algorithm with the scheme
(1p1,2p2,2p3,3pa, 1ps, 1 pg] with Pg = {0.6,0.7,0.8,1.09, 1:32, 1.4 }; (a) bifurcation diagram; (b) overplotted attractors A* (red) and
Ap+ (blue); (c)—(h) attractors Ag.6, Ao.7, A8, A1.4, A1.06,and Ay 32; (1)—(k) overplotted time series corresponding to A* (red) and A ,«
(blue).
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b) Incommensurate case ¢ = (0.99,0.98,0.97)

With P4 = {0.75,1.29,1.52,1.6,1.38} (see the bifurca-
tion diagram in Fig. 8(a)) and M = {1,1,2,2}, the PS scheme
[1p1,1p2,2p3,2ps) generates the attractor A*, which approxi-
mates A+ with p* = 1.38. The match between the two attrac-
tors is revealed in Fig. 8(a)-8(i). Again the PS algorithm acts
like a control-like method.

1.0r (a) Ao.rs q=(0.99,0.98,0.97)
[1p1,1py 2p3 2py]
L p1=0.75, p,=1.29, p3=1.52, p, =1.6
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0»5 O
Y05 -01 0 0.10.2
% T
7A*
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At ’ ’ *
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() () i
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t
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t

Fig. 8. (color online) PWL Chen’s attractor Aj3g, for p :=a, g =
(0.99,0.98,0.97), approximated with PS algorithm with the scheme
[1p1,1p2,2p3,2p4] with Py = {0.75,1.29,1.52,1.6}; (a) bifurcation dia-
gram; (b) overplotted attractors A* (red) and A« (blue); (c)—(f) attractors
Ap7s, A1.29, A1 52, Al g; (8)—(1) overplotted time series corresponding to A*
(red) and A+ (blue).

5. Conclusion

In this paper we present a new version of Chen’s system:
the PWL Chen system of fractional-order, revealing interest-
ing new dynamical characteristics, including the coexistence
of chaotic and regular motions. To numerically cope with this
system, we first must make a continuous approximation of the
discontinuities by using an algorithm based on Filippov’s reg-
ularization and also by applying Cellina’s Theorem. The ap-
proximation is implemented via the sigmoid function (7).

We show that the stable attractors can be numerically ap-
proximated with the PS algorithm by starting from a set of
parameter values which are periodically switched while the
underlying IVP is numerically integrated. Results are robust
across a range of moderate small step sizes.

We note that the case p : = a allowed us to verify that the
PS algorithm applies also to a new general class of systems
modeled by system (9).

One of the open and most intriguing problems is revealed
by the following question: Even though the PWL equation (3)
and the continuous equation (8) are equivalent in the sense of
numerical approximation, with some experimental (circuitry)
implementations of both systems, will they reveal the same
behavior? A positive answer to this question will be useful to
underline the importance of this approach of PWL systems.

Also, the convergence proof of the PS algorithm for other
larger classes of IVPs remains the subject of future works.
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