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Abstract: The hierarchical small-world network effectively models the benefit transmission web of
pyramid schemes in China and many other countries. In this paper, by applying spectral graph theory,
we studied three important aspects of the consensus problem in such networks: convergence speed,
communication time-delay robustness, and network coherence. First, we explicitly determined the
Laplacian eigenvalues of the network by making use of its tree-like structure. Second, we found that
the consensus algorithm on the hierarchical small-world network converges faster than on some well
studied sparse networks but is less robust to time delays. We also derived a closed-form for the first-
order network coherence. Our results show that the hierarchical small-world network has an optimal
structure of noisy consensus dynamics. Finally, we argued that some network structure characteristics,
such as a large maximum degree, small average path length, and high vertex and edge connectivity, are
responsible for the strong robustness against external perturbations.
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1. Introduction

The consensus problem has been primarily investigated in management science, and
statistics [1–3]. Nowadays, it has become a challenging and hot research area for multiagent
systems [4–6]. In these settings, consensus means that all agents reach an agreement on one common
issue. Consensus problems have emerged in various disciplines, such as graph decision making [7, 8],
distributed computing [9], sensor networks [10, 11], biological systems [12, 13], and human group
dynamics [14]. Due to their broad applications, consensus problems have attracted considerable
attention in recent years [15–21].
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Convergence speed, communication time-delay robustness, and network coherence are the three
primary aspects of the consensus protocol. Convergence speed measures the time of convergence
of the consensus algorithm. It has been proved that convergence speed is determined by the second
smallest Laplacian eigenvalue λ2 [4, 22]. Communication time-delay robustness refers to the ability
of the consensus algorithm to resist against communication delay between agents [23, 24], with the
maximum delay allowable being determined by the largest Laplacian eigenvalue λN [4, 22]. Network
coherence quantifies the robustness of the consensus algorithm against stochastic external disturbances,
and it is governed by all nonzero Laplacian eigenvalues [22,25]. As we all know, λ2(G) ≥ λ2(H) when
H is a spanning subgraph of G [26, 27]. It means that adding edges to a graph may increase its second
smallest Laplacian eigenvalue. Zelazo et al. [28] provided an analytic characterization of how the
addition of edges improves the convergence speed. It is well-known that ∆ + 1 ≤ λN ≤ 2∆, where
∆ is the maximum vertex degree [26]. Wu and Guan [29] found that we can improve the robustness
to time-delay by deleting some edges linking the vertices with the maximum degree. As for network
coherence, Summers et al. [30] considered how to optimize coherence by adding some selected edges.
Recently, network coherence on deterministic networks has become a new focus. Previously studied
networks include ring, path [31], star, complete graph, torus graph [25], fractal tree-like graph [5, 32],
Farey graph [33], web graph [34], recursive trees [35, 36], Koch network [37], hierarchical graph,
Sierpinski graph [22], weighted Koch network [38], windmill-type graphs [15], 4-clique motif network,
and pseudofractal scale-free web [39]. Among all these graphs, the complete graph presents optimal
structure and the best performance for noisy consensus dynamics. However, the complete graph is a
dense graph, resulting in high communication costs. In the real-world, it has been shown that networks
are often sparse, small-world, and scale-free. As such, Yi et al. [39] asked two open questions: What is
the minimum scaling of the first-order coherence for sparse networks? Is this minimal scaling achieved
in real scale-free networks? We will give a positive answer to these two questions in this paper.

Another interesting question about network coherence is how network structural characteristics
affect network coherence [22, 33, 39]. It has been shown that the scale-free behavior and the small-
world topology can significantly improve network coherence [33, 39]. Clearly, the star [31] cannot
be small-world for its small clustering coefficient. But the first-order coherence of a large star will
converge to a small constant. The pseudofractal scale-free web [40] and the Farey graph [41] are two
famous small-world networks with high clustering coefficient. However, the scale of the first-order
coherence on the Farey graph is much larger than that on the pseudofractal scale-free web [22,33]. So,
some other network structural characteristics can affect the first-order coherence. Yi et al. [22] pointed
to the scale-free behavior, which is absent on the Farey graph. However, the Koch network [42] is
small-world and scale-free, and the first-order coherence on the Koch network scales with the order
of the network. In addition, it is clear that the complete graph and the star are not scale-free, but the
first-order coherence on these two graphs are very small. As a result, something else can affect the
network coherence. In this paper, by analyzing and comparing several studied networks, we will give
our answer to the above question.

The outline of this work is as follows: In Section 2, we present some notations and definitions in
graph theory and consensus problems. In Section 3, we construct the hierarchical small-world network.
In Section 4, we compute the Laplacian eigenvalues and the network coherence. In Section 5, we make
a conclusion.
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2. Preliminaries

Let G = (V, E) be a connected and undirected graph (network). |S | denotes the cardinality of the
set S . The order (number of vertices) and the size (number of edges) of G are n = |V | and m = |E|,
respectively. If e = {u, v} is an edge of G, we say vertices u, v are adjacent by e, and u is a neighbor of
v. Let NG(v) denote the set of neighbors of v in graph G. The degree of vertex v in graph G is given by
dG(v) = |NG(v)|. We denote the maximum and minimum vertex degrees of G by ∆ and δ, respectively.
Let S be a subset of vertex set V . G − S is the graph obtained from G by deleting all vertices in S . If
G − S is disconnected, we call S a vertex cut set of G. The vertex connectivity cv of graph G is defined
as the minimum order of all vertex cut sets. Similarly, we can define the edge connectivity ce.

The density of graph G is given by [43]

d =
2m

n(n − 1)
, (2.1)

Clearly, 0 ≤ d ≤ 1. G is a sparse graph if and only if d ≪ 1.
In order to improve readability and help the readers follow the derivations more easily, we list all

frequently used symbols in Table 1.

Table 1. Symbols and definitions.

Symbol Definition Symbol Definition
dG(v) The degree of vertex v d The density
L The Laplacian matrix λi The eigenvalue of L
λ2 The second smallest eigenvalue of L λN The largest eigenvalue of L
P The transition matrix θi The eigenvalue of P
∆ The maximum vertex degree δ The minimum vertex degree
⟨k⟩ The average degree µ The average path length
cv The vertex connectivity ce The edge connectivity

2.1. Key graph matrices

The adjacency matrix of graph G is a symmetric matrix A = A(G) = [ai, j], whose (i, j)-entry is

ai, j =

{
1, if vi is adjacent with v j;
0, otherwise.

The degree matrix of graph G is a diagonal matrix D = D(G) = [di, j] where

di, j =

{
dG(vi), if i = j;
0, otherwise.

The Laplacian matrix of graph G is defined by L = D − A. X is a column vector of order n. We
write (LX)i as the element corresponding to the vertex vi in the vector LX.

Theorem 2.1. [26, 27] Let G be a connected and undirected graph with vertex set
V(G) = {v1, v2, · · · , vn}. X = (x1, x2, · · · , xn)⊤ is a column vector. Then the following assertions hold.
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(i) LX = λX if and only if, for each i,

(LX)i = dG(vi)xi −
∑

v j∈NG(vi)

x j = λxi. (2.2)

(ii) The rank of L is N − 1.
(iii) The row (column) sum of L is zero.

According to (iii), we know that 0 is an eigenvalue of L with corresponding eigenvector
1 = (1, 1, · · · , 1)⊤. Since the rank of L is n − 1, we can write the eigenvalues of L as
0 = λ1 < λ2 ≤ λ3 ≤ · · · ≤ λn. The second smallest Laplacian eigenvalue λ2 is called the algebraic
connectivity of the graph. This concept was introduced by Fiedler [44]. A classical result on the
bounds for λ2 is given by Fiedler [44] as follows:

λ2 ≤ cv ≤ ce ≤ δ. (2.3)

We call the largest eigenvalue λN the Laplacian spectral radius of the graph G.

Lemma 2.2. [45] Let G be a connected graph on n vertices with at least one edge, then λn ≥ ∆ + 1,
where ∆ is the maximum degree of the graph G, with equality if and only if ∆ = n − 1.

The transition matrix of graph G is a N-order matrix P = [pi, j] in which pi j =
ai, j

dG(vi)
. So P = D−1A.

Since P is conjugate to the symmetric matrix D−
1
2 AD−

1
2 , all eigenvalues of P are real. We denote these

eigenvalues as 1 = θ1 > θ2 ≥ · · · ≥ θN .

2.2. Consensus problems

In this subsection, we give a simple introduction from a graph theory perspective to consensus
problems [5, 22]. We refer the readers to references [4, 5, 22, 25] for more details. The information
exchange network of a multiagent system can be modeled via graph G. Each vertex of graph G
represents an agent, and each edge of graph G represents a communication channel. Two endpoints of
an edge can exchange information with each other through the communication channel. Usually, the
state of the system at time t is given by a column vector X(t) = (x1(t), x2(t), · · · , xn(t))⊤ ∈ Rn, where
xi(t) denotes the state (e.g., position, velocity, temperature) of the agent vi at time t. Each agent can
update its state according to its current state and the information received from its neighbors.
Generally, the dynamic of each agent vi can be described by ẋi(t) = ui(t), where ui(t) is the consensus
protocol (or algorithm).

2.2.1. Consensus without communication time-delay and noise

Olfati-Saber and Murray [4] proved that if

ui(t) =
∑

v j∈NG(vi)

(x j(t) − xi(t)), (2.4)

then, the state vector X(t) evolves according to the following differential equation:

Ẋ(t) = −LX(t), (2.5)
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and asymptotically converges to the average of the initial states (i.e., for each i,
limt→∞xi(t) = 1

n

∑n
k=1 xk(0), where xk(0) is the initial state of agent vk). This means that the system

with protocol (2.4) can reach an average-consensus. In addition, the convergence speed of X(t) can be
measured by the second smallest Laplacian eigenvalue λ2 [4], i.e.,

||δ(t)|| ≤ ||δ(0)||e−λ2t. (2.6)

Thus, the larger the value of λ2, the faster the convergence speed [22].

2.2.2. Consensus with communication time-delay

There are some finite time lags for agents to communicate with each other in many real-world
networks. Olfati-Saber and Murray [4] showed that if the time delay for all pairs of agents is
independent on t and fixed to a small constant ϵ,

ui(t) =
∑

v j∈NG(vi)

(x j(t − ϵ) − xi(t − ϵ)), (2.7)

then, the state vector X(t) evolves according to the following delay differential equation:

Ẋ(t) = −LX(t − ϵ). (2.8)

In addition, X(t) asymptotically converges to the average of the initial states if and only if ϵ satisfies
the following condition:

0 < ϵ < ϵmax =
π

2λn
. (2.9)

Eq (2.9) shows that the largest Laplacian eigenvalue λn is a good measure for delay robustness: The
smaller the value of λn, the bigger the maximum delay ϵmax [22]. Moreover, similarly to the system
with protocol (2.4), the convergence speed of the system with protocol (2.7) is also determined by the
second smallest Laplacian eigenvalue λ2 [4, 22].

2.2.3. Consensus with white noise

In order to capture the robustness of consensus algorithms when the agents are subject to external
perturbations, Patterson and Bamieh [5] introduced a new quantity called network coherence.

First-order network coherence: In the first-order consensus problem, each agent has a single state
xi(t). The dynamics of this system are given by [5, 22, 25]

Ẋ(t) = −LX(t) + w(t), (2.10)

where w(t) ∈ Rn is the white noise.
It is interesting that if the noise w(t) satisfies some particular conditions, the state of each agent

xi(t) does not necessarily converge to the average-consensus, but fluctuates around the average of the
current states [5, 22]. The variance of these fluctuations can be captured by network coherence.
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Definition 2.3. (Definition 2.1 of [5]) For a connected graph G, the first-order network coherence H1

is defined as the mean (over all vertices), steady-state variance of the deviation from the average of the
current agents states,

H1 = H1(G) = lim
t→∞

1
n

n∑
i=1

var

xi(t) −
1
n

n∑
j=1

x j(t)

 ,
where var{·} denotes the variance.

It is amazing for algebraic graph theorists that H1 is completely determined by the N − 1 nonzero
Laplacian eigenvalues [25]. Specifically, the first-order network coherence equals

H1 =
1

2n

n∑
i=2

1
λi
. (2.11)

Lower H1 implies better robustness of the system irrespective of the presence of noise, i.e., vertices
remain closer to consensus at the average of their current states [5, 22].

3. Network construction and properties

The hierarchical small-world network was introduced by Chen et al. [46] and can be created
following a recursive-modular method, see Figure 1. Let Mr

g (g ≥ 0, r ≥ 2) denote the network after g
generations of evolution. For g = 0, the network M0 is a single vertex. For g ≥ 1, Mr

g can be obtained
from r copies of Mr

g−1 and a new vertex by linking the new vertex to every vertex in each copy
of Mr

g−1.

g=3

g=2

g=1

g=0

Figure 1. Growing processes of Mr
g with r = 2. Mr

g consists of r copies of Mr
g−1 and a

new vertex.

Remark: From Figure 1, it is easy to see that the network is self-similar. The self-similarity is a
common property of deterministic networks [47], which promises to advance our understanding of the
way complex networks behave and grow.

Networks and Heterogeneous Media Volume 20, Issue 2, 482–499.



488

A rooted tree T is a tree with a particular vertex v0, see Figure 2. We call v0 the root of T . Let v be
a vertex of T . If v has only one neighbor, v is a leaf of T ; if v has at least two neighbors, v is a non-leaf
vetex of T . The level of vertex v in T is the length of the unique path from v0 to v. Note that the level of
the root v0 is 0. The height of rooted tree T is the largest level number of all vertices. We always use
a directed tree to describe a rooted tree by replacing each edge with an arc (directed edge) directing
from a vertex of level i to a vertex of level i + 1. Figure 2 shows a root tree of height 3.

v0

level 3

level 2

level 1

level 0

Figure 2. A rooted tree T of height 3.

If (u, v) is an arc of the rooted tree T , then u is the parent of v, and v is a child of u. If there is
a unique directed path from a vertex v to a vertex w, we say that v is an ancestor of w, and w is a
descendant of v. For r ≥ 2, a rooted tree is called a full r-ary tree if all leaves are in the same level
and every non-leaf vertex has exactly r children. The rooted tree illustrated in Figure 2 is a full 2-ary
(binary) tree. The r-ary tree is one of the most important data structures in computer science [48, 49]
and mathematics [50–52]. It is not difficult to see that the hierarchical network Mr

g can also be obtained
from a rooted tree Tg of height g by linking every non-leaf vertex to all its descendants, and we call the
rooted tree Tg the basic tree of Mr

g.
Let Ng and Eg denote the order and size of the hierarchical small-world network Mr

g, respectively.
According to the two construction algorithms, we have

Ng =
1

r − 1
(rg+1 − 1), (3.1)

and
Eg =

1
(r − 1)2

(
grg+2 − grg+1 − rg+1 + r

)
=

g + 1
r − 1

+ (g −
1

r − 1
)Ng.

According to Eq (2.1), the density of Mr
g is given by

d =
2Eg

Ng(Ng − 1)
=

2(g + 1)
(r − 1)Ng(Ng − 1)

+
2(g − 1

r−1 )
Ng − 1

.

If Ng ≫ 1, then g+1
(r−1)Ng(Ng−1) → 0 and also g− 1

r−1
Ng−1 ≪ 1, that is d ≪ 1. Hence, the hierarchical

small-world network Mr
g is a sparse network.

In an arbitrary level i of the basic tree Tg, there are ri vertices. We randomly choose a vertex v. The
probability that it comes from level i is

P(i) =
ri(r − 1)
rg+1 − 1

. (3.2)
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Since all vertices in level i have the same degree ki =
rg+1−i−1

r−1 + i − 1, and vertices in different levels
have different degrees, the degree distribution P(k) of the hierarchical small-world network is

P(k) =
r − 1

(r − 1)(1 + k − i) + 1 − r−i .

The degree distribution of a real-world network always follows a power-law distribution P(k) ∼ k−γ

with γ > 1 [53]. For the hierarchical small-world network, according to the result in [46], we know
that γ would approach 1 when Mr

g is large enough. That is abnormal. However, this network model
exists in real life since it is a good model for the benefit transmission web of the pyramid scheme [54]
in China and many other countries.

4. Calculations of network coherence

4.1. Eigenvalues and their corresponding eigenvectors

Let Tg be the basic tree of Mr
g and V(Tg) = V(Mr

g) = {v0, v1, · · · , vNg−1}. The root of Tg is v0.
For each vertex vi ∈ Tg, we denote the set of descendants (ancestors) of vi by des(vi) (anc(vi)). Let
Di = |des(vi)| and Ai = |anc(vi)|. Let dg(vi) be the degree of vi in Mr

g. It is important to note that
dg(vi) = Di + Ai for each i. Let lg(vi) denote the level of vi in Tg. It is not difficult to see that lg(vi) = Ai.

In order to help the readers to get a direct impression of the following theorem and a better
understanding of the proof, we introduce an example.

1

1

1 1

1 1 1

1

(b)(a)

-14

1

1 11 1 1

0

1

11

1111-1-1 -1-1

-1
-1

-1

Figure 3. (a) The eigenvector corresponding to eigenvalue α = 15; (b) The eigenvector
corresponding to eigenvalue β = 1.

Example 4.1. As shown in Figure 2, root v0 is a non-leaf vertex of the basic tree T3, and
d3(v0) = 14, l3(v0) = 0. v1 is the left child of root v0. Let α = d3(v0) + 1 = 15, β = l3(v0) + 1 = 1.
Then α is a Laplacian eigenvalue of M2

3 with the corresponding eigenvector X shown in Figure 3(a),
because Eq (2.2) holds for every vertex of M2

3 . For instance, equations
(LX)0 = 14 · (−14)− 1 · 14 = 15 · (−14) = αx0 and (LX)1 = 7 · 1+ 14− 6 · 1 = 15 · 1 = α · x1 show that
Eq. (2.2) holds for root v0 and vertex v1, respectively. Similarly, β is also a Laplacian eigenvalue of
M2

3 with the corresponding eigenvector X′ shown in Figure 3(b). For instance, equations
(LX′)0 = 0 + 7 · 1 − 7 · 1 = 0 = βx′0 and (LX′)1 = 7 · (−1) + 6 · 1 = −1 = βx′1 verify that Eq (2.2) holds
for root v0 and vertex v1, respectively.
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Theorem 4.2. The nonzero Laplacian eigenvalues of the hierarchical small-world network Mr
g are

the following:
1. dg(vi) + 1, repeated exactly once for each non-leaf vertex vi;
2. lg(vi) + 1, repeated r − 1 times for each non-leaf vertex vi.

Proof. Let Lg be the Laplacian matrix of Mr
g. As mentioned above, 0 is a special eigenvalue of Lg

with corresponding eigenvector 1Ng = (1, 1, · · · , 1)⊤. Since Mr
g is connected, Lg has Ng − 1 non-zero

eigenvalues. It is clear that, in the full r-ary tree Tg, each vertex of level g is a leaf, and each vertex
of level i (i ≤ g − 1) is a non-leaf vertex. Thus, Tg has rg−1

r−1 non-leaf vertices. So the total number of
eigenvalues mentioned in the statement of this theorem add up to rg−1

r−1 · r =
rg+1−r

r−1 , which equals Ng − 1.
Case 1: When λg = dg(vi) + 1, where vi is a non-leaf vertex in Tg.
Let Xg =

(
x0, x1, · · · , xNg−1

)⊤
be a column vector, and

xk =


−Di, if k = i;
1, if vk is a descendant of vi;
0, otherwise.

Since the number of descendants of vi is just Di, we have
∑Ng

j=1 x j = 1 · Di − Di − 0 = 0. Then, Xg is
orthogonal to the vector 1Ng . We now have to prove that Xg is indeed an eigenvector corresponding to
the given eigenvalue λg = dg(vi) + 1. In the proof, our main tool is Eq (2.2).

For the vertex vi, xi = −Di. x j = 1 if v j is a descendant of vi; x j = 0 if v j is an ancestor of vi. Thus,
we have

(LgXg)i = dg(vi)(−Di) − Di − 0 = (dg(vi) + 1) · (−Di) = (λgXg)i.

For the vertex vk, which is an ancestor of vi, xk = 0. x j = −Di if v j is vi; x j = 1 if v j is a descendant
of vi; x j = 0 if v j is one of other neighbors of vk. Hence, we have

(LgXg)k = 0 + Di − 1 · Di − 0 = 0 · (dg(vi) + 1) = (λgXg)k.

For the vertex vk, which is a descendant of vi, xk = 1. x j = −Di if v j is vi; x j = 1 if v j is a descendant
of vk; x j = 1 if v j is a ancestor of vk and also a descendant of vi; x j = 0 if v j is one of other neighbors
of vk. It is important to note that the number of ancestors of vk, which are also descendants of vi, is
Ak −Ai−1, i.e., |anc(vk)∩des(vi)| = Ak −Ai−1. We minus 1 here because vertex vi is not a descendant
of itself, so it should be removed. Also, dg(vk) = Dk + Ak and dg(vi) = Di + Ai. Then, we have

(LgXg)k = dg(vk) + Di − 1 · Dk − 1 · (Ak − Ai − 1) + 0 = Di + Ai + 1 = 1 · (dg(vi) + 1) = (λgXg)k.

It is clear that the equation (LgXg)k = (λgXg)k holds for all other vertices. Therefore, we have proved
LgXg = λgXg.

Case 2: When λg = lg(vi) + 1 where vi is a non-leaf vertex in Tg.
We denote the r children of vi by c1, c2, · · · , cr. For each t ∈ {1, 2, · · · , r}, let Ft = ct ∪ des(ct).

Let |F1| = f . Since Tg is a full r-ary tree, we have |Ft| = f for every t ∈ {1, 2, · · · , r}. For each
s ∈ {2, 3, · · · , r}, let Xs

g =
(
xs

0, , x
s
1, · · · , x

s
Ng−1

)⊤
be a column vector, and

xs
k =


−1, if vk ∈ F1;
1, if vk ∈ Fs;
0, otherwise.
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Since |Fs| = |F1| = f ,
∑Ng

j=1 xs
j = f · 1 + f · (−1) − 0 = 0. Hence, Xs

g is orthogonal to the vector
1Ng . We now have to prove that Xs

g is indeed an eigenvector corresponding to the given eigenvalue
λg = lg(vi) + 1.

For the vertex vk, which is an ancestor of c1, xs
k = 0. xs

j = −1 if v j ∈ F1; xs
j = 1 if v j ∈ Fs; xs

j = 0 if
v j is one of the other neighbors of vk. According to Eq (2.2), we have

(LgXs
g)k = 0 + f − f − 0 = 0 · (lg(vi) + 1) = (λgXs

g)k.

For the vertex vk ∈ F1, xs
k = −1. xs

j = −1 if is v j a descendant of vk; xs
j = −1 if v j is an ancestor of vk

and also a descendant of vi; xs
j = 0 if v j is one of the other neighbors of vk. Note that, dg(vk) = Dk + Ak

and lg(vi) = Ai. According to Eq (2.2), we have

(LgXs
g)k = dg(vk)(−1) + Dk + (Ak − Ai − 1) + 0 = (lg(vi) + 1) · (−1) = (λgXs

g)k.

For the vertex vk ∈ Fs, xs
k = 1. xs

j = 1 if v j is a descendant of vk; xs
j = 1 if v j is an ancestor of vk and

also a descendant of vi; xs
j = 0 if v j is one of the other neighbors of vk. According to Eq (2.2), we have

(LgXs
g)k = dg(vk) · 1 − Dk − (Ak − Ai − 1) − 0 = (lg(vi) + 1) · 1 = (λgXs

g)k.

It is clear that the equation (LgXs
g)k = (λgXs

g)k holds for all other vertices. Thus, we have proved
that LgXs

g = λgXs
g. So Xs

g is an eigenvector corresponding to the given eigenvalue λg = lg(vi) + 1. Then
eigenvalue lg(vi) + 1 has r − 1 linear independent vectors X2

g , X3
g ,· · · , Xr

g. Therefore, the multiplicity of
the eigenvalue lg(vi) + 1 is r − 1.

For each i ∈ {0, 1, · · · , g − 1}, there are ri vertices in level i. If v is a vertex in level i, then dg(v) =
rg−i+1−1

r−1 + i − 1. Hence, we have the following corollary. Here, we write multiplicities as subscript for
convenience and so that there is no confusion.

Corollary 4.3. The nonzero Laplacian eigenvalues of the hierarchical small-world network Mr
g are

Γ(g, r) =
g−1⋃
i=0

{

(r−1)ri︷                    ︸︸                    ︷
i + 1, i + 1, · · · , i + 1,

rg−i+1 − 1
r − 1

+ i, · · · ,
rg−i+1 − 1

r − 1
+ i︸                                    ︷︷                                    ︸

ri

}.

Example 4.4. From Corollary 4.3, we know the nonzero Laplacian eigenvalues of the network M2
3 are

{1, 15, 2, 2, 8, 8, 3, 3, 3, 3, 5, 5, 5, 5}, which can also be obtained by calculating directly the eigenvalues
of the Laplacian matrix of M2

3 .

4.2. Convergence speed and delay robustness

As shown in Corollary 4.3, the second smallest Laplacian eigenvalue of the hierarchical small-world
network Mr

g is λ2 = 1 for all g ≥ 0 and r ≥ 2. From Eq (2.6), we know that the convergence rates of
these networks have the same upper bound. The largest Laplacian eigenvalue of Mr

g is λNg =
rg+1−1

r−1 .
Figure 4 shows that λNg is an increasing function with respect to r and g. Therefore, the consensus
protocol (2.7) on Mr

g is more robust to delay with smaller r and g.
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Table 2. The Laplacian eigenvalues for some typical network structures.

Network structure λ2 λN

Hierarchical graph H(3, 3) [22] 9
N

2
ln3 lnN

Sierpinski graph S (3, 3) [22] 15

Nlog5
3

5

Path PN [31] 2 − 2cos( 1
Nπ) 2 − 2cos( N−1

N π)
Cycle CN [31] 2 − 2cos( 2

Nπ) 2 − 2cos( N−1
N π)

Complete graph KN [31] N N
Hierarchical SW network M2

g 1 N
Star XN [31] 1 N

Figure 4. The largest Laplacian eigenvalue λNg for hierarchical networks Mr
g with various g

and r.

The convergence speed and delay robustness in different networks have been widely studied [4,
22, 31]. From the second column of Table 2, we find that the convergence speed of the consensus
protocol (2.7) on the hierarchical small-world network M2

g is faster than that on other sparse graphs.
At the same time, the third column shows that the consensus protocol (2.7) on other sparse graphs is
much more robust to delay than that on the hierarchical small-world network M2

g . As proved by Olfati-
Saber and Murray [4], there is a trade-off between convergence speed and delay robustness. They also
claimed another trade-off between high convergence speed and low communication cost. Here, we
can see this trade-off by comparing the hierarchical small-world network M2

g with the complete graph
KN . The complete graph has much more edges than the hierarchical small-world network M2

g does.
So the convergence speed of the consensus protocol (2.7) on the complete graph KN is faster than that
on the hierarchical small-world network M2

g . From Table 2, we know that the complete graph KN and
the hierarchical small-world network M2

g have the same delay robustness. It is clear that these two
networks have the same maximum degree N − 1. We can see that all vertices in the complete graph
KN have the maximum degree, while there is only one vertex in M2

g with maximum degree. So the
delay robustness of the consensus protocol (2.7) is independent from the number of vertices with the
maximum degree.
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4.3. Network coherence of Mr
g: An answer to two open questions

In [39], Yi et al. proposed two open questions: What is the minimum scaling of H1 for sparse
networks? Is this minimal scaling achieved in real scale-free networks? Now we want to answer these
two questions.

According to Corollary 4.3 and Eq (2.11), the following theorem can be easily observed.

Theorem 4.5. For the hierarchical small-world network Mr
g, the first-order coherence is

H1 =
(r − 1)2

2(rg+1 − 1)

g−1∑
i=0

ri(
1

rg−i+1 + i(r − 1) − 1

+
1

i + 1
).

Figure 5. The numerical results coincide with the theoretical results when r = 2.

Figure 6. Scales of H1.

Figure 5 shows that the theoretical results coincide with the numerical results when r = 2. The
theoretical values are obtained from Theorem 4.5. The numerical results are derived from Eq (2.11)
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by calculating directly the eigenvalues corresponding to the Laplacian matrix. Since Ng =
rg+1−1

r−1 , we
have g = ln((r−1)Ng+1)

lnr − 1. Thus, as Ng → ∞, from the numerical results showed in Figure 6, we find
the scaling of the network coherence with network order N, that is, H1 ∼

1
lnNlnlnN . This result shows

that the hierarchical small-world network Mr
g has the best performance for noisy consensus dynamics

among sparse graphs. Therefore, we have provided an answer to the above two open questions.

4.4. How the structural characteristics affect the network coherence

Figure 7 shows that the differences between the network coherence with different r are very small
when g is large enough. Hence, the effect of the parameter r is very limited.

Figure 7. Network coherence under different values of r.

Yi et al. [39] provided two bounds for the fist-order coherence in terms of the average path length µ
and the average degree ⟨k⟩ of a graph. They proved that

1
2⟨k⟩

≤ H1 ≤
1
4
µ.

So networks with constant µ must have limited H1, and the first-order coherence of networks with
constant ⟨k⟩ can not be 0. For example, when N is large enough, the complete graph KN , the star XN ,
and the hierarchical small-world network have constant H1, and the first-order coherence of the star
graph XN is a non-zero constant, see Table 3. But when µ is an increasing function of the order N, we
can not estimate the scale of H1 from the upper bound.

From Eq (2.11), we can find that the algebraic connectivity λ2 plays an important role in
determining the value of H1. If λ2 is close to 0, H1 will become very large. From the classical Fiedler
inequality (2.3), we know that λ2 is bounded by the vertex connectivity cv and the edge connectivity
ce, which measure respectively the robustness to vertex and edge failure. So graphs with large vertex
connectivity and edge connectivity tend to have small H1. In other words, high robustness to vertex
and edge failures mean high robustness against uncertain disturbance. For example, the Koch network
has the same scale of the maximum degree ∆ and the average path length µ as the pseudofractal
scale-free web, but the scale of the first-order coherence H1 in the Koch network is very high, see
Table 3. This is because the Koch network is not robust to vertex failure.
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Table 3. Scalings of the first-order coherence for some typical networks.

Network ∆ µ H1

Hierarchical SW network N 2 (lnNln(lnN))−1

Star graph [31] N 2 1
Pseudofractal scale-free web [39] N lnN 1
4-clique motif network [39] N lnN 1
Koch graph [37] N lnN lnN
Farey graph [33] lnN lnN lnN

The Kirchhoff index R(G) = N
∑N

i=2
1
λi

is a famous and important graph invariant [55]. The relation
between R(G) and H1 is given by H1 =

R(G)
2N2 . We have the following bounds for R(G) [55],

N
∆

N∑
i=2

1
1 − θi

≤ R(G) ≤
N
δ

N∑
i=2

1
1 − θi

,

where θi are the eigenvalues of the transition matrix P defined in Section 2. Thus, we have two new
bounds for H1,

1
2N∆

N∑
i=2

1
1 − θi

≤ H1 ≤
1

2Nδ

N∑
i=2

1
1 − θi

.

Hence, the maximum degree is a good predictor for H1. Small ∆ means large H1. For example, the
Farey graph has the same scale of the average path length as the pseudofractal scale-free web, but the
scale of H1 in the Farey graph is much larger. This is due to the scale of the maximum degree in the
Farey graph being low, see Table 3.

5. Conclusions

In this paper, by applying the spectral graph theory, we studied three important aspects of consensus
problems in a hierarchical small-world network, which is a good model for the benefit transmission
web of pyramid schemes [54]. Compared with several previous studies, the consensus algorithm in the
network converges faster but less robust to communication time delay. It is well-known that pyramid
schemes create serious social problems. Since the network is not robust to communication time delay,
this could be a good way to to prolong the trading hours for high-risk accounts under supervision. It
is worth mentioning that the hierarchical small-world network has optimal network coherence, which
captures the robustness of consensus algorithms when the agents are subject to external perturbations.
These results provide a positive answer to two open questions of Yi et al. [39]. Finally, we argue that
some particular network structure characteristics, such as large maximum degree, small average path
length, and large vertex and edge connectivity, are responsible for the strong robustness with respect to
external perturbations.
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