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Abstract
We consider the number of spanning trees in a novel hybrid network created by inner-outer
iteration. The hybrid network is small-world but not self-similar. Firstly, we introduce two
particular electrically equivalent transformations: delta-edge transformation and Sierpinski-delta
transformation. By using these two particular transformations, we find the changes of the
conductances of corresponding electrically equivalent networks. Secondly, based on the inner-
outer iteration structure characteristics, we obtain a closed-form formula for the number of
spanning trees of the hybrid network, as well as its spanning tree entropy. Finally, we compare
our result with those of previously investigated networks with the same average degree, and give
an explanation for their differences.
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1. Introduction

Counting spanning trees in networks is a fascinating and
central issue in statistical physics, because of its inherent
relevance to diverse aspects in related fields. For example, the
number of spanning trees is a crucial measure of the net-
work’s reliability [1]. Again for instance, it is exactly the
number of recurrent configurations of the Abelian sandpile
model [2, 3], which have been studied extensively in recent
years as a paradigm of the self-organized criticality [4–6]. On
the other hand, the number of spanning trees has numerous
connections with other interesting problems associated with
networks, such as transport [7], community structure detec-
tion [8], the Ising model partition function [9], loop-erased
random walks [10], and many others [11].

In view of their relevance to diverse aspects of networks
and a wide range of applications, spanning trees in networks
have become a focus of some recent research [12–15]. Par-
ticularly, in the physics literature a lot of effort has been
devoted to enumerating spanning trees in specific self-similar
networks by using different techniques. Examples include the
Farey graph [16, 17], (x, y)-flower [12], Apollonian network

[18–20], Sierpinski gasket [21, 22], pseudofractal scale-free
web [23], and so on. However, very little work appears to
have been done on counting the spanning trees in a non-self-
similar graph.

In this paper, inspired by the work in [13, 24], we
investigate the number of spanning trees in a hybrid network
proposed by Zhang et al [25], which follows an exponential
degree distribution and has a small-world effect. Unlike many
other deterministic networks, the hybrid network is not self-
similar. We employ the electrically equivalent technique to
determine the number of spanning trees of the hybrid net-
work, and compute its spanning tree entropy.

2. Preliminaries

Throughout this paper, G= (V, E, w) is a connected
graph (network) with an positive edge-weight function w.
When w(e)=1 for every edge Îe G, G is the usual
unweighted graph. Let S∣ ∣ denote the cardinality of the set S,
then the order (number of vertices) and the size (number of
edges) of G are V∣ ∣ and E∣ ∣, respectively. Let T be a spanning
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tree of the weighted graph G, the weight W(T) of T is defined
as the product of weights of edges in T, i.e.,

=
Î

W T w e .
e E T

( ) ( )
( )

We write W(G) to denote the weighted number of spanning
trees in G:

å=
Î

N G W T .WST
T G

( ) ( )

Note that if w(e)=1 for every edge Îe G, then NWST(G) is
the usual number of spanning trees, and we write

=N G N GST WST( ) ( ) in this case.

2.1. Electrical Networks

Following [20, 24, 26–28], we recall some concepts, nota-
tions, and results from electrical network theory. An edge-
weighted graph can be regarded as an electrical network in
which the weights are the conductances of the respective
edges. Two weighted graphs G and H are called electrically
equivalent with respect to ÇÍD V G V H( ) ( ), if they cannot
be distinguished by applying voltages to D and measuring the
resulting currents on D. The following theorem was intro-
duced by Teufl and Wagner [26].

Theorem 2.1. Let G be a weighted graph that can be
partitioned into two edge-disjoint subgraphs S1 and S2

(inheriting weights in an obvious way) such that
È =V S V S V G1 2( ) ( ) ( ) and Ç ==V S V S S1 2 *( ) ( ) . Let ¢S2

be a weighted graph with Ç ¢ = ÆE S E S1 2( ) ( ) and
Ç ¢ =V S V S S1 2 *( ) ( ) , such that S2 and ¢S2 are electrically

equivalent with respect to S*. Let È¢ = ¢G S S1 2, if
¹N G 0WST ( ) and ¹N S 0WST 2( ) , the following ratio holds:

¢
=

¢N G

N G

N S

N S
. 1WST

WST

WST

WST

2

2

( )
( )

( )
( )

( )

Theorem 2.1 means that if electrical network ¢G can be
obtained from electrical network G by an electrically
equivalent transformation, then the weighted number of
spanning trees in ¢G and G are related by equation (1). Here,
we will consider the effect of the following four basic
electrically equivalent transformations [13, 26]:

• Parallel reduction: Two parallel edges e1 and e2 with
conductances a and b can be replaced by a single edge
with conductance a+b, see figure 1. The weighted
number of spanning trees remains unchanged (the
corresponding factor is equal to 1).

• Series reduction: Two serial edges with conductances a
and b can be merged into a single edge with conductance

+
ab

a b
, see figure 2. The weighted number of spanning trees

will vary as follows:

¢ =
+

N G
a b

N G
1

.WST NST( ) ( )

• Delta-wye transform: A triangle with conductances a, b, c
can be transformed into a star with conductances
= = =+ + + + + +x y z, ,ab bc ca

a

ab bc ca

b

ab bc ca

c
, see

figure 3. The weighted number of spanning trees will
vary as follows:

¢ =
+ +

N G
ab bc ca

abc
N G .WST NST

2
( ) ( ) ( )

• Wye-Delta transform: A star graph with conductances x,
y, z can be transformed into a triangle with conductances
= = =

+ + + + + +
a b c, ,yz

x y z

xz

x y z

xy

x y z
, see figure 3. The

weighted number of spanning trees will vary as follows:

¢ =
+ +

N G
x y z

N G
1

.WST NST( ) ( )

For example, we consider the network that is shown in
figure 4. A few applications of the four basic transformations
suffice to count spanning trees of this network. The evolution
of three electrically equivalent topologies and the corresp-
onding calculations of the conductances are as follows: (1)
Since the conductance of each edge of the original network
G1 is 1, the corresponding conductance of the resulting edges
in graph G2 for delta-wye transformation is 3, and

=N G N G9WST WST2 1( ) ( ). (2) When two serial edges with
conductances 1 and 3 are merged into a new edges, the con-
ductance the new edge is 3

4
. Since series reduction has been

applied three times,

= =N G N G N GWST WST WST3
1

4

3
2

9

64 1( )( ) ( ) ( ). (3) The con-

ductance of the edge in G4 is
9

4
which is the sum of the three

original conductances, and
= =N G N G N GWST WST WST4 3

9

64 1( ) ( ) ( ). It is clear that

=N GWST 4
9

4
( ) , so =N G 16WST 1( ) . Since the weight of each

edge of G1 is 1, we have = =N G N G 16ST WST1 1( ) ( ) .

Figure 1. Parallel reduction.

Figure 2. Series reduction.

Figure 3. Delta-wye and wye-delta transformations.

2

Phys. Scr. 94 (2019) 105205 Y Liao et al



2.2. Construction of the hybrid network

The hybrid network can be built in an iterative way [25]. Let
Ht t 0( ) denote the hybrid network after t iterations. Ht has
two special cycles: the outermost cycle and the innermost
cycle. For t=0, H0 is a triangle. The outermost cycle of H0

coincides with the innermost cycle. For t 1, Ht can be
obtained from -Ht 1 by performing the following two opera-
tions: (i) inserting a new vertex into each edge in the inner-
most cycle, and connecting these new vertices by new edges;
(ii) adding a new vertex for each edge in the outermost cycle,
and linking the new vertex to the two endpoints of the
corresponding edge. Figure 5 shows the first two steps of the
iterative process. It is not difficult to compute that the order
and size of Ht are = = +V V H t3 3 2t t

t∣ ( )∣ · and
= = + -+E E H t6 3 2 3t t

t 1∣ ( )∣ · , respectively. Thus, the
average degree of the hybrid network Ht is

á ñ = =
+ -
+

+
k

E

V

t

t

2 3 2 12 6

3 2 3
,t

t

t

t

2·
·

which approaches 4 as  ¥t .

3. Counting spanning trees in the hybrid network

In this section, we will determine analytically the number of
spanning trees on Ht by applying the above-mentioned

electrically equivalent technique [24, 26]. We firstly introduce
two particular electrically equivalent transformations which
are the combinations of the four basic electrically equivalent
transformations in some order. These two particular trans-
formations will help us to simplify the calculation.

3.1. Two particular electrically equivalent transformations

3.1.1. Delta-edge transformation. If =e u v,{ }, =f u w,{ }
and =g w v,{ } are three edges of a triangle, vertex w can be
deleted and the edge e can be replaced by a new edge
¢ =e u v,{ }, we call this transformation the delta-edge
transformation, see figure 6. In order to reduce unnecessary
computation in a later section, we assume that the
conductances of edges f and g are a and the conductance of
edge e is c.

It is easy to see that the delta-edge transformation is the
combination of two basic transformations in a certain
sequence. Since the delta-edge transformation is an electri-
cally equivalent transformation, the conductance of the
resulting edge can be calculated as follows:

(1) Series reduction: The conductance of the edge in G2

which obtained from the series reduction is a

2
,

and =N G N GWST a WST2
1

2 1( ) ( ).
(2) Parallel reduction: The conductance of the edge in G3

which obtained from the parallel reduction is +c a

2
,

and =N G N GWST WST3 2( ) ( ).

Therefore, the conductance of the new edge ¢a and the
weighted numbers of spanning trees satisfy the following two
recurrences:

¢ = +

=

a c
a

N G
a

N G

2
;

1

2
. 2WST WST3 1( ) ( ) ( )

3.1.2. Sierpinski-delta transformation. The Sierpinski
graph is the graph obtained from a triangle by inserting an
additional vertex in each edge of the triangle, then joining
with edges those pairs of new vertices, see figure 7. Note that
the edges in the Sierpinski graph can be divided into two
disjoint subsets. The edges in the outermost cycle and the
edges in the innermost cycle.

If the Sierpinski graph can be replaced by the innermost
cycle (triangle), we call this transformation the Sierpinski-
delta transformation, see figure 8.

It is easy to see that five basic transformations are used in
a certain sequence to form the Sierpinski-delta transformation.
For the sake of the computation, hereafter, we assume that the
conductance of each edge in the outermost cycle is 1 and the
conductance of each edge in the innermost cycle is b. Since
the Sierpinski-delta transformation is an electrically equiva-
lent transformation, the conductances of the resulting edges
can be calculated as follows:

Figure 4. A simple example using the technique of those
transformations to calculate the number of spanning trees.

Figure 5. Illustration of the growing hybrid network within the first
two steps of the iterative process.
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(1) Delta-wye transform: The delta-wye transform can be
performed on the upmost triangle, the leftmost triangle
and the rightmost triangle of the Sierpinski graph S1.
Since the conductances of the edges in each of these
three triangles are 1,1 and b, the conductances of the
resulting edges in S2 are + +b b1 2 , 1 2 and + b

b

1 2 . The
delta-wye transform has been applied three times,
so = =+ +N S N S N SWST

b

b WST
b

b WST2
1 2 3

1
1 2

1
2 6

3( )( ) ( ) ( )( ) ( ) .
(2) Series reduction: The conductances of the serial edges

in S2 both are 1+2b, the conductance of the new edge
in S3 is + b1 2

2
. The Series reduction has been applied

three times, then =
+

N S N SWST b WST3
1

8 1 2 23( ) ( )
( )

.

(3) Delta-wye transform: The three edges in the central
triangle of S3 have the same conductance + b1 2

2
. We can

apply the delta-wye transform on this triangle and the
resulting edges have the same conductance + b3 6

2
.

Also, = +N S b N S1 2WST WST4
9

2 3( ) ( ) ( ).
(4) Series reduction: The conductances of the serial edges

in S4 are + b

b

1 2 and + b3 6

2
, the conductance of the new

edge in S5 is +
+

b

b

3 6

2 3
. The series reduction has been

applied three times,

then =
+ +

N S N SWST
b

b b WST5
8

1 2 2 3 4
3

3 3( ) ( )
( ) ( )

.

(5) Wye-delta transform: The three edges in S5 have the
same conductance +

+
b

b

3 6

2 3
. We can apply the wye-delta

transform on these three edges and the resulting edges
have the same conductance +

+
b

b

1 2

2 3
. It is easy to compute

that = +
+

N S N SWST
b

b WST6
2 3

9 1 2 5( ) ( )
( )

.

Therefore, the conductances of the new edges ¢b and the
weighted numbers of spanning trees satisfy the following two

recurrences:

¢ =
+
+

=
+

b
b

b

N S
b

N S

1 2

2 3
;

1

2 2 3
. 3WST WST6 2 1( )

( )
( ) ( )

3.2. The weighted numbers of spanning trees of Ht

For t�1, the set of edges in Ht can be divided into three
disjoint subsets: the edges in the outermost cycle, the edges in
the innermost cycle, and others. So we classify the con-
ductance on each edge of Ht into three categories: the con-
ductance of each edge in the outermost triangle is at; the
conductance of each edge in the innermost edge is bt; all other
edges have the same conductance 1. For convenience, we call
the edges which are contained in the innermost (outermost)
cycle of Ht the innermost (outermost) edges of Ht. The tri-
angle which contains outermost edges is called the outermost
triangle. In order to calculate the weighted number of span-
ning trees of Ht, we need to find the relationships between at,
bt, and - -a b,t t1 1.

First of all, we have to simplify the structure of Ht.
According to the construction method of Ht, it is easy to see
that each outermost edge in -Ht 1 will be replaced by a triangle
which will becomes an outermost triangle of Ht. Moreover,
the innermost cycle of -Ht 1 is a triangle and it will be replaced
by the Sierpinski graph which contains the innermost cycle of
Ht. An example for these two kinds of replacements is given
in figure 9.

Next, we can analyze the relationships between the
conductances by applying the two particular electrically
equivalent transformations. For each outermost triangle of Ht,
we apply the delta-edge electrically equivalent transforma-
tion. Then, we have

= +-a a
1

2
1. 4t t1 ( )

For the Sierpinski graph which contains the innermost cycle
of Ht, we apply the Sierpinski-delta electrically equivalent
transformation. Hence, we have

=
+
+

-b
b

b

1 2

2 3
. 5t

t

t
1 ( )

Let Ot be the number of the outermost edges in Ht. It is easy
to see that Ot satisfies the following recurrence:

= -O O2 . 6t t 1 ( )

Figure 6. Delta-edge transformation.

Figure 7. Sierpinski graph.
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Considering the initial condition O1=6, we can solve
equation (6) to obtain

=O 3 2 . 7k
k· ( )

Combining equations (2), (3), and (7), we obtain



= +

= + +

´

= + +

´

= +

-

-

- -

-

- -

-

=

-

-

-

-

-

-

N H b a N H

b a b

a N H

b b a

a N H

b a N H

2 2 3 2

2 2 3 2 2 2 3

2

2 2 3 2 3 2

2

2 2 3 2 . 8

WST t t t WST t

t t t

t WST t

t t t

t WST t

t

i

t

i i WST

2 3 2
1

2 3 2
1

2

1
3 2

2

2
1

2 3 2

1
3 2

2

1

2

2 3 2
1

t

t

t

t

t

i

1

1

2

1

2

1

( ) ( ) ( ) ( )
( ) ( ) [ ( )
( ) ] ( )
[( )( )] ( )
( ) ( )

( ) ( ) ( ) ( )

·

·

·

·

·

·

Then, we will use the two particular electrically equiva-
lent transformations to compute N HWST 1( ). Figure 10 shows
that H1 can be reduced into a triangle.

(1) Sierpinski-delta transform: The resulting three edges
have the same conductance +

+
b

b

1 2

2 3
1

1
,

and =
+

N H N HWST b WST1,1
1

2 2 3 1
1

2( ) ( )
( )

.

(2) Delta-edge transform: The resulting three edges have
the same conductance ++

+
ab

b

1 2

2 3

1

2 1
1

1
. The transform has

been applied three times, so
=N H N HWST a WST1,2

1

8 1,1
1
3( ) ( ). It is easy to see that

= ++
+

N H a3WST
b

b1,2
1 2

2 3

1

2 1

2
1

1
( )( ) . Therefore, we have

= +

= +

= + + +

N H b N H

a b N H

a b a a b

2 2 3

16 2 3

48 1 2
3

2
. 9

WST WST

WST

1 1
2

1,1

1
3

1
2

1,2

1
3

1 1 1 1

2
⎜ ⎟⎛
⎝

⎞
⎠

( ) ( ) ( )
( ) ( )

( )

Finally, by substituting equations (9) into (8), we have



= + + +

´ +

+

=

-

N H a b a a b

b a

3 2 1 2
3

2

2 3 2 . 10

WST t
t

i

t

i i

3
1
3

1 1 1 1

2

2

2 3 2i 1

⎜ ⎟⎛
⎝

⎞
⎠( ) ·

( ) ( ) ( )·

In particular, when a1=b1=1, NST(H1)=1452; when
a2=b2=1, NST(H2)=13 220 496; when a3=b3=1,
NST(H3)=32 676 141 960 000, which are consistent with
numerical values of NST(Ht) using the ‘matrix-tree theorem’

[31, 32] and exhibit an exponential growth trend.
After having an exact expression for the number of

spanning trees of Ht, we can calculate its spanning tree
entropy, which is given by

= ¥h lim
lnN H

V
.t

ST t

t

( )

From figure 11, we obtain h=0.945 8.
The obtained asymptotic value can be compared with

those of other networks which have the same average degree,
see table 1. We can see that the spanning tree entropy of the
hybrid network is very close to that of the Farey graph.

Figure 8. Sierpinski-delta transformation.

Figure 9. Two kinds of replacements.

5

Phys. Scr. 94 (2019) 105205 Y Liao et al



Although the six networks in table 1 have the same
average degree, their spanning tree entropies are different.
Now, we try to explain the difference.

Let G be a graph with n vertices. According to the well-
known matrix-tree theorem [31, 32], the number of spanning
tree of graph G can be expressed in terms of its Laplacian
eigenvalues. Let L represent the Laplacian matrix of graph G,
then one can obtain NST(G) by computing the product of all

non-zero eigenvalues of L,

 l=
=

-

N G
n

G
1

,ST
i

n

i
1

1

( ) ( )

where λi(G) (i=1, 2, L, n−1) denote the n−1 non-zero
eigenvalues of matrix L.

For two networks with the same average degree and
order, they have the same number of edges, so the sums of
their Laplacian eigenvalues are the same, but the products of
their non-zero Laplacian eigenvalues may be different. Thus
the numbers of spanning tree of these six networks are
determined by the distributions of their Laplacian eigenva-
lues. It has been shown that there is a strong correlation
between the distribution of Laplacian eigenvalues and the
degree distribution of a network [33, 34]. Therefore, in order
to explain the difference between the spanning tree entropies,
we just need to compare the degree distributions of these six
networks.

We define nk as the number of vertices with degree k in
graph G. Let = ¥p limk n

n

n
k . Table 2 shows the degree

distributions of these six networks. It is clear that the hybrid
network and the Farey graph have the same degree of dis-
tribution, so their spanning tree entropies are very close. The
Sierpinski gasket and the square lattice are two almost four-
regular graphs which implies that the distributions of

Figure 10. Reduce H1 into a triangle.

Figure 11. The spanning tree entropy of Ht.

Table 1. Comparison of spanning tree entropies of several networks.

Type of network
Average degree

á ñk
Spanning tree
entropy h

Pseudofractal scale-free
web [23]

4 0.895 9

The hybrid network 4 0.945 8
Farey graph [16] 4 0.948 5
Fractal scale-free lat-
tice [29]

4 1.039 7

Sierpinski gasket [22] 4 1.048 6
Square lattice [30] 4 1.166 2
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Laplacian eigenvalues of this two graphs are homogeneous
[33, 34]. From the famous arithmetic-geometric mean
inequality [35] we know that the products of non-zero
Laplacian eigenvalues of this two networks are larger than
those of other networks. Therefore, the spanning tree entro-
pies of this two networks are very large. The fractal scale-free
lattice and the pseudofractal scale-free web are two scale-free
networks, but the degree distributions of this two networks
are different. Compared with the pseudofractal scale-free
web, the fractal scale-free lattice has more vertices whose
degree are close to the average degree. So the spanning tree
entropy of the fractal scale-free lattice is larger than that of the
pseudofractal scale-free web. The hybrid network and the
Farey graph are two exponential networks. Table 1 shows that
the spanning tree entropies of this two networks are larger
than that of the pseudofractal scale-free web, but smaller than
that of the fractal scale-free lattice. Therefore, the number of
spanning tree of a network is not determined by whether the
network is scale-free or not.

For the pseudofractal scale-free web, the percentage of
vertices whose degrees are in the interval (1, 10) is 91.4%.
For the hybrid network or the Farey graph, the percentage of
vertices whose degrees are in the interval (1, 10) is 93.8%.
For the fractal scale-free lattice, the percentage of vertices
whose degrees are in the interval (1, 10) is 98.4%. Hence, the
degree distribution of the fractal scale-free lattice is more
concentrated which leads to a more homogeneous distribution
of Laplacian eigenvalues. Therefore, the fractal scale-free
lattice has larger spanning tree entropy, and the pseudofractal
scale-free web has the smallest spanning tree entropy.
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Sierpinski gasket k 2 4
nk 3 -3 1t3

2
· ( )

pk 0% 100%

Square lattice k 4
nk t2

pk 100%
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