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SUMMARY

Modern communication networks and social networks are the main tunnels of knowledge diffusion. Knowl-
edge diffusion in complex networks is different from the epidemic-like information spreading, because
individuals are willing to learn and spread knowledge to their friends and the learning process can hardly
be achieved in a few conversations. In this paper, we investigate the important issue as what topological
structure is suitable for knowledge diffusion. We propose a new knowledge diffusion model, where both
learning and forgetting mechanisms are considered. In this model, individuals can play imparter and learner
simultaneously. Comparing knowledge diffusion on a series of complex topologies, we observe that the indi-
viduals with a large degree can quickly learn more knowledge, who are beneficial to knowledge diffusion.
Our results surprisingly reveal that the networks with high degree-heterogeneity are likely to be suitable
for knowledge diffusion. Our finding suggests that enhancing the degree heterogeneity of existing social
networks may help to improve the performance of knowledge diffusion. This result is well confirmed by
our extensive simulation results. Our model therefore provides a theoretical framework for understanding
knowledge diffusion in complex topologies. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The pressing needs of knowledge diffusion [1, 2] foster the revolution of modern information tech-
nology. As is expected, the revolution, in turn, brings knowledge diffusion more tunnels, no matter
whether the content of knowledge is implicit or explicit [3]. Currently, with the accelerated develop-
ment of data collection and the wider availability of a variety of databases, it becomes much easier
to track knowledge diffusion. The channels of knowledge diffusion has evolved from face-to-face or
person-to-person interactions [4, 5] to communication networks [6, 7], on which a large number of
knowledge carriers, for instance, microblog, instant messaging software, video, and email, among the
others, emerge one by one. However, the processes of the knowledge diffusion are complex [8–11],
which makes tracing knowledge diffusion a rather challenging task [12]. Thus, early studies on
knowledge diffusion in complex networks are mainly on the base of simulations on model-generated
networks [1, 13]. In the studies, authors take knowledge transfer as a form of barter. They found
that, compared with regular graphs and random graphs, the steady-state level of average knowledge
reaches the peak when the networks exhibit clear ‘small-world’ properties [14].
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In a sense of citation analysis [15], knowledge diffusion can be defined as the adaptations and
applications of knowledge documented in scientific publications and patents. Because of the wider
availability of a variety of databases in recent years, a number of empirical results were successively
reported [12, 16–18]. Taking the studies on the h-index [19] as an example, Gao et al. [12] proposed
a citation-based directed network model with a time dimension. The authors take citations as an
indicator of knowledge diffusion. This definition enables them to illustrate the process of knowledge
diffusion with empirical data, which is more convincing than the pure simulation results. Chen et
al. [16] analyzed patent citations in the field of tissue engineering. They developed and deployed an
explanatory visualization technique, which provides a relatively intuitive presentation of knowledge
diffusion. Liu et al. [17] studied the number of Essential Science Indicators fields influenced by
the publications of a research group. Batagelj [18] proposed an approach to determine strength and
weight for each node and directed link, respectively. The approach can be used for large networks
with millions of nodes and links.

Inspired by spreading dynamics, Bettencourta et al. [20] tried to model the knowledge diffusion
process as a disease spreading process. Take the studies on ‘Feynman diagrams’ as an example [21];
at the beginning of the spreading process, most authors are in the susceptible class, with a few
authors in the incubator class having been in contact with the idea and a small number of adopters
manifesting it.

Knowledge can refer to a familiarity, awareness, or understanding of some information. In the
studies of information spreading on complex networks [22–33], however, more attention is attracted
by another type of information diffusion, rumor spreading [22–30]. Rumor spreading is consid-
ered as an infection-like information-spreading process, which was proposed by Daley and Kendall
[34, 35] in 1964. In the Daley and Kendall model, individuals are divided into three classes: igno-
rant, spreaders, and stiflers. Transitions from the ignorant state to spreaders may result from contacts
between the two classes, whereas encounters between individuals who already know the rumor may
lead the spreaders in them to be stiflers. Instead, in knowledge diffusion, individuals play two roles
simultaneously: imparter and learner. If an individual has more knowledge than his or her friend,
he or she would share the part of knowledge that only he or she knows with his or her friends. In
a sense, knowledge diffusion seems to be closer to a heat conduction than contagion. If individuals
know less than their friends, they would learn something from their friends through conversation.
The difference is that an imparter does not lose its knowledge because of sharing, while an object
loses its energy because of heat conduction. Thus, knowledge diffusion is a self-duplicating process.
For instance, the developers of a new programming language want to popularize the technology
to more users. The developers need to share their experience with the users. If the technology is
helpful, these users would share their experience with each other or introduce it to their friends.
Eventually, this programming language is diffusing through user networks.

On the other hand, humans cannot keep knowledge in their brains forever. Normally, knowl-
edge in memory decays with time. Thus, a forgetting mechanism should be seriously considered
when we try to further understand knowledge diffusion processes [36–38]. In general, the for-
getting mechanism can be represented by a forgetting function, which is a plot of the amount
remembered, R.t/, as a function of time since learning, t . In 1885, Ebbinghaus [39] proposed the
function R.t/ D 100 � a

logb.t/Ca
, whereas Wickelgren [40] argued that forgetting functions are bet-

ter described by a power law R.t/ D at�b . Wixted and Ebbesen [41, 42] suggested that both the
logarithmic and power functions are suitable for characterizing some forgetting functions, while
exponential functions do not perform well when fitting the investigated empirical data. Although
Anderson and Schooler [43] provided more evidences to support that the power law is a better
choice, White [44] argued that the exponential-power function should be a reasonable option as
well, which is confirmed by Rubin and Wenzel [45] with a short-term memory data set.

In this paper, we propose a knowledge diffusion model, where two mechanisms in cognitive
psychology, forgetting and learning, are considered. We adopt a modified exponential function as the
forgetting function. Knowledge is partially forgotten by individuals on one hand and consolidated
by learning from their neighbors in networks on the other hand. We investigate the influence of
topological structures on diffusion efficiency, characterized by the maximum of the total knowledge
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of a population. We will show that the degree heterogeneity [46] of the networks can effectively
promote knowledge diffusion in complex networks.

2. RELATED WORKS

Complex networks are composed by a massive population of nodes. The connections among them
are neither regular nor random [8–11], because the mechanisms forming the networks are neither
simple nor unique. The complex structures bring researchers a knotty and urgent problem, how
to describe complex networks. To this end, researchers define a number of statistical topological
properties, in which degree distribution, clustering coefficient, and average path length attracted
most attention [14, 47].

2.1. Degree distribution

The degree (or connectivity) ki of a node i is the number of links connected with the node. It is
defined as ki D

P
j2n aij , where n � n1, n2, . . . , nN are the nodes of the network. aij is the entry

of the adjacency matrix of the network. The degree distribution P.k/ is one of the most important
and basic statistical property of a network [47]. By definition, the degree distribution P.k/ is the
probability that a randomly selected node has exactly k links.

2.2. Clustering coefficient

The clustering coefficient provides a measure of the level of cohesiveness around any given node. A
quantity Ci (the local clustering coefficient of node i) is first introduced to measure how likely two
neighbors of node i are connected. By definition, the clustering coefficient Ci [47] of node i is the
ratio between the number of edges Ei , which actually exist among the ki neighbors of node i and
its maximum possible value, ki .ki�1/

2
, that is, Ci D 2 Ei

ki .ki�1/
. The average clustering coefficient

C of the whole network is the arithmetic average of Ci , that is C D Ci
N

, where N is the size of
the network.

2.3. Average path length

The shortest paths play an important role in the transport and communication within a network.
Suppose one needs to make a call to a friend through the telephone net: the geodesic provides
an optimal path, because one would achieve a fast transfer and save system resources. For such a
reason, the shortest paths have also played an important role in the characterization of the internal
structure of a graph [14].

The path length of a pair of nodes is defined as the shortest distance (the length of the shortest
path) between them, which characterizes the communication delay in the network [48]. A measure
of the typical separation between two nodes in the graph is given by the average path length, also
known as the characteristic path length, defined as the mean of geodesic lengths over all pairs of
nodes, D D

P
i;j2n;i¤j dij
N.N�1/

.
Degree distribution, clustering coefficient, and average path length are the top three highly

concerned topological properties. Apart from them, degree heterogeneity [46] and degree correla-
tions [49] of a network are also extensively adopted to quantitatively characterize complex networks
in another sense.

2.4. Degree heterogeneity

Degree heterogeneity is a statistical property, which quantitatively characterizes the fluctuation of
the degree sequence of a network. This property was frequently mentioned, while its explicit defini-
tion was not manifested until a recent work [46]. To be consistent with previous studies, we denote
the degree heterogeneity by H . H is defined as hk

2i

hki2
, where hki denotes the average degree.
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2.5. Degree correlations

Real-world scale-free networks normally possess various degree correlations. For instance, in social
networks, hubs are likely to be connected, which is regarded as an assortative mixing. In techno-
logical and biological networks, hubs are bridged by less-connected nodes, which is regarded as a
disassortative mixing [49]. To measure and compare degree correlations, Pearson coefficient is intro-
duced into the studies on network structures. A positive (negative) Pearson coefficient indicates that
the network is assortative (disassortative) mixing. When Pearson coefficient equals 0, the network
is degree-uncorrelated mixing.

Another interesting measure related to degree correlations is the average degree of the nearest
neighbors for nodes with degree k, denoted by knn.k/ [50, 51], namely, knnD

P
k0 k
0p.k0jk/. When

knn.k/ increases with k, it means that nodes have a tendency to connect to nodes with a similar
degree. In this case, the network is defined as assortative [49, 52]. In contrast, if knn.k/ decreases
with k, which implies that nodes of a large degree are likely to have neighbors with a small degree,
then the network is ascribed to the disassortative [53]. If correlations are absent, knn.k/ D const .

2.6. Learning and forgetting mechanism

In our model, individuals play two roles simultaneously: imparter and learner. At a certain time step,
a conversation takes place between two friends i and j in a network. Let ‰i .t/ be individual i’s
knowledge after t time steps. If ‰i .t/ is larger than ‰j .t/, i is the imparter and j is the learner at
time t and vice versa. In the conversation, individual i would share the part that only he or she knows
with his/her friend. In this case, the learning ability of individual j is characterized by a parameter
�j , which is defined as the assimilated fraction of the incoming knowledge. Simultaneously, each
individual forgets a fraction of their knowledge. Let �i be the forgotten fraction of individual i to
model the exponential decay of a short-term memory.

The evolution process of our knowledge system is illustrated in the following. For an individual
i at time t , the value of his or her knowledge will decay �i‰i .t/ after a time step. In the meantime,
two friends, say j and k, at the two ends of a randomly chosen link have a conversion. Take history
lessons in the secondary school as an example, individual k who had this course would forget the
exact year of a historical event a couple of years later, while he or she remembers the rest of the
event. Individual j may even forget the location of the event. A conversation between them may
remind individual j from the second group of the location. In this case, ‰j .t/ < ‰k.t/, j will
assimilate �j j‰k.t/ �‰j .t/j after a time step.

3. MULTICHANNEL KNOWLEDGE DIFFUSION IN COMPLEX NETWORKS

To focus on the dynamical process, we ignore the differences on the learning ability and retention
among individuals and set �i D � and �i D � for all i . To compare the influence of different
topological structures on knowledge diffusion, we define the total knowledge of the population
ˆ.t/ D

P
i ‰i .t/, where ‰i .t/ denotes individual i’s knowledge after t time steps. In a network,

we initially set ‰i .0/ to a random value ranging from 0 to 1.

3.1. Evolution of total knowledge

Based on the assumptions mentioned earlier, the evolution of the total knowledge ˆ.t/ satisfies the
following difference equation:

ˆ.t/ D .1 � �/ˆ.t � 1/C� �Z.t/; (1)

where Z.t/ D j‰i .t/ �‰j .t/j. Here, i and j denote the two ends of a randomly picked link at the
step t . This equation indicates that knowledge diffusion is directed, which is a downhill diffusion.
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Through a conversation between two friends in a social network, an individual i with a smaller‰i .t/
may learn something from individual j through the conversation. Solving Equation (1), one derives

ˆ.t/ D .1 � �/tˆ.0/C�

tX

sD0

.1 � �/t�s �Z.s/; (2)

Because Z.s/ has a upper bound .1 � �/s , we have the following inequality

ˆ.t/ � .1 � �/t .ˆ.0/C�.t C 1// : (3)

The term of the right-hand side is the upper bound of the total knowledge ˆ.t/. One can see that
ˆ.t/ would decay with t in the end, because the rate of decay in Equation (3) is exponential.

3.2. Average knowledge of the individuals with a certain degree

For the networks with degree heterogeneity, for instance, the Barabási–Albert scale-free network
(BASN) [47] and star network, we define !k.t/ as the average knowledge of individuals with degree
k after t steps. Let ˛k.t/ be the learning probability for an individual with degree k after t steps.
The evolution of !k.t/ in a network with clear degree heterogeneity satisfies

!k.t/ D .1 � �/!k.t � 1/C
˛k.t � 1/�Z.t/P.kjk

0/

P.k/N
; (4)

where P.kjk0/ denotes the conditional probability of that an individual with degree k0 connects
with an individual with degree k. Here, k and k0 denote the degrees of both ends of the picked link
at time t , respectively. N denotes the size of the network. For the degree-uncorrelated scale-free
networks [49], for instance, the BASN [47],

P.kjk0/ D
P.k/k

hki
; (5)

where P.k/ denotes the probability of an individual having degree k, which is also known as the
degree distribution of a network. hki denotes the average degree. Because P.kjk0/ is irrelevant to
k0, Equation (4) can be rewritten as

!k.t/ D .1 � �/!k.t � 1/C ˛k.t � 1/�Z.t/
k

hkiN
: (6)

Respecting our initial settings, !k.0/ D F.P.k/N /, where F.:/ is a function of P.k/N .
F.P.k/N / is close to 1

2
for P.k/N � 1, while it is a random value ranging from 0 to 1 when

P.k/N is close to 1. Based on these initial conditions, the individuals with more friends in the
network generally have a higher probability to learn some knowledge from their friends at the
beginning, because ˛k.0/ '

1
2

in Equation (6) for P.k/N � 1.

3.3. Learning probability for the individuals with a certain degree

This advantage of the well-connected individuals result in that their learning probability decays with
t , while the learning probability of the less-connected individuals grows with t accordingly. Thus,
one can roughly predict ˛k.t/ when t ! 1 by summarizing the probability of connecting with
individuals with larger degrees. If the chosen link happens to exist between the two individuals with
the same degree k, ˛k.t/ ' 1 because the system can hardly reach a complete synchronized status.
Based on this basic understanding, one can approximately obtain

˛k.t/ D

kmaxX

k0Dk

P.k0jk/; (7)
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In the degree homogeneous network, such as regular graphs, the Watts–Strogatz small-world
network (WSSN) [14], and random graphs, one can consider the scenario as that an individual with
hki plays with hki individuals with hki. ˛k.t/ for all k is generally stabilized around 0.5. The small
difference of ˛k.t/ among individuals with different degrees also originates from the weak degree
heterogeneity.

For the star network, because there is only one hub with a degree N � 1. Although !k.0/ is
a random value ranging from 0 to 1, it is likely to learn more knowledge from their friends at
the beginning of evolution, because its probability to be chosen is 1. As a result, the individuals
surrounding the hub can benefit from the hub later because they have an erudite neighbor. In this
respect, the existence of this extreme degree heterogeneity highly promotes knowledge diffusion in
this class of networks. Given Equation (7), one can derive ˛N�1.1/ D 0 and ˛1.1/ D 1.

4. EXPERIMENTAL RESULTS

4.1. Experimental settings

To clarify the influence of topological structures on knowledge diffusion, we then run extensive
numerical simulations on the BASN, regular network, WSSN, random network, and star network.
We initially generate a network of 1024 individuals with random seeds. In the network, we assign
a random value ranging from 0 to 1 to each individual as his or her knowledge value. Next, we
randomly choose two friends i and j in the network to have a conversation. In this conversation, an
individual i with more knowledge, namely ˆi .t/ > ˆj .t/, would distribute his or her knowledge
to j . In our simulations, all the individuals are equally talented, that is, �i D � and �i D �,
where i D 1, 2,. . . , N . Because our purpose is to test the influence of the topological structures, we
uniformly set � D 0:0001 and � D 0:5 for all the individuals in our simulations.

4.2. Average knowledge of the individuals with a certain degree

Figure 1 shows the evolution of !k.t/ on the BASN, regular network, WSSN, random network, and
star network, where 1024 individuals in (a), (c), (e), (g), and (i) (4096 individuals in (b), (d), (f),
(h), and (j)) are coupled. One can observe that !k.t/ grows uniformly at the beginning. Comparing
the diffusion processes shown in Figure 1(a) and (b) with the other panels, one can observe that the
individuals with more friends in the network can rapidly learn more knowledge before !k.t/ decays
with time. The relation between the maximum of !k.t/ and k is shown in the inset. In (a), the
curves from bottom to top correspond to the evolutions of !k.t/, where k increases from 3 to 123.
In (b), the curves from bottom to top correspond to the evolutions of !k.t/, where k increases from
3 to 229. This observation originates from ˛k.t/k in Equation (6). Let ˛k.t/ be the probability that
the individuals with degree k can learn knowledge from their friends after t steps. Initially, ˛k.t/k
of hubs is much larger than that of the individuals with small degree. As mentioned previously, all
the individuals’ knowledge is randomly assigned. Thus, ˛ki .0/ ' 0:5 for all i . For an individual
i with a large degree, for instance ki D Maxj .kj /, ˛ki .t/ quickly decays with time as shown in
Figure 2. In (b), (c), (d), (e),(f), (g), (h), (i), and (j), the relations between !k.t/ and k are similar to
the observation in (a), that is, the curve at the top is likely to correspond to !kmax .t/. Because the
degree heterogeneity of the WSSNs and random networks is much smaller than the BASNs and star
networks, the distance of !k.t/ between the highly connected and less-connected in (e), (f), (g), and
(h) is not so evident as that in (a), (b), (i), and (j). Apart from degree heterogeneity, one can see that
the behavior is neither relevant to the size of a network nor to the type of the network.

4.3. Learning probability of individuals with a certain degree

Figure 2 shows the evolution process of ˛k.t/, which represents how likely an individual with degree
k would learn something through a random conversation with one of his or her friends. Clearly, if
˛k.t/ > 0:5, an individual with degree k is likely to learn more knowledge at time t . In contrast,
˛k.t/ < 0:5 means that the individuals have more knowledge than most of their friends, who would
probably diffuse their knowledge to their neighbors in the next steps. In (a) and (b), the learning
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Figure 1. The evolution process of !k.t/ on five topological structures. We test the case for ˛ D 0:0001
on the Barabási–Albert scale-free network (BASN) shown in (a) and (b), regular network shown in (c) and
(d), Watts–Strogatz small-world network (WSSN) shown in (e) and (f), random network shown in (g) and
(h), and star network shown in (i) and (j). The networks in (a), (c), (e), (g), and (i) are composed of 1024
individuals. We also test the case for ˛ D 0:00005 on (b) the BASN, (d) regular network, (f) WSSN, (h)
random network, and (j) star network composed of 4096 individuals. In this figure, � is set to 0.5. We set
˛ D 0:00005 in the networks with 4096 individuals, because the total knowledge ˆ.t/ directly decays with
time for ˛ D 0:0001. The BASNs are generated by m0 D m D 3 [47], where m0 denotes the size of the
initial fully connected network and m denotes the number of links among a new individual and the existing
individuals in the network. The WSSNs and random networks are generated by randomly rewiring 10% and
100% of the links in the regular network, which are formed by 1024 (4096) identical individuals of degree
6. The star network is composed by one individual of degree 1023 (4095) and 1023 (4095) individuals of
degree 1. The simulation results were obtained by averaging 10 diffusions on 10 different realizations of the
same type of network specified by the appropriate parameters. Thus each plot in this figure corresponds to

100 simulations.
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Figure 2. The evolution process of ˛k.t/ on five topological structures. All the simulation settings are con-
sistent with Figure 1. In (a) and (b), the curves from top to bottom correspond to the evolutions of ˛k.t/,

where k roughly increases from 3 to 123 in (a) (from 3 to 229 in (b)).

probability of highly connected individuals decays rapidly, while that of the less-connected grows
in the meantime. The values of ˛k.t/ for the highly connected individuals reach their minimum
before that of the less-connected reach their maximum. After reaching the minimum, !k.t/ for all k
roughly stabilize at the minimum with small fluctuation. The observation confirms our explanation
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Figure 3. Evolution of the total knowledge ˆ.t/ on the five topological structures. The top curve shows
the simulation result obtained in the star networks. The second one shows the corresponding results in
the Barabási–Albert scale-free networks. The results in the regular networks, Watts–Strogatz small-world

networks, and random networks are basically overlapped at the bottom.

on the simulation results shown in Figure 1 in another sense. Given Equation (5), one can derive
an analytical solution of Equation (7), which is shown in the inset. In (e) and (g) ((f) and (h)), the
relations between ˛k.t/ and k are consistent with the observation in (a) ((b)). One can see that the
observation in (j) confirms our analytical prediction about ˛N�1.1/ D 0 and ˛1.1/ D 1 in star
networks in Section 3. In (i), because the distance of knowledge among the hub and its neighbors
become very small after 5�104 steps, the system gradually gets into a quasi-synchronized state,
where the distance among ‰i for all i can hardly be differentiated in double precision. In this case,
˛k.t/! 0 for all k.

4.4. Total knowledge

Figure 3 shows the evolution of ˆ.t/ on all the topological structures mentioned earlier. One can
observe that ˆ.t/ in the networks gradually grows to the maximum first. After reaching the maxi-
mum,ˆ.t/ rapidly decays with time. In terms of the maximum ofˆ.t/, the maximum ofˆ.t/ in the
star network is the largest. For the rest, the BASN is slightly higher than the regular network, WSSN,
and random network, which confirms that degree heterogeneity is beneficial to knowledge diffusion
in another sense. Except the star network and BASNs, all the traces ofˆ.t/ in the other three topolo-
gies are almost identical, because the degree heterogeneities of the three topologies are much smaller
than those of the star networks and BASNs. In another sense, this observation is interesting, since
structures of social networks are demonstrated to have a nontrivial influence on the epidemic-like
information dissertation, such as rumor spreading [24, 26]. In the previous studies, researchers found
that the final informed scale in scale-free networks is smaller than that in the WSSNs [24] with the
same simulation average degree. Our observation, however, suggests that knowledge as a familiar-
ity, awareness, or understanding of some information can spread more efficiently in the scale-free
networks. Here, the efficiency is measured by the maximum of ˆ.t/. Although the star network
is the most suitable structure for knowledge diffusion, most real social networks are not star-like,
because each individual has a Dunbar number [54]. Thus, the most practical organization in the
mentioned structures is the scale-free networks, which happens to be consistent with the structures
of most realistic social networks [8–11].

4.5. Influence of topological properties

For the networks investigated previously, their topological properties are clearly different from each
other. For example, the degree distribution of the BASN follows a power law [47], while that of the
WSSNs follows a Poisson distribution [14]. However, from the perspective of degree distribution,
one can hardly conclude which type of distribution is suitable for knowledge diffusion. Likewise,
the clustering coefficient and average path length [14] of the WSSNs, random networks, and regular
networks are clearly different (Table I), while the peaks of ˆ.t/ for the three networks are very
close. These observations indicate that the classical topological features are not sufficient to govern
the performance of knowledge diffusion in a network. After testing a series of topological features,
we found that the degree heterogeneity [46] is likely to be the most representative one.
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Table I. Clustering coefficient, average path length, and degree heterogeneity
of the networks investigated in Figure 3.

SN BA Reg WS Ran

(a)
Clustering coefficient 0 0 0.6 0.45 0
Average path length 2 3.47 85.75 6.19 4.12
Degree heterogeneity 256.25 2.326 1 1.015 1.051

(b)
Clustering coefficient 0 0 0.6 0.44 0
Average path length 2 3.98 341.75 7.66 4.93
Degree heterogeneity 1024.25 2.747 1 1.016 1.012

SN, star networks; BA, BASNs; Reg, regular networks; WS, WSSNs; Ran, random
networks.
(a) shows the results of the networks with 1024 individuals and (b) shows the results
of the networks with 4,096 individuals.

As shown in Table I, one can observe that the peak of ˆ.t/ is exactly proportional to H . Even
for the case that the distances among peaks in regular networks, the WSSNs, and random networks
are very small, one can likewise differentiate them by H . For instance, Figure 3(a) shows that the
peaks of ˆ.t/ in regular networks and the WSSNs with 1024 individuals are 607.97 and 608.26,
respectively. In Table I, one can observe that the degree heterogeneity value H D 1:015 for the WS
networks, which is also slightly greater than H D 1 for the regular networks.

Table I shows that the degree heterogeneity of the BASNs is clearly higher than other non-star
networks, which indicates that scale-free networks are suitable and practical for knowledge diffu-
sion in humans. The BASNs, however, are not necessarily the most suitable scale-free networks for
knowledge diffusion. To clarify which type of scale-free networks is more suitable for knowledge
diffusion, we also test the degree heterogeneity of a series of scale-free networks. In the BASN,
the probability that a new individual j connects with an existing individual equals kjP

i ki
. We adjust

the probability to
kı
jP
i k
ı
i

, where ı is a constant. One can see that H grows with ı monotonously in

Figure 3(a) and (b). Our observation indicates that the scale-free network with a high-degree hetero-
geneity can further promote the performance of knowledge diffusion. Figure 4(c) and 4(d) show the
degree distributions of the scale-free networks. This result confirms our previous conclusion derived
from comparison among five different types of networks, which is that the degree heterogeneity or
polarization is beneficial to knowledge diffusion.

For integrity, we also investigate the influence of degree correlations on knowledge diffusion in
scale-free networks. Because the Pearson coefficients of most real-world networks fall in the region
of Œ�0:3; 0:3� [49], we adopt the XS algorithm [55, 56] to generate scale-free networks with degree
correlations. We test the scale-free networks with assortative mixing, degree-uncorrelated mixing,
and disassortative mixing, respectively. Not unexpectedly, Figure 5 shows that degree correlations
are completely irrelevant to knowledge diffusion.

Knowledge diffusion is a special form of information spreading. We investigate knowledge diffu-
sion in complex networks, because most existing models [22–35] on information spreading, as far
as we concerned, can hardly characterize the unique interaction mechanism in knowledge diffusion.
The existing models normally take the propagating information as an epidemic, while knowledge is
clearly different from an epidemic, because individuals in a knowledge diffusion network are willing
to learn and spread the knowledge.

On the other hand, in terms of the studies on memory, disregarding humans’ learning capacity
and social property may bring the researchers a misleading conclusion. In this paper, we sum-
marize these factors and propose such a simple model, committed to shedding some light on
the difference between the star-like one-to-many school education and complex scenarios such
as online self-education and international conferences. We believe that a reasonable organization
of individuals may highly promote the effectiveness of knowledge diffusion when their abilities
are fixed.
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Figure 4. Evolution of the total knowledge ˆ.t/ on the scale-free networks with different degree hetero-
geneities. (a) and (b) show the simulation results of the scale-free networks with 1024 and 4096 individuals,
respectively. We test the cases of ı D 0:1, 0.5, 1.0, 1.5, and 2.0. (c) and (d) show the degree distributions
of the networks. Note that (c) and (d) are two log–log graphs. We fit the curves by P.k/ D Ak� , where A
and � are two constants. One can see that the values of � for the tested scale-free networks are confined to

Œ�4:55;�2:25� in (a) (Œ�1:71;�13:78� in (b)).

Figure 5. Influence of degree correlations on knowledge diffusion. We show the cases that Pearson coeffi-
cient equals 0.3, 0, and�0:3, respectively. (a) and (b) show the case of ˛ D 0:0001with 1024 individuals and
˛ D 0:0005 with 4096 individuals, respectively. In these networks, we uniformly set ı D 1:0 and � D 0:5.

5. CONCLUSION

In a nutshell, we have proposed a model to simulate knowledge diffusion process in complex
networks. In this model, two mechanisms in cognitive psychology, forgetting and learning, are con-
sidered. The diffusion process is directed, which follows a from-high-to-low rule. Briefly, if an
individual has more knowledge than his or her friend in a conversation, s/he would share the part
of knowledge that only he or she knows with his or her friend. If he or she knows less than his
or her friend, instead, he or she would learn something from his or her friend accordingly. In this
scenario, our results show that the individuals with a large degree in a network with clear degree
heterogeneity are likely to learn more knowledge than their counterparts with smaller degrees at the
early stage of knowledge diffusion. The prediction is confirmed by extensive numerical simulations.
On the other hand, we observe that the star network is the most efficient platform for knowledge
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diffusion. As the second efficient platform, the spreading efficiency of the BASNs is higher than
that of the WSSNs. In scale-free networks, we observe that the degree heterogeneity is beneficial to
knowledge diffusion. Interestingly, this observation is in contrast to the conclusion of an epidemic-
like information dissemination. In the epidemic-like information dissemination, more individuals in
the WSSNs are informed when the average degrees for both types of networks are equal.

Knowledge diffusion possesses two special properties, gradient self-duplication and positive
response from individuals, which makes it different from epidemic-like information-spreading pro-
cesses. As far as we know, the studies targeted on knowledge diffusion in complex networks are
limited. Thus, there is a need to further investigate such a special form of information dissemination.
In this paper, we propose a simple theoretical model for providing a better understanding of knowl-
edge diffusion on complex networks. Acknowledgedly, there are some other mechanisms, which
may be as crucial as the mentioned. Because our focal topic in this paper is the influence of topolog-
ical structures on knowledge diffusion, they are simplified in our model. We believe, however, that
both the advantages and disadvantages of this model may be helpful for the studies of knowledge
diffusion in the future.
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