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Abstract: Cholera is a bacterial disease that is commonly transmitted through contaminated water,
leading to severe diarrhea and rapid dehydration that can prove fatal if left untreated. The complexity
of the disease spread arises from the convergence of several distinct and interrelated factors, which
previous research has often failed to consider. A significant scientific limitation of the existing
literature is the simplistic assumption of linear or logistic dynamics of the disease spread, thereby
impeding a thorough assessment of the effectiveness of control strategies. Since environmental factors
are the most influential determinant of Vibrio bacterial growth in nature and are responsible for
the resurgence, propagation, and disappearance of cholera epidemics, we have proposed a S-I-R-S
model that combines bacterial dynamics with the Allee effect. This model takes into account the
environmental influence and allows for a better understanding of the disease dynamics. Our results
have revealed the phenomenon of bi-stability, with backward and forward bifurcation. Furthermore,
our findings have demonstrated that the Allee effect provides a robust framework for characterizing
fluctuations in bacterial populations and the onset of cholera outbreaks. This framework can be
used for assessing the effectiveness of control strategies, including regular environmental sanitation
programs, adherence to hygiene protocols, and monitoring of unfavorable weather conditions.

Keywords: cholera; Allee effect; bacterial population growth; basic reproduction number; disease-free
equilibrium; control strategies; mathematical epidemiology

1. Introduction

Cholera, a bacterial waterborne disease caused by Vibrio cholerae [1], remains a major
public health concern worldwide, particularly in low- and middle-income countries. The
disease is primarily transmitted through contaminated water, via the fecal–oral route, or by
the consumption of contaminated food, and can cause severe diarrhea and dehydration,
leading to death if left untreated. Bacteria are typically transmitted among humans, and
the characteristic pathology of the disease is caused by a toxin secreted by the bacteria,
which targets receptors in the human intestine. Studies have estimated that every year,
cholera results in 1.3 to 4.0 million cases and 21,000 to 143,000 deaths globally [1].

Understanding the dynamics of cholera transmission is crucial for developing effective
prevention and control strategies. In addition to human factors (for instance, cultural habits
that can negatively impact the quality of hygiene), environmental factors such as water
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quality, temperature, rainfall, and nutrient availability also play a critical role in the disease
spread [2]. Some decades ago, temperature and nutrient availability have been shown to
affect the growth and survival of V. cholerae in water, while changes in rainfall can lead to
contaminated water sources [3].

In a prior study [4], we suggested a mathematical model of cholera that examines the
effects of environmental factors on the dynamic transmission of the disease within a human
community. However, the proposed model comprised nine state variables, with four
specifically representing the bacterial population. A research question therefore arises upon
completing the previous work: what should be the realistic formulation of a cholera model
that considers the effects of environmental factors and can contribute to improving the
understanding and defining efficient control strategies of the epidemic? In this article, we
develop a simplified version that preserves the environmental factors while incorporating
the Allee effect into the dynamics of the bacteria. This modification will enhance our
understanding of the complex relationship between human and environmental factors in
cholera transmission and can assist in the formulation of more effective prevention and
control strategies. The main objective of this research is to comprehensively explore the
dynamics of cholera outbreaks, specifically through the analysis of the Allee effect and
its integration into a robust mathematical model. Such an approach provides compelling
evidence supporting the existence and stability of disease equilibria.

The present research work focuses on the epidemiological dynamics of cholera out-
breaks by analyzing the interplay between the human host and bacterial population through
a mathematical modelling framework. In particular, the study conducted delves into the dy-
namical behavior of both populations and their interdependence, utilizing a mathematical
epidemiology approach. A common epidemiological S-I-R model, used to study the spread
of infectious diseases in a population, divides this population into three compartments:
susceptible (S), infected (I), and recovered (R) individuals. Such a model assumes that
individuals move between compartments based on certain rates. In this study, we made
the assumption that recovered individuals can become susceptible again, which aligns
with the definition of a S-I-R-S model. Furthermore, we incorporated the Allee effect on
bacterial population (B) growth to gain profound knowledge and understanding of the
disease spread and the interrelationship between human and environmental health.

The present research work calls for a one-health approach and aims to provide a
comprehensive analysis of the study results and their implications for developing strategies
to prevent and control cholera, taking into account the interplay between human health
and environmental health.

The rest of the paper is organized as follows: In Section 2, the materials and methods
of the scientific proposal are presented, including a brief summary of the related work, and
the description of the modelling approach. Section 3 presents the results of the research
conducted, in terms of mathematical modelling of the dynamics of cholera, while Section 4
provides discussion on numerical simulations of few scenarios. The concluding section
summarises the scientific proposal and highlights potential avenues for future research
aimed at expanding upon the current findings.

2. Materials and Methods

This research is rooted in mathematical epidemiology and utilizes simulations to offer
valuable insights into the key findings. In this section, the main results of the research
conducted, in terms of mathematical modelling of the cholera dynamics with the Allee
effect, are described and then discussed, through sensitivity analysis and simulations. To
highlight the fundamental of the modelling approach, a brief summary of the related work
is first presented.

2.1. Related Work

For a chronological history of the modelling of cholera, we refer the reader to the
works [5,6] which represent the earliest mathematical models of cholera. We also proposed
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a mathematical model of cholera in a periodic environment with public health worker
interventions such as sanitation or campaign awareness. In this study, we combined the
bacteria model that we developed and studied in [7] with a S-I-R-S human cholera model
in [8]. The findings showed that the control cholera should consider both sensitization and
sanitation with a strong focus on sanitation.

Most of the current models in the literature assume that bacterial growth follows a
linear or logistic dynamic. This assumption has the advantage of simplifying some of the
mathematical analyses and making it easier to apply well-known theories in dynamical
systems. However, the current information on the V. cholerae bacteria necessitates a review
of its mathematical dynamics in the environment. It has been discovered that environmental
aquatic bacteria, including V. cholerae O1 and V. cholerae non-O1, have the ability to survive
the stress caused by environmental factors such as temperature, pH, and lack of nutritional
resources [9]. To adapt to these conditions, the bacteria undergo metabolic changes that
allow them to survive the environmental stress, similar to a phenomenon of dormancy.
These cells are considered “viable but non-culturable” (VNC) because their ability to be
cultivated on bacteriological culture media is lost [10]. This dormant state is considered a
survival strategy in the natural environment for many species of bacteria [9].

The return to a cultivable state is possible when environmental factors causing stress
become favorable for the development and growth of the bacterial population. This
metabolic change necessitates reconsideration of the survival of pathogenic bacteria in the
environment and its dynamics in the aquatic ecosystem. This metabolic change is also
considered a possible hypothesis for the “disappearance” of V. cholerae in aquatic ecosystems
during colder months. These field observations therefore highlight the limitations of some
current mathematical cholera models in handling the full dynamics of the disease studied,
and indicate that mathematical models of cholera must consider these environmental
factors that are responsible for the resurgence and propagation of this epidemic.

The mathematical model of cholera proposed in [4] examines the effects of environ-
mental factors on the dynamic transmission of the disease within a human community.
This model accounts for the virulence of the bacteria and the commensalism relationship
between the bacteria and their aquatic reservoirs. The findings showed that the aquatic
reservoirs play a significant role in explaining the endemicity of the disease. However, the
proposed model included several state variables (nine in total), with four representing the
bacteria population. We suggest simplifying it, retaining the environmental factors while
incorporating the Allee effect on the bacteria dynamics. The model construction, including
its main principles, is presented in the next subsection.

2.2. Model Construction

In the context of bacterial population dynamics, unfavorable environmental condi-
tions can limit the maximum population size, denoted θ. This value represents a critical
concentration below which the population will go extinct, and above which the population
will grow to a saturation value, denoted ρ. This type of dynamic is known as the “Allee
Effect”. The Allee Effect is a biological phenomenon, named after W. C. Allee, that describes
a positive relationship between population density and per capita growth rate of a species.
In the presence of the Allee Effect, the population growth rate decreases at low population
densities. Species under the Allee Effect do not thrive at low population densities, but the
effect typically saturates or disappears as populations grow larger.

Since environmental factors greatly influence the growth of Vibrio bacteria in na-
ture, and are responsible for the resurgence, propagation, and disappearance of cholera
epidemics, we proposed a mathematical model that combines a bacterial dynamics with
Allee effect and a S-I-R-S model to account for these environmental factors. Sensitivity
analysis of the proposed model is conducted to determine the degree of influence of each
parameter. Additionally, the different disease-free equilibrium (DFE) points of the system
are computed, and their local stability conditions and attraction domains are determined.
We also analyzed the basic reproduction number R0

0 and R0(Qρ) of the DFE Q0 and Qρ
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respectively. This allowed us to infer that the phenomena of backward bifurcation and
forward bifurcation could be realized atR0

0 = 1 in the neighborhood of Q0. However in a
neighborhood of Qρ, only forward bifurcation is realized atR0

0 = 1.
We classify individuals in a population of interest according to their disease status,

distinguishing between susceptible individuals (S), infected individuals (I), and recovered
individuals (R). Once infected, individuals can recover from the disease at rate α. As
suggested in many studies [11,12], recovered individuals may only have partial immunity.
Then, recovered individuals can lose their immunity and return to the susceptible stage at
rate γ. The parameters µ and d are introduced to represent the natural human mortality
and cholera induced death rate of infected individuals, respectively. Infected individuals
contribute to the concentration of Vibrios at rate δ.

For the population of bacteria, denoted B, we assume that their reproduction with the
Allee effect includes the limitation of resources and the natural mortality is therefore:

f (B) = rB(B− θ)(ρ− B),
= −rB3 + r(ρ + θ)B2 − rρθB,

(1)

where r(ρ + θ)B2 is the reproduction of bacteria, the term −rB3 is the intra-specific compe-
tition due to limited resource, and the term −rρθB is the mortality of bacteria.

Therefore, drawing upon these hypotheses, the dynamics of cholera epidemics pro-
posed to address the research question can be described by the following system of non-
autonomous differential equations with the Allee effect:

Ṡ = Λ− (λ + µ)S + γR,
İ = λS− (µ + d + α)I,
Ṙ = αI − (µ + γ)R,
Ḃ = rB(B− θ)(ρ− B) + δI,

(2)

where 0 < θ < ρ and the force of infection of the model suggested is defined by:

λ = β
B

K + B
. (3)

The structure of the proposed model is depicted in Figure 1. The dashed arrow from I
to B indicates contamination of the environment by humans and the second dashed arrow
indicates influence of contaminated environment on infection force.

Figure 1. Graphical representation of proposed model of cholera dynamics.
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In the following, we consider ω = µ + d + α, and define the values used for numerical
simulation in Table 1. To evaluate the robustness of the proposed model, a sensitivity
analysis was conducted, as elaborated in the following section.

Table 1. Numerical values for the parameters of model (2).

Definition Symbol Estimated Source

Recruitment rate Λ 10 day−1 Assumed
Bacteria ingestion rate β 0.0001 person−1day−1 Assumed
Human population death rate µ 0.0104 day−1 [13]
Bacteria shedding rate δ 70 cells/(mL day) [14]
Half-saturation constant K 107cells/person/mL/day Assumed
Cholera related death d 0.6 year−1 Assumed
Loss of immunity rate γ 0.01 day−1 Assumed
Recovery rate α 0.045 day−1 [15]
Growth rate of Vibrios r 1 × 10−18 day−1 Assumed
Carrying capacity bacterial population ρ 1 × 108 cell/mL Assumed
Allee threshold bacterial population θ 1 × 106 cell/mL Assumed

3. Results

The main results presented in this section are concerned with (i) the sensitivity analysis
of proposed model (2), (ii) the proof of the basic properties, (iii) the existence and stability
of the model equilibria, and (iv) a few simulations of the model using parameters of Table 1.
Three of these parameters are found in the literature and the others were assumed (chosen
arbitrarily, yet within admissible boundaries). This is highlighted in column “source” of
Table 1.

3.1. Sensitivity Analysis

The aim of the sensitivity analysis was to determine the robustness of the model to
changes in parameter values, which can help identify the most influential parameters
in the disease dynamics [16]. A Latin Hypercube Sampling (LHS) scheme [17,18] was
utilized to sample 1000 values for each input parameter. The sampling was conducted
using a uniform distribution over a range of biologically realistic values. It should be noted
that the parameters of Table 1 were used as central values of the uniform distribution
sampling performed.

Using model (2) with a time period of 7000 days, 1000 model simulations were per-
formed by randomly pairing sampled values for all LHS parameters. Then, four outcome
measures were calculated for each run: the maximum and total size (cumulative effective)
of state variables S, I, R, and B over the model’s time span, Partial Rank Correlation
Coefficients (PRCC), and corresponding p-values.

The decision rule for the sensitivity analysis is the following: an output is assumed
sensitive to an input if the corresponding PRCC is less than −0.50 or greater than +0.50,
and the corresponding p-value is less than 0.05.

The results are presented in Table 2 where each row displays the value of a parameter
against its corresponding variable: positive PRCC value indicates a parameter whose
increase causes an increase in the corresponding output variable, while on the contrary,
negative PRCC value indicates a parameter whose increase leads to a decrease in the
corresponding output variable.

According to these results:

• the parameters Λ, β, δ, θ, and ρ should significantly affect at least one state variable of
model (2);

• Λ is not related to transmission of disease;
• influence of β suggests to sensitize population to avoid getting in touch with bacteria;
• influences of θ and ρ suggest to intensify sanitation campaigns by destroying reservoirs

of V. cholera.
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To sustain these results, the mathematical validity of the proposed model is analyzed
in the next section.

Table 2. Table of PRCC parameters with the variables of the model.

PRCCs and Significance

Parameters Range S I R B

Λ [1–300] 0.8970 ** 0.0968 * 0.0171 −0.0332
β [10−6–0.999] −0.9580 * −0.2359 ** 0.1221 ** −0.1702 **
δ [1–1000] −0.8934 ** −0.0545 0.0885 −0.1173 *
µ [10−6–0.999] −0.0718 −0.0255 0.0270 −0.0818
d [10−6–0.999] 0.0290 0.0432 −0.0676 −0.0462
r [10−6–0.999] −0.0282 −0.0180 0.0395 0.0291
γ [10−6–0.999] −0.0388 0.0147 0.0577 −0.0106
α [10−6–0.999] 0.1010 0.0680 0.0530 0.0948
K [104–1017] 0.0050 0.0335 0.0092 −0.0213
ρ [105–1020] −0.0723 −0.1149 * 0.0561 0.6220 **
θ [103–1015] 0.0210 0.0628 0.0473 0.5029 *

*: p-value < 0.01, **: p-value < 0.001.

3.2. Basic Properties

In this section, we examine the basic properties of the solutions of the proposed model,
namely their positivity, boundedness, and positive invariance of sets used in studying the
dynamical system. These properties are crucial in demonstrating the mathematical and
epidemiological coherence of model (2), as well as in establishing the stability of the results.

3.2.1. Positivity and Boundedness of Solutions

Obviously, model (2) which is a C∞ differential system, admits a unique maximal
solution for any associated Cauchy problem.

Theorem 1. The region Ω defined by:

Ω = ΩH ×ΩB, (4)

where

ΩH =

{
(S, I, R) ∈3

+, 0 ≤ N ≤ Λ
µ

}
and ΩB =

{
B ∈+, 0 ≤ B ≤ rρ2µ(ρ− θ) + δΛ

rρµ(ρ− θ)

}
,

is positively invariant and attracting for model (2).

Proof. The proof is provided in two steps.

Step 1. We show that for any initial condition (t0 = 0, X0 = (S(0), I(0), R(0), B(0)) ∈ (R∗+)4),
the maximal solution ([0, T[, X = (S(t), I(t), R(t), B(t))) of the Cauchy problem as-
sociated with system (2) is non-negative.

Let T̃ = sup
{

t̃ ∈ [0; T[, (S(t), I(t), R(t), B(t)) ∈ (R∗+)4} and let us show that T̃ = T.

Suppose that T̃ < T. At least one of the following conditions is satisfied: S(T̃) = 0,
I(T̃) = 0, R(T̃) = 0, or B(T̃) = 0.

Suppose S(T̃) = 0. Then from the first equation of model (2),

d
dt

(
Se
∫ t

0 (λ(r)+µ)dr
)
= (Λ + γR)e

∫ t
0 (λ(r)+µ)dr, ∀t ∈ [0; T̃[. (5)

This implies that
d
dt

(
Se
∫ t

0 (λ(r)+µ)dr
)
> 0, ∀t ∈ [0; T̃[. (6)
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Integrating Equation (6) from 0 to T̃ yields:

S(T̃) ≥ S(0)e−
∫ T̃

0 (λ(r)+µ)dr > 0. (7)

Similarly, one can show that I(T̃) > 0, R(T̃) > 0, and B(T̃) > 0, which is contradic-
tory. Therefore, T̃ = T and consequently, the maximal solution (S(t), I(t), R(t), B(t))
of the Cauchy problem associated to model (2) is non-negative.

Step 2. We then prove that the total population of humans and bacteria satisfies the bound-
edness property. We first split model (2) into two parts, the human population (i.e.,
S(t), I(t) and R(t)) and the pathogen population (i.e., B(t)).

Let N = S + I + R. Using the equation of model (2), one can deduce that

Ṅ = Λ− µN − dI ≤ Λ− µN.

Thus,

0 ≤ N(t) ≤ Λ
µ
+

(
N(0)− Λ

µ

)
e−µt,

where N(0) represents the initial value of N(t).

The lower limit comes naturally from the fact that the model variables are non-
negative (t ∈ [0, T[) since they monitor human populations.

Thus, 0 ≤ N(t) ≤ Λ
µ

whenever 0 ≤ N(0) ≤ Λ
µ

.

Suppose 0 ≤ N(0) ≤ Λ
µ

. From the last equation of model (2) and using the fact that

I(t) ≤ Λ/µ for all t ≥ 0, one has:

Ḃ ≤ f (B) +
δΛ
µ

, (8)

where f (B) = rB(B− θ)(ρ− B).

Note that lim
B→+∞

f (B) = −∞ and f (B) is a decreasing in [ρ;+∞[. The equation of the

tangent of f (B) at B = ρ is given by y(B) = −rρ(ρ− θ)B + rρ2(ρ− θ).

It follows that, for B > ρ, we have:

Ḃ ≤ rρ2(ρ− θ) +
δΛ
µ
− rρ(ρ− θ)B.

Integrating the above differential inequality yields:

0 ≤ B(t) ≤ rρ2µ(ρ− θ) + δΛ
rρµ(ρ− θ)

+

(
B(0)− rρ2µ(ρ− θ) + δΛ

rρµ(ρ− θ)

)
e−rρ(ρ−θ)t,

where B(0) is the initial condition of B(t).

Thus, as t→ +∞,

B(t) ≤ rρ2µ(ρ− θ) + δΛ
rρµ(ρ− θ)

.

Since each maximal solution of the Cauchy problem associated to model (2) is positive
and bounded, each solution is global.

Combining Step 1 and Step 2, Theorem 1 can be derived from the classical theory of
dynamical systems. This completes the proof.

In conclusion, the proposed model (2) is mathematically and epidemiologically well-
posed, thereby making it adequate to study the dynamics of the flow generated in Ω.
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3.2.2. Positively Invariant Sets

We present here some results that will be useful for studying the dynamical system
modeled in (2), based on two Lemmas which are described and subsequently proved below.

To undertake a comprehensive analysis of the dynamical system defined in (2), we
introduce essential sets that are positively invariant, and offer valuable insights into the
behavior of the system.

Let ε ∈]0; θ[ and Bm =
rρ2µ(ρ− θ) + δΛ

rρµ(ρ− θ)
.

One denotes:

Ω0 = {(S, I, R, B) ∈ Ω : 0 < B < θ − ε} , Ωθ−ε = {(S, I, R, B) ∈ Ω : θ − ε < B < Bm},

Ωθ = {(S, I, R, B) ∈ Ω : θ ≤ B(t) ≤ Bm} and Ωρ = {(S, I, R, B) ∈ Ω : ρ ≤ B(t) ≤ Bm}.

Lemma 1. The sets Ωθ and Ωρ are positively invariant for model (2).

Proof. To prove Lemma 1, we simply consider the fact that Ḃ ≥ δI ≥ 0 for all value of
B ∈ [θ; ρ]. This means that every trajectory of B starting in [θ; ρ] will grow and cross the
value ρ, and then remain in [ρ; Bm]. It would be maintained on the value ρ if I = 0.

Lemma 2. The set Ωρ is a compact attractor for model (2).

Proof. The proof of Lemma 2 is essentially based on the fact that Ωρ is an invariant set and
also on the fact that for every solution X(t) of model (2) associated to the initial condition
X(0) = (S(0), I(0), R(0), B(0)) ∈ Ωθ , we have lim

t−→+∞
dist(X(t), Ωρ) = 0.

Thus, Ωρ is an attractor and his attraction domain contains Ωθ .

3.3. Existence and Stability of Equilibria

The existence and stability of equilibria in epidemiological models are important
properties that allow us to make robust predictions about the spread of infectious diseases
in a population. By understanding these properties, we can develop effective strategies for
controlling and preventing the spread of diseases.

3.3.1. Existence of Disease-Free Equilibria

The proposed model has three disease-free equilibria obtained by setting the right side
of the equations in (2) to zero with I = 0.

Q0 = (S0, 0, 0, 0), Qθ = (Sθ , 0, 0, θ), and Qρ =
(
Sρ, 0, 0, ρ

)
, (9)

where

S0 =
Λ
µ

, Sθ =
Λ(θ + K)

βθ + µ(θ + K)
, and Sρ =

Λ(ρ + K)
βρ + µ(ρ + K)

.

3.3.2. Stability of Equilibria and Threshold Quantities

The local stability of the DFEs of model (2) is summarized in the following Proposition.

Proposition 1.

Let R0
0 =

βΛδ

Krρθµ(µ + d + α)
, (10)

and

Rρ
0 =

β

[µ(ρ + K) + βρ](µ + d + α)

[
αργ

µ + γ
+

KΛδ

(K + ρ)rρ(ρ− θ)

]
. (11)

For the dynamical system (2),

(i) IfR0
0 < 1, the DFE Q0 is locally stable.
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(ii) IfRρ
0 < 1, the DFE Qρ is locally stable.

(iii) The DFE Qθ is always unstable.

To prove Proposition 1, we will use Lemma 3 proposed by Kamgang J.C. and Sallet [19].

Lemma 3. Let M be a square Metzler matrix written in block form M =

[
A B
C D

]
whereA and

D are square matrices. Then, matrix M is Metzler stable if and only if matricesA and D−CA−1B
(or D and A−BD−1C) are Metzler stable.

Proof. Let Qx = (Sx, 0, 0, Bx) any DFE. The Jacobian of model (2) at the point Qx is denoted
by the following matrix J(Qx):

J(Qx) =


−µ− βBx

Bx+K 0 γ − βSxK
(K+Bx)2

βBx
Bx+K −ω 0 βSxK

(K+Bx)2

0 α −(µ + γ) 0
0 δ 0 −Lx

,

where Lx = rθρ− 2r(θ + ρ)Bx + 3rB2
x and ω = µ + d + α .

Matrix J(Qx) can be expressed in the form of the matrix M in Lemma 3, with:

A =

[
−µ− βBx

Bx+K 0
βBx

Bx+K −ω

]
, B =

γ − βSxK
(K+Bx)2

0 βSxK
(K+Bx)2

, C =
[

0 α
0 δ

]
,

and D =

[
−(µ + γ) 0

0 −Lx

]
.

Obviously, matrix A is a Metzler stable matrix. A simple calculation gives:

(D − CA−1B)|Qx=Q0 =

−(µ + γ)
βS0α

Kω

0 −rθρ +
βS0δ

Kω

,

(D − CA−1B)|Qx=Qρ
=

−(µ + γ) +
αγβρ

ω[βρ + µ(ρ + K)]
βSρKαµ

(K + ρ)ω[βρ + µ(ρ + K)]
δγβρ

ω[βρ + µ(ρ + K)]
−r(ρ− θ)ρ +

βSρKδµ

(K + ρ)ω[βρ + µ(ρ + K)]

,

and

(D − CA−1B)|Qx=Qθ
=

−(µ + γ) +
αγβθ

ω[βθ + µ(θ + K)]
βSθKαµ

(K + θ)ω[βθ + µ(θ + K)]
δγβθ

ω[βθ + µ(θ + K)]
r(ρ− θ)θ +

βSθKδµ

(K + θ)ω[βθ + µ(θ + K)]

.

Thus, matrix (D − CA−1B)|Qx=Q0 is stable if and only if:
tr((D − CA−1B)|Qx=Q0) < 0 ⇐⇒ βS0δ

Kω[rθρ + µ + γ]
< 1

Det((D − CA−1B)|Qx=Q0) > 0 ⇐⇒ βS0δ

Kωrθρ
< 1.

(12)

so that (D − CA−1B)|Qx=Q0 is a Metzler stable matrix when:

R0
0 =

βS0δ

Krθρ(µ + d + α)
< 1. (13)
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Similarly, we can easily prove that matrix (D − CA−1B)|Qx=Qρ
is a Metzler stable

matrix if:

Rρ
0 =

β

[µ(ρ + K) + βρ](µ + d + α)

[
αργ

µ + γ
+

KΛδ

(K + ρ)rρ(ρ− θ)

]
< 1. (14)

For the matrix (D − CA−1B)|Qx=Qθ
, the condition det((D − CA−1B)|Qx=Qθ

) > 0
gives:

(µ + γ)[βθ + µ(θ + K)]
αγβθ

+
SθKδ(µ + γ)µ(θ + K)

rρ(ρ− θ)αγθ
< 1. (15)

Also, the condition tr((D − CA−1B)|Qx=Qθ
) < 0 gives:

αγβθ

(µ + γ)[βθ + µ(θ + K)]
+

rθ(ρ− θ)

µ + γ
+

βSθKδµ

(K + θ)ω[βθ + µ(θ + K)]
< 1. (16)

This contradicts the condition det((D − CA−1B)|Qx=Qθ
) > 0.

This concludes the proof.

We are now interested in global and asymptotic stability of the disease- and bacteria-
free equilibrium point Q0.

Following Kamgang and Sallet [19], model (2) can be written in the following form:{
ẋs = A1(x)(xs − x0

s ) + A12(x)xi,
ẋi = A2xi,

(17)

where xs = (S, R)T represents susceptible and recovered individuals, xi = (I, B)T repre-
sents the infectious individuals and the population of bacteria. x0

s = (S0, 0) is the non-zero
component of the DFE, x = (xs, xi)

T ,

A1(x) =
[
−(µ + λ) γ

0 −(γ + µ)

]
, A12(x) =

[
0 − βS0

B+K
α 0

]
, and A2(x) =

[
−ω

βS
B+K

δ r(B− θ)(ρ− B)

]
.

The conditions described below, H1, . . . , H5, should be satisfied to guarantee the global
asymptotic stability (GAS) of Q0.

Hypothesis 1 (H1). Model (17) is defined on a positively invariant set D of the non-negative
orthant, and is dissipative on D.

Hypothesis 2 (H2). The sub-system ẋs = A1(xs, 0)(xs − x0
s ) is globally asymptotically stable at

the equilibrium x0
s on the canonical projection of D on R2

+.

Hypothesis 3 (H3). Matrix A2(x) is Metzler (a Metzler matrix is a matrix with non-negative
off-diagonal entries) and is irreducible for any given x ∈ D.

Hypothesis 4 (H4). There exists an upper-bound matrix A2 for M = {A2(x)|x ∈ D} with
the property that either A2 /∈ M or, if A2 ∈ M, then for any x ∈ D such that A2 = A2(x) ,
x ∈ R2

+ × {0}.

Hypothesis 5 (H5). ρ(A2) < 0 is satisfied, where ρ(A2) < 0 denotes the largest real part of the
eigenvalues of A2.

If conditions H1, . . . , H5 are satisfied, then Q0 is globally asymptotically stable in D.
The result of the Kamgang–Sallet approach [19] uses the algebraic structure of model (17),

namely the fact that A1(x) and A2(x) are Metzler matrices. Since in the said approach the
matrix A2(x) is required to be irreducible, we further restrict the domain of the system to:

D = {(xs, xi) ∈ Ω, xs 6= 0}.
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The set D is positively invariant because only the initial point of any trajectory can
have xs = 0. Therefore, we restrict the domain of model (17) to D, where A2(x) irreducible.

Therefore,
A2(x) is Metzler and irreducible for all x ∈ D.

The sub-system ẋs = A1(xs, 0)(xs − x0
s ) is equivalent to:{

Ṡ = Λ + γR− µS,
Ṙ = −(δ + µ)R.

(18)

Resolving the above equations and taking the limit of solutions when t goes to infin-
ity yields:

lim
t−→+∞

S(t) =
Λ
µ

and lim
t−→+∞

R(t) = 0.

Therefore, x0
s = (S0, 0) is a globally asymptotically stable equilibrium of the reduced

system (18) on the sub-domain D. Then, the hypothesis H2 is satisfied.
Let ε ∈]0; θ[, since max

B∈[0;θ−ε]
{r(B− θ)(ρ− B)} = −rε(ρ− θ)− rε2 we have the follow-

ing upper-bound matrix of A2(x) in Ω0 ( Ω:

A2 =

[
−ω β S0

K
δ −rε(ρ− θ)− rε2

]
.

Using Kamgang and Sallet’s result [20], the sub-matrix A2 is a Metzler stable matrix if:

R0
0 ≤ ξ, (19)

where

ξ = 1− θρ− ε(ρ− θ)

θρ
< 1.

We can now apply Theorem 4.3 in Kamgang and Sallet [20] and conclude that under
the condition (19) the DFE (x0

s ; 0) of model (2) is globally asymptotically stable in Ω0. We
have established the following result for the global stability of the DFE Q0.

Theorem 2. Let ε ∈]0; θ[, if R0
0 < ξ < 1 then the DFE point Q0 of model (2) is globally

asymptotically stable in the domain Ω0 and unstable if R0
0 > 1. However, when ξ < R0

0 < 1
the backward bifurcation phenomenon may occur in Ω0, i.e., the DFE Q0, may coexist with two
endemic equilibria, one asymptotically stable and one unstable.

Figure 2 is an illustration of Theorem 2, showing the stability of the DFE of model (2)
when initial conditions are taken in the basin of attraction of Q0 andR0

0 < ξ < 1. So, when
Λ = 10, β = 0.0001, ε = 50, 000 (so that θ − ε = 9.5× 105) and the remaining parameters
are consistent with those listed in Table 1, we have R0

0 = 0.0103 and ξ = 0.0495. Under
these conditions, when various initial conditions are chosen in attraction domain of Q0, it
is seen in Figure 2 that the disease disappears.

The backward bifurcation phenomenon is illustrated by Figure 3 where time series of
model are presented (2) when Λ = 50, β = 0.0015, θ = 106 (so that θ − ε = 9.5× 105) and
ε = 50, 000 (soR0

0 = 0.7702 and ξ = 0.0495 ). It clearly appears that ξ ≤ R0
0 < 1.

The epidemiological significance of the phenomenon of backward bifurcation is
that the classical requirement of ξ ≤ R0

0 < 1 is, although necessary, no longer suffi-
cient for disease eradication when initial conditions are taken in attraction domain of
Q0. In such a scenario, disease elimination would depend of various initial sizes of
the population (state variables) chosen Ω0. That is, the presence of backward bifurca-
tion in the cholera transmission (2) suggests that the feasibility of controlling a cholera
epidemic when ξ ≤ R0

0 < 1 is always dependent on the initial sizes of the popula-
tion even if they are chosen in Ω0. To illustrate this situation, model (2) was simu-
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lated for various initial conditions (S(0), I(0), R(0), B(0)) taken firstly in the domain
D1 =]0; 50, 000]×]0; 10]×]0; 50]×

{
2× 105, 3× 105, 4× 105, 5× 105} and secondly for vari-

ous initial conditions (S(0), I(0), R(0), B(0)) taken in the domain D2 =]0; 50, 000]×]0; 10]×
]0; 50] ×

{
7.5× 105, 8× 105, 9× 105, 9.5× 105}. As is presented in Figure 3, the cholera

epidemic disappears in the first case while in the second case disease and bacteria persist
in the environment.
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Figure 2. Simulation of model (2) when Λ = 10, β = 0.0001 and ε = 50, 000 (so that θ− ε = 9.5× 105,
R0

0 = 0.0103, and ξ = 0.0495) using various initial conditions chosen in attraction domain of Q0. The
remaining parameters are consistent with those listed in Table 1. Each subfigure corresponds to each
state of model (2). (a) Susceptible. (b) Infected. (c) Recovered. (d) Bacteria.

In order to derive an expression for the region of stability of the boundary equilibrium
Qρ we measure the capacity of infectious to invade and persist in a human population at
the in the neighborhood of Qρ. Applying the methods in van den Driessche and Watmough
at equilibrium Qρ [21], we find the basic reproduction number of infectious in a population
model (2) is (see Appendix A for details):

R0(Qρ) =
βΛKδ

[βρ + µ(ρ + K)](K + ρ)ωrρ(ρ− θ)
. (20)

This formalism permits the derivation of a threshold condition for endemicity of
cholera epidemic in population where model (2) is at equilibrium Qρ.
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Figure 3. Simulation of model (2) when Λ = 50, β = 0.0015, θ = 106 and ε = 50, 000 (so that θ − ε =

9.5 × 105, ξ = 0.0495, and R0
0 = 0.7702) using various initial conditions (S(0), I(0), R(0), B(0))

chosen in the domains D1 =]0; 50, 000]×]0; 10]×]0; 50] ×
{

2× 105, 3× 105, 4× 105, 5× 105} and
D2 =]0; 50, 000]×]0; 10]×]0; 50]×

{
7.5× 105, 8× 105, 9× 105, 9.5× 105}. The remaining parameters

are consistent with those listed in Table 1. Each subfigure corresponds to each state of model (2).
(a) Susceptible. (b) Infected. (c) Recovered. (d) Bacteria.

Proposition 2 expresses this result in terms of stability for equilibrium point Qρ.

Proposition 2. The equilibrium point Qρ of model (2) is stable if R0(Qρ) < 1 and unstable if
R0(Qρ) > 1.

The following Proposition gives relationship between stability of Q0 and of Qρ.

Proposition 3. Let 0 < ε < θ, ifR0
0 < ξ thenR0(Qρ) < 1.

Proof. Let 0 < ε < θ,

R0
0 < ξ ⇐⇒ R0

0 < ε

(
ρ− θ

ρθ

)
,

⇐⇒ R0(Qρ) <

(
K

K + ρ

)2 S0

Sρ

ε

ρ
,

=⇒ R0(Qρ) < 1.
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The restriction of model (2) on state variables I and B gives the following system:{
İ = λS− (µ + d + α)I,
Ḃ = rB(B− θ)(ρ− B) + δI,

(21)

where state variable S is fixed. One notes X(I,B)(t) solution of reduced model (21) associated
to the initial condition X(I,B)(0) ∈ Ωθ |(I,B) (the restriction of set Ωθ on the plane (I, B)).
Similarly to the proof of Lemma 2 it is easy to state that the set Ωρ|(I,B) is a attractor set for
model (21). According to the Poincare–Bendixson Theorem, X(I,B)(t) will tend to either a
fixed point or a periodic orbit in Ωρ|(I,B). Now we will use the Bendixson–Dulac criteria to
state that Ωρ|(I,B) does not contains periodic orbit:

dİ
dI

+
dḂ
dB

= −(µ + d + α)− 3rB2 + 2r(θ + ρ)B− rθρ. (22)

Since dİ
dI +

dḂ
dB < 0 for all B ≥ ρ. According to the Bendixson–Dulac criteria, reduced

model (21) does not admit a periodic orbit entirely contained in Ωρ|(I,B). The projection
on plane (I, B) of every periodic attractor (different from Qρ) of model (2) contained in Ωρ

corresponds to a limit cycle in Ωρ|(I,B). Since for every fixed value of S fixed, model (21)
does not contain a cycle limit in Ωρ|(I,B), there are no periodic attractors in Ωρ for model (2).

Let 0 < ε < θ. If we suppose R0
0 < ξ < 1 according to Proposition 3, this implies

that R0(Qρ) < 1. Thus equilibrium point Qρ is a unique asymptotically stable point in
Ωρ. Consequently every solution of model (2) associated to an initial condition in Ωθ will
converge to Qρ.

Theorem 3. Let ε ∈]0; θ[. If R0
0 < ξ < 1, equilibrium point Qρ of model (2) is globally

asymptotically stable in Ωθ .

Remark 1. Considering the hypothesis of Theorem 3, it will be numerically observed that Qρ is
GAS in Ωθ−ε.

By Figure 4 global stability of Qρ in Ωθ−ε is also illustrated. Considering d = 0.7,
γ = 0.5, α = 0.45, and the remaining parameters are consistent with those listed in Table 1,
we obtain R0

0 = 0.0058, ξ = 0.0505, and R0(Qρ) = 0.0033. Choosing various initial
conditions in D3 =]0; 50, 000]×]0; 10]×]0; 50]×

[
0.9× 106, 1.2× 108]. It is seen in Figure 4

that solutions of model (2) converge to Qρ.

3.3.3. Endemic Equilibrium

Let Q∗ = (S∗, I∗, R∗, B∗) be a homogeneous endemic equilibrium of model (2) with
S∗, I∗, R∗, and B∗ satisfying the following equations:

Λ− (λ∗ + µ)S∗ + γR∗ = 0,
λ∗S∗ −ωI∗ = 0,
αI∗ − (µ + γ)R∗ = 0,
rB∗(B∗ − θ)(ρ− B∗) + δI∗ = 0,

(23)

where λ∗ =
βB∗

K + B∗
. Expressing endemic states S∗ and R∗ as a function of I∗ and λ∗ gives:

S∗ =
ω

λ∗
I∗ and R∗ =

α

µ + γ
I∗. (24)

Using Equation (24) and the first equation of model (2), one has

I∗ =
λ∗S∗

ω
=

λ∗

ω

[
Λ
µ
− ω

µ
I∗ +

γα

µ(µ + γ)
I∗
]

. (25)
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Figure 4. Simulation of model (2) when d = 0.7, γ = 0.5, α = 0.45 (so that R0
0 = 0.0058, ξ = 0.0505

and R0(Qρ) = 0.0033) and initial conditions are chosen in D3 =]0; 50, 000]×]0; 10]×]0; 50] ×[
0.9× 106, 1.2× 108]. The remaining parameters are consistent with those listed in Table 1. Each sub-

figure corresponds to each state of model (2). (a) Susceptible. (b) Infected. (c) Recovered. (d) Bacteria.
(e) Zoom of bacteria graph.
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Using Equation (25), one can deduce that

I∗ =
Λ(µ + γ)λ∗

[µω + γ(µ + d)]λ∗ + ωµ(µ + γ)
. (26)

Using expression λ∗ =
βB∗

K + B∗
in Equation (26) we obtain:

I∗ =
Λ(µ + γ)βB∗

[(µω + γ(µ + d))β + ωµ(µ + γ)]B∗ + ωµ(µ + γ)K
. (27)

Using Equation (27) in the last equation of (23) we obtain the following equation in B∗:

a3(B∗)3 + a2(B∗)2 + a1B∗ + a0 = 0, (28)

where

a3 = −r[βµ(µ + d + α) + βγ(µ + d) + (µ + d + α)µ(µ + γ)],
a2 = r(θ + ρ)[βµ(µ + d + α) + βγ(µ + d) + (µ + d + α)µ(µ + γ)]

−rK(µ + d + α)µ(µ + γ),
a1 = −rθρ[βµ(µ + d + α) + βγ(µ + d) + (µ + d + α)µ(µ + γ)]

+rK(µ + d + α)µ(µ + γ)(θ + ρ),
a0 = rθρ(µ + d + α)Kµ(µ + γ)(R0

0 − 1).

Thus, positive endemic equilibria Q∗ are obtained by solving the cubic Equation (28) in
B∗ and substituting the result (positive values of B∗) into the expression of λ∗ and deducing
the values of other state variables using relation (24). It is worth noting that the coefficient
a3 is always negative. The coefficient a0 is positive (negative) if R0

0 is greater than (less
than) unity, respectively. As is demonstrated in Appendix E, System (2) may have zero, one,
two, or three interior equilibria, depending on parameter values. The various possibilities
for the roots of Equation (28) are summarized in the following Lemma.

Lemma 4. Model (2) could have:

1. either one or three interior equilibria ifR0
0 > 1,

2. either zero or two endemic equilibria ifR0
0 < 1.

Lemma 5. For every positive solution B∗0 of polynomial equation (28), we have B∗0 ∈]0; θ[∪]ρ; Bm[.

Proof. The proof of Lemma 5 is straightforward and evident. Let B∗0 be a solution of
polynomial Equation (28). Suppose that B∗0 ∈]θ; ρ[. Consider Q∗0 = (S∗0 , I∗0 , R∗0 , B∗0 ), the
endemic equilibrium state deduced from Equations (26) and (24). Using the last equation
of (23) we have:

I∗0 = − r
δ

B∗0 (B∗0 − θ)(ρ− B∗0 ) < 0 which is impossible.

Now, using the center manifold theory, we are going to show that if ξ < R0
0 < 1

and for a certain set of model parameters, model (2) has exactly two endemic equilibria,
with one stable and another one unstable. To achieve this, we applied the Theorem of
Castillo-Chavez and Song [22]. We have the following result.

Theorem 4. Model (2) undergoes a backward bifurcation atR0
0 = 1 if the coefficient a defined as

in Equation (A6) is positive, otherwise (a < 0) there exists an endemic equilibrium Q∗ which is
locally asymptotically stable forR0

0 > 1 but close to 1.

The proof of Theorem 4 is given in Appendix C.
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Figure 5 shows time series of model (2) when Λ = 30, β = 0.01 (so thatR0
0 = 3.0809 > 1)

and the remaining parameters are consistent with those listed in Table 1. Various initial con-
dition have been taken in D3 =]0; 7.5× 106]×]0; 1.5× 103]×]0; 7.5× 103]×

[
105, 1.5× 108].

It clearly appears that the trajectories of model converge to an unique endemic equilibrium
belonging to Ωρ. This means that cholera persists within the community and the disease is
uncontrollable.
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Figure 5. Simulation of model (2) when Λ = 30 , β = 0.01 (so that R0
0 = 3.0809 > 1) and various

initial conditions have been taken inD3 =]0; 7.5× 106]×]0; 1.5× 103]×]0; 7.5× 103]×
[
0, 1.5× 108]. The

remaining parameters are consistent with those listed in Table 1. Each subfigure corresponds to each
state of model (2). (a) Susceptible. (b) Infected. (c) Recovered. (d) Bacteria. (e) Zoom of bacteria graph.
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To derive the stability region of any endemic equilibrium when R0
0 ≥ 1, we ap-

plied the methods in van den Driessche and Watmough [21] once again. We found
the basic reproduction number of infectious in a population where endemic equilibrium
Q∗ = (S∗, I∗, R∗, B∗) is fixed (see Appendix D for details):

R0(Q∗) =
βKδS∗

(K + B∗)2ω(rθρ− 2r(θ + ρ)B∗ + 3r(B∗)2)
. (29)

According to the van den Driessche and Watmough [21] methods, this endemic
equilibrium is locally asymptotically stable whenR0(Q∗) < 1.

Now,

R0(Q∗) < 1⇐⇒ R0
0

S∗

S0

(
K

K + B∗

)2
rθρ < rθρ− 2r(θ + ρ)B∗ + 3r(B∗)2. (30)

Thus,

R0(Q∗) < 1⇐= R0
0rθρ < rθρ− 2r(θ + ρ)B∗ + 3r(B∗)2

⇐⇒ 0 < 3r(B∗)2 − 2r(θ + ρ)B∗ − rθρ(R0
0 − 1)

⇐⇒ B∗ ∈]0; B∗1 [∪]B∗2 ; Bm[,

where

B∗1 =
1
3

[
θ + ρ−

√
(ρ− θ)2 + θρ + 3θρR0

0

]
and B∗2 =

1
3

[
θ + ρ +

√
(ρ− θ)2 + θρ + 3θρR0

0

]
Considering B∗1 > 0, we getR0

0 < 1. Since we have assumed thatR0
0 ≥ 1 this imply

that B∗1 ≤ 0 and consequently B∗ ∈]B∗2 ; Bm[.
One has

B∗2 =
1
3

[
θ + ρ +

√
(ρ− θ)2 + θρ + 3θρR0

0

]
>

1
3

[
2θ +

√
θ2 + ρ(ρ− θ) + 3θρR0

0

]
> θ.

Considering Lemma 5, we get B∗ ∈]ρ; Bm[. We have the following result:

Proposition 4. IfR0
0 ≥ 1 , then any stable endemic equilibrium Q∗ = (S∗, I∗, R∗, B∗) of model

(2) verifies B∗ ∈ ]ρ; Bm[.

Now, what would happen ifR0(Qρ) ≥ 1? The contrapositive of Proposition 3 gives:

If R0(Qρ) ≥ 1, then ∀ε ∈ ]0; θ[, R0
0 ≥ ξ.

This implies the existence of one stable endemic equilibrium for model (2) in Ω.

Theorem 5. There exists an endemic equilibrium Q∗ which is locally asymptotically stable when
R0(Qρ) > 1 but close to 1.

The proof of Theorem 5 is given in Appendix C.

4. Discussion

This section presents two main simulations: numerical simulations of the model, and
numerical simulations of the threshold quantities.
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4.1. Numerical Simulations of the Proposed Model with Variation of Threshold Quantities

It is important to have a global view of dynamic on model (2) when various initial
conditions are taken in R4

+ and when threshold quantity R0
0 and R0(Qρ) are varying

around critical values (unity and value of ξ). Therefore, four cases will be examined
through graphs of bacteria and infected population.

Case 1: R0(Qρ) < 1 < R0
0

To get R0(Qρ) < 1 < R0
0 we can fix Λ = 50, β = 0.02 and r = 10−20 (so that

R0(Qρ) = 0.0526 and R0
0 = 1.7594× 103) and the remaining parameters are consistent

with those listed in Table 1. The numerical simulations obtained in Figure 6 show that all
the solutions of model (2) converge to an endemic equilibrium. It is therefore numerically
observed that the instability of Q0 also implies instability of Qρ.
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Figure 6. Simulation of model (2) when Λ = 50, β = 0.02 and r = 10−20 (so that R0(Qρ) = 0.0526
andR0

0 = 1.7594× 103) and various initial conditions in R4
+. The remaining parameters are consistent

with those listed in Table 1. Each subfigure corresponds to a specific state of model (2). (a) Infected,
(b) Bacteria.

Case 2: R0(Qρ) < R0
0 < ξ < 1

According to Theorems 2 and 3, case 2 should illustrate the convergence to Q0 or
Qρ of every solution of model (2) when initial conditions are taken in their attraction
domain respectively. Figure 7 is obtained by considering parameter values in Table 1 with
ε = 50, 000.

For these values we haveR0(Qρ) = 0.0023 ,R0
0 = 0.0045 and ξ = 0.0495. Extinction

of the infectious agent does not depend on the initial conditions. Extinction of population of
bacteria is obtained when initial values are chosen in D3 =]0; 50, 000]×]0; 10]×]0; 50]× [105,
9.9× 105]. Saturation of the bacterial population is obtained for initial conditions chosen in
D4 =]0; 50, 000]×]0; 10]×]0; 50]×

[
106, 2× 108].

Case 3: ξ < R0(Qρ) < R0
0 < 1

The phenomenon of backward bifurcation occurs. But the fact that an stable equi-
librium endemic exists in Ωρ implies consequent instability of Qρ even if R0(Qρ) < 1.
The simulations of Figure 8 are obtained when Λ = 30, β = 0.001 and ε = 1000 (so that
ξ = 0.0010,R0(Qρ) = 0.027, andR0

0 = 0.308).
Extinction of epidemic and population of bacteria are obtained for initial values chosen

in D5 =]0; 50, 000]×]0; 10]×]0; 50]×
[
0, 5× 105]. The endemicity situation is observed for

initial values chosen in D6 =]0; 50, 000]×]0; 10]×]0; 50]×
[
7× 105, 2× 108].

Case 4: ξ < R0
0 < 1 < R0(Qρ)

The following parameters are modified β = 0.1, µ = 1.04× 10−3, θ = 0.999× 108

and ε = 50, 000 (so that ξ = 5.005× 10−8,R0
0 = 0.0104 and R0(Qρ) = 4.5370). This is

illustrated in Figure 9 where we can see the previous situation.
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From these different cases, it is easy to project the dynamics of model (2) in other
situations.
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(Zoom of Bacteria’s graph around ρ = 108)

Figure 7. Simulation of model (2) when all parameters values are as in Table 1 (so that
R0(Qρ) = 0.0023 , R0

0 = 0.0045, ε = 50, 000 and ξ = 0.0495) and various initial conditions cho-
sen in D3 =]0; 50, 000]×]0; 10]×]0; 50] ×

[
105, 9.5× 105] and in D4 =]0; 50, 000]×]0; 10]×]0; 50] ×[

106, 2× 108]. Each subfigure corresponds to a specific state of model (2). (a) Infected, (b) Bacteria,
(c) Zoom on Bacteria population.

4.2. Numerical Simulations of Threshold Quantities with Variation of Allee Parameters θ and ρ
and Bifurcation

The theoretical findings presented in Section 3.3 corroborate the biological and epi-
demiological evidence that bacterial growth plays a critical role in cholera emergence [23].
Our model (2) captures this growth mathematically through a dynamic that incorporates
the Allee effect, allowing us to represent the distinct phases of bacterial growth fluctu-
ations resulting from environmental variations. These phases are characterized by the
parameters θ and ρ, which correspond to the Allee threshold and carrying capacity of
bacteria, respectively.

The significance of these parameters in determining bacterial growth in the envi-
ronment highlights the need for a comprehensive analysis of their impact on cholera
persistence and extinction through rigorous simulations.

A three-dimensional simulation depicting the relationship between the basic repro-
duction numberR0

0, and the Allee effect parameters (θ and ρ) is presented in Figure 10.
It is evident that the basic reproductive numberR0

0 approaches zero as θ exceeds 105.
This indicates that the likelihood of disease outbreaks is significantly reduced when the
Allee effect threshold is above 105 in this scenario.
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Figure 8. Simulation of model (2) when Λ = 30, β = 0.001 and ε = 1000 (so that ξ = 0.0010,
R0(Qρ) = 0.027 and R0

0 = 0.308). The remaining parameters are consistent with those listed in
Table 1. Various initial conditions chosen in D5 =]0; 50, 000]×]0; 10]×]0; 50] ×

[
105, 5× 105] and

D6 =]0; 50, 000]×]0; 10]×]0; 50]×
[
7× 105, 2× 108]. Each subfigure corresponds to a specific state of

model (2). (a) Infected, (b) Bacteria, (c) Zoom on Bacteria population.
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Figure 9. Simulation of model (2) when β = 0.1, µ = 1.04× 10−3, θ = 0.999× 108 and ε = 50, 000 (so
that ξ = 5.005× 10−8,R0

0 = 0.0104 andR0(Qρ) = 4.5370). The remaining parameters are consistent
with those listed in Table 1. Various initial conditions chosen in D7 =]0; 50, 000]×]0; 10]×]0; 50]×[
105, 2× 108]. Each subfigure corresponds to the two following states of model (2): (a) Infected.

(b) Bacteria.
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In Figure 11, we present variations ofR0(Qρ) for some values of θ and ρ:

• The curves obtained highlight the importance of emphasizing that the risk of disease
outbreaks cannot be neglected for any value of θ.

• Additionally, as θ approaches ρ, the probability of epidemic outbreaks significantly
increases.
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Figure 10. Simulation ofR0
0 for various values of θ ∈ [0; 106] and ρ ∈ [106; 108] when r = 10−13 and

the remaining parameters are consistent with those listed in Table 1.
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Figure 11. Simulation of R0(Qρ) for various values of θ ∈ [0; 106] and ρ ∈ [106; 107] when Λ = 70,
β = 0.001 and the remaining parameters are consistent with those listed in Table 1.

Figure 12 displays the range of values for θ and ρ in which the conditions R0
0 = ξ

(with a fixed ε) andR0(Qρ) = 1 are simultaneously satisfied: Figure 12a,b are obtained for
ε = 1 and ε = 50, 000, respectively. By considering various values of ε within the interval
(0, θ), it is evident that the conditionsR0

0 < ξ andR0(Qρ) < 1 are almost indistinguishable
when ε exceeds 50.

The numerical results presented in Figure 12 support the theoretical Proposition
outlined in Proposition 3, which asserts that the stability condition of Q0 also implies that
of Qρ.
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Figure 12. Region of plane (ρ, θ) in which Q0 and Qρ are stable when r = 10−13 and the remaining
parameters are consistent with those listed in Table 1. (a) For ε = 1, (b) For ε = 50, 000.

It was stated in Theorem 4 that the model undergoes a bifurcation atR0
0 = 1. When

we vary parameter valueR0
0 around unity through parameter β (the remaining parameters

are fixed) of model (2), we obtain for each value of β different solutions of polynomial
Equation (28) which permit us to deduce different persistent infection forces.

Figure 13 provides visual confirmation of the findings presented in Lemma 4 which
highlights how the number of equilibrium points of model (2) varies with changing pa-
rameters. The illustration serves as a visual aid for the discussion and provides empirical
evidence that supports the theoretical underpinnings of the Lemma.
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Figure 13. Bifurcation Diagram ofR0
0 when (a) δ = 23 (b) λ = 20 and µ = 0.05 (c) λ = 20, µ = 0.05,

and δ = 33. Each of the three curves in each subfigure is associated with a specific solution of
Equation (28).
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5. Conclusions

The principal aim of this study was to comprehensively analyze the impact of environ-
mental factors on the dynamics of bacterial populations via the Allee effect. Existing models
in the literature often suffer from unrealistic assumptions, such as linear or logistic growth
of bacteria, which fail to consider the complex dynamics of bacterial populations. In this
work, we proposed a novel S-I-R-S epidemic model for cholera transmission that takes into
account multiple crucial factors, including the Allee effect in bacterial reproduction, loss
of immunity in recovered individuals, and logistic dose-response of bacteria on infection
force to cholera. The model exhibits three DFEs, each corresponding to a distinct epidemi-
ological scenario. The Q0 equilibrium represents the ideal situation where there are no
infected individuals, and the bacterial concentration is extremely low. The Qθ equilibrium
represents the critical scenario under which the disease and bacteria may disappear if the
basic reproduction number is below a certain threshold and the initial conditions are within
the attraction domain of Q0. However, when the bacterial concentration exceeds the value
of θ, the solutions of the model converge to Qρ or an endemic equilibrium, depending on
the value of the basic reproduction number. The Qρ equilibrium corresponds to a situation
where bacteria are present in the environment without any infected individuals, which is a
common occurrence in endemic regions in Africa, such as Cameroon. Our findings can be
summarized as follows:

1. The model exhibits three disease-free equilibria related to three different real situations.
2. The dynamics of the proposed model are determined by the threshold quantityR0

0.
3. The phenomenon of bi-stability is observed, with backward and forward bifurcation.
4. This research demonstrates that the Allee effect provides a robust framework for

characterizing fluctuations in bacterial populations and the onset of cholera outbreaks

Sensitivity analysis of the model revealed that parameters related to human–bacteria
contact and bacterial dynamics significantly affect the global dynamics of the model. Hence,
during an epidemic situation, it is imperative to conduct awareness campaigns on hygiene
practices and initiate sanitation campaigns in high-risk areas. Finally, the numerical simula-
tions presented in this study support the theoretical findings and demonstrate the stability
of the DFEs and the existence and stability of the endemic equilibrium. Future improve-
ments and extensions of the model include expanding it to multiple patches and integrating
time-dependent parameters to account for periodic variations in environmental factors.
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Appendix A. Calculation of Persistence Threshold for Disease-Free Equilibrium Qρ

Considering the disease-free equilibrium Qρ = (Sρ, 0, 0, ρ) and using the notations
in van den Driessche and Watmough [21] for model (2) the matrices F and V for the new
infection terms and the remaining transfer terms are, respectively, given by:

F =

 0
βKΛ

(k + ρ)[βρ + µ(ρ + K)]
0 0

 and V =

[
ω 0
−δ −rρ(ρ− θ)

]
.

Following van den Driessche and Watmough [21], the basic reproduction number of
infections in population where Qρ is fixed is then the spectral radius of the next generation
matrix FV−1,

R0(Qρ) =
βKδΛ

[βρ + µ(ρ + K)](K + ρ)ωrρ(ρ− θ)
(A1)

Appendix B. Proof of Lemma 4

The number of positive roots of (28) determines the number of endemic equilibria of
model (2). In order to identify the number of endemic equilibria, we require the partial
derivative of function P : B∗ 7−→ a3(B∗)3 + a2(B∗)2 + a1B∗ + a0 with respect to B∗ which
is given by:

dP(B∗)
dB∗

= 3a3(B∗)3 + 2a2(B∗)2 + a1.

Thus, when ∆ = 4a2
2 − 12a1a3 > 0, equation

dP(B∗)
dB∗

= 0 has two real roots vi, i = 1, 2
given by:

v1 =
−2a2 −

√
4a2

2 − 12a1a3

6a3
and v2 =

−2a2 +
√

4a2
2 − 12a1a3

6a3
.

Therefore, we conclude that:

ifR0
0 > 1 model (2) has:

• one endemic equilibrium if (v1 < v2 < 0, P(v2) > 0) or if (v1 < 0 < v2,
P(v2) > 0) or if (v2 > v1 > 0, P(v1) < 0, P(v2) < 0) or if (v2 > v1 > 0,
P(v1) > 0, P(v2) > 0),

• three endemic equilibria if (v2 > v1 > 0, P(v1) < 0, P(v2) > 0).

ifR0
0 < 1 model (2) has:

• no endemic equilibrium if (0 < v1 < v2, P(v1) < 0, P(v2) < 0) or if (v1 < v2 < 0,
P(v1) < 0) or if (v1 < v2 < 0, P(v1) > 0, P(v2) > 0) or if (v1 < 0 < v2,
P(v1) < 0, P(v2) < 0),

• two endemic equilibria if (v1 < 0 < v2, P(v1) < 0, P(v2) > 0) or if (0 < v1 < v2,
P(v1) < 0, P(v2) > 0).

Appendix C. Proof of Theorem 4

We present the proof of Theorem 4 on the local stability of the endemic equilibrium
point of model (2) when R0

0 > 1. To do so, the following simplification and change of
variables are made first of all. Let x1 = S, x2 = I, x3 = R, x4 = B.
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Further, by using the vector notation x = (x1, x2, x3, x4), model (2) can be written in
the form ẋ = f (x) with f = ( f1, f2, f3, f4) as follows:

ẋ1 = Λ− (λ + µ)x1 + γx3,
ẋ2 = λx1 −ωx2,
ẋ3 = αx2 − (γ + µ)x3,
ẋ4 = rx4(x4 − θ)(ρ− x4) + δx2,

(A2)

where λ = β x4
x4+K .

Model (A2) has a DFE given by Q0 = (S0, 0, 0, 0) where S0 = Λ
µ . The Jacobian of

model (2) at the DFE Q0 is

J(Q0) =


−µ 0 γ −β∗ S0

K
0 −ω 0 β∗ S0

K
0 α −(µ + γ) 0
0 δ 0 −rρθ

.

The basic reproduction number of the transformed (linearized) model (A2) is the same
as that of the original model given by Equation (2). Therefore, choosing β as a bifurcation
parameter, solving for β fromR0

0 = 1, we obtain:

β∗ =
Krρθµω

Λδ
. (A3)

It follows that the Jacobian J(Q0) of model (A2) at the DFE Q0, with β = β∗, denoted
by Jβ∗ has a simple zero eigenvalue (with all other eigenvalues having negative real
parts). Hence, the Centre Manifold theory [24] can be used to analyze the dynamics of
model (A2). In particular, the Theorem of Castillo-Chavez and Song [22], reproduced
below for convenience, will be used to show that when R0

0 > 1 there exists an endemic
equilibrium of model (A2) which is locally asymptotically stable for R0

0 near 1 under
certain conditions.

Theorem A1. (Castillo-Chavez and Song [22]). Consider the following general system of ordinary
differential equations with a parameter Φ:

dz
dt

= f (x, Φ), f : Rn ×R −→ R and f ∈ C2(Rn ×R), (A4)

where 0 is an equilibrium point of the system (that is, f (0, Φ) ≡ 0 for all Φ) and assume

1. A = Dz f (0, 0) =
(

∂ fi
∂zj

(0, 0)
)

is the linearization matrix of model (A4) around the equilib-
rium 0 with Φ evaluated at 0. Zero is a simple eigenvalue of A and other eigenvalues of A
have negative real parts;

2. Matrix A has a right eigenvector u and a left eigenvector v (each corresponding to the zero
eigenvalue). Let fk be the kth component of f and

a =
n

∑
k,i,j=1

vkuiuj
∂2 fk

∂xi∂xj
(0, 0) and b =

n

∑
k,i=1

vkui
∂2 fk

∂xi∂Φ
(0, 0),

then, the local dynamics of the system around the equilibrium point 0 is totally determined by
the signs of a and b.

1. a > 0, b > 0. When Φ < 0 with |Φ| � 1, 0 is locally asymptotically stable and there exists
a positive unstable equilibrium; when 0 < Φ� 1, 0 is unstable and there exists a negative,
locally asymptotically stable equilibrium;

2. a < 0, b < 0. When Φ < 0 with |Φ| � 1, 0 is unstable; when 0 < Φ � 1, 0, is locally
asymptotically stable equilibrium, and there exists a positive unstable equilibrium;
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3. a > 0, b < 0. When Φ < 0 with |Φ| � 1, 0 is unstable and there exists a locally
asymptotically stable negative equilibrium; when 0 < Φ � 1, 0 is stable, and a positive
unstable equilibrium appears;

4. a < 0, b > 0. When Φ changes from negative to positive, 0 changes its stability from stable
to unstable. Correspondingly a negative unstable equilibrium becomes positive and locally
asymptotically stable.

In order to apply the above Theorem, the following computations are necessary
(it should be noted that we are using β∗ as the bifurcation parameter, in place of Φ in
Theorem A1).

Eigenvectors of Jβ∗ For the case when R0
0 = 1, it can be shown that the Jacobian of

model (A2) has a right eigenvector (corresponding to the zero eigenvalue), given by
U = (u1, u2, u3, u4)

T , where

u1 = −
[

γα

µ(µ + γ)
− ω

µ

]
u2, u2 = u2 > 0, u3 =

α

µ + γ
u2, and u4 =

δ

rρθ
u2. (A5)

Similarly, the components of the left eigenvectors of Jβ∗ (corresponding to the zero
eigenvalue), denoted by V = (v1, v2, v3, v4)

T , are given by:

v1 = 0, v2 = v2 > 0, v3 = 0, and v4 =
βS0

Krρθ
v2.

Computation of b For the sign of b, it can be shown that the associated non-vanishing
partial derivatives of f are:

∂2 f1

∂x4∂β∗
(0, 0) = −S0

K
and

∂2 f2

∂x4∂β∗
(0, 0) =

S0

K
.

It follows that:
b =

ω

β∗
v2u2 > 0.

Computation of a For system (A2), the associated non-zero partial derivatives of f (at the
DFE Q0) are given by:

∂2 f1

∂x1x4
(0, 0) = − β∗

K
,

∂2 f1

∂x2
4
(0, 0) =

2β∗S0

K
,

∂2 f2

∂x1∂x4
(0, 0) =

β∗

K
,

∂2 f2

∂x2
4
(0, 0) = −2β∗S0

K

and
∂2 f4

∂x2
4
(0, 0) = 2r(ρ + θ).

Then, it follows that:

a = v2

4

∑
i,j=1

uiuj
∂2 f2

∂xi∂xj
(0, 0) + v4

4

∑
i,j=1

uiuj
∂2 f4

∂xi∂xj
(0, 0),

= v2u2
2

[
αγω

(µ + γ)S0
+ 2
(

ωK
β∗S0

)2 ω

δ
r(ρ + θ)− ω

S0

(
1
µ
+

2K
β∗

)]
.

(A6)

Thus, depending on the values of the parameters of model (2), the value of a can
be positive or negative. So, if b > 0, if a > 0, model (2) undergoes the phenomenon of
backward bifurcation (see Theorem A1, item (1)). Also, if a < 0 (by Theorem A1, item (4)),
we have established the result about the local stability of the endemic equilibrium Q∗ of
model (2) forR0

0 > 1 but close to 1.
This concludes the proof of Theorem 4.
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Appendix D. Calculation of Persistence Threshold for Endemicity

Consider any endemic equilibrium Q∗ = (S∗, I∗, R∗, B∗).
Suppose cholera is transmissible in the population at point Q∗. Using the notations

in van den Driessche and Watmough [21] for model (2), the matrices F and V for the new
infection terms and the remaining transfer terms are, respectively, given by:

F =

 0
βKS∗

(k + B∗)2

0 0

 and V =

[
ω 0
−δ rθρ− 2r(θ + ρ)B∗ + 3r(B∗)2

]
.

Following van den Driessche and Watmough [21], the basic reproduction number of
infections in population where Q∗ is fixed is then the spectral radius of the next generation
matrix FV−1,

R0(Q∗) =
βKδS∗

(K + B∗)2ω(rθρ− 2r(θ + ρ)B∗ + 3r(B∗)2)
. (A7)

Appendix E. Proof of Theorem 5

The proof will be the same as in Appendix C. Let us make the following simplification
and change of variables: Let y1 = S, y2 = I, y3 = R, y4 = B. Further, by using the
vector notation y = (y1, y2, y3, y4), model (2) can be written in the form ẏ = g(y) with
g = (g1, g2, g3, g4) as follows:

ẏ1 = Λ− (λ + µ)y1 + γy3,
ẏ2 = λy1 −ωy2,
ẏ3 = αy2 − (γ + µ)y3,
ẏ4 = ry4(y4 − θ)(ρ− y4) + δy2,

(A8)

where λ = β
y4

y4+K . System (A8) has a DFE given by Qρ = (S0, 0, 0, ρ) where Sρ = Λ(ρ+K)
βρ+µ(ρ+K) .

The Jacobian of model (2) at the DFE Qρ is:

J(Qρ) =


−µ− βρ

ρ + K
0 γ − βKΛ

(k + ρ)[βρ + µ(ρ + K)]
βρ

ρ + K
−ω 0

βKΛ
(k + ρ)[βρ + µ(ρ + K)]

0 α −(µ + γ) 0
0 δ 0 −rρ(ρ− θ)

.

Therefore, choosing β as a bifurcation parameter and solving for β fromR0(Qρ) = 1,
we obtain:

β = β∗ =
(K + ρ)ωrρ(ρ− θ)[βρ + µ(ρ + K)]

ΛKδ
.

It follows that the Jacobian J(Qρ) of model (2) at the DFE Qρ, denoted by simple Jβ∗

has a simple zero eigenvalue (with all other eigenvalues having negative real parts).

Eigenvectors of Jβ∗ For the case when R0(Qρ) = 1, it can be shown that the Jacobian of
model (A8) has a right eigenvector (corresponding to the zero eigenvalue), given by
U = (u1, u2, u3, u4)

T , where

u1 = 0, u2 = u2 > 0, u3 =
α

µ + γ
u2, and u4 =

δ

rρ(ρ− θ)
u2. (A9)

Similarly, the components of the left eigenvectors of Jβ∗ (corresponding to the zero
eigenvalue), denoted by V = (v1, v2, v3, v4)

T , are given by:



Sustainability 2023, 15, 10384 29 of 30

v1 = v1 > 0,

v2 =
[βρ + µ(ρ + K)]

βρ
v1,

v3 =
γ

γ + µ
v1,

v4 =

[
ω[βρ + µ(ρ + K)]

βρ
− αγ

γ + µ

]
v1

δ
.

Computation of b: For the sign of b, it can be shown that the associated non-vanishing
partial derivatives of f are:

∂2g1

∂y1∂β∗
(0, 0) = − ρ

K + ρ
,

∂2g1

∂y1∂β∗
(0, 0) = − KΛ

(k + ρ)[βρ + µ(ρ + K)]
,

∂2g2

∂y1∂β∗
(0, 0) =

ρ

K + ρ
.

and
∂2g2

∂y1∂β∗
(0, 0) =

KΛ
(k + ρ)[βρ + µ(ρ + K)]

.

It follows that:

b =
µ(K + ρ)ω

β∗ρ
u2 > 0.

Computation of a: For system (A8), the associated non-zero partial derivatives of g (at the
DFE Qρ) are given by:

∂2g1

∂x1x4
(0, 0) = − β∗K

(K + ρ)2 ,

∂2g1

∂2x4
(0, 0) =

2β∗KΛ
(K + ρ)2[βρ + µ(ρ + K)]

,

∂2g2

∂x1x4
(0, 0) =

β∗K
(K + ρ)2 g,

and
∂2g1

∂2x4
(0, 0) = − 2β∗KΛ

(K + ρ)2[βρ + µ(ρ + K)]
.

Then, it follows that:

a = −
(

δ

rρ(ρ− θ)

)2[ 2β∗KΛµ

(K + ρ)[βρ + µ(ρ + K)]β∗ρ
+

(
ω[βρ + µ(ρ + K)]

βρδ
− αγ

(γ + µ)δ

)]
v1u2

2 < 0.

Thus, the a < 0 and b > 0 model (2) undergoes the phenomenon of forward bifurcation
(see Theorem A1, item (4)).

So, we have established the result about the local stability of the endemic equilibrium
of cholera disease model when Qρ is suppose be a disease-free equilibrium (note that this
result holds forR0(Qρ) > 1 but close to 1).

This concludes the proof of Theorem 5.
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