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Opinion Diffusion in Two-Layer
Interconnected Networks

Congying Liu, Xiaoqun Wu , Ruiwu Niu, M. A. Aziz-Alaoui , and Jinhu Lü , Fellow, IEEE

Abstract— In reality, individuals will spread their opinions
by word of mouth, meanwhile sharing their opinions on social
platforms. To gain a clear insight into this kind of behavior,
we propose a diffusion model of various opinions in a two-layer
interconnected network using some statistical characteristics of
network structures. Theoretical analysis reveals that the final
fraction of any opinion in one layer will get identical to that
of the same opinion in the other layer. In particular, when the
seed fraction of an opinion in one layer is different from that
in the other layer, the diffusion behavior and final prevalence of
opinions not only rely on the seed fractions of opinions, but also
depend on the attributes of individuals that are active on different
layers, including their inter-layer linking patterns and linking
number. Further analysis shows that mass media will promote the
spread of the opinion that is in accordance with its own. Finally,
we illustrate the effectiveness of analytical results by simulating
the spread of two opinions under four inter-layer linking patterns
on three types of two-layer interconnected networks. The findings
throw new light on some interesting phenomena in society, and
facilitate decision-makers to orientate the prevalence of a special
product.

Index Terms— Opinion diffusion, multi-layer network, seed
fraction, inter-layer linking patterns, linking number.

I. INTRODUCTION

DURING the past three decades, network science has been
of wild applicability and attracted extensive research

attention, such as synchronization [1]–[4], importance eval-
uation of nodes [5]–[7], reconstruction of network structures
[8], [9], consensus [10], [11], propagation and controllability
of epidemics [12]–[14], among many others. Particularly, there
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has been a lot of literature [15]–[19], including theoretical
analysis and large-scale numerical simulations, focusing on
the spreading process of opinions in the context of network
science.

Indeed, opinion diffusion, a product of sociology and psy-
chology, describes the spreading process of individuals’ opin-
ions influenced by their neighbors. Lots of outstanding results
have emerged [18], [20], [21]. For example, DeGroot [22]
proved that a group of individuals will reach agreement on a
common subject by pooling their individual opinions, Hu [23]
studied the impact of social networks, individual fitness and
mass media on opinion diffusion, Yang et al. [24] modified
the Hegselmann-Krause model to investigate the opinion con-
sensus problem and guarantee convergence from general initial
conditions, and Meng et al. [25] found that network structures
have important impact on the convergence of opinions and the
number of steady-state opinion groups. Zhai and Zheng [26]
investigated a general nonlinear model of opinion dynamics
and obtained some sufficient conditions for the stability of the
model under three different scenarios.

Above works are about opinion diffusion in single-layer
networks. However, due to the diversity of spreading processes
and the complexity of individual environment, opinion dif-
fusion occurs not only in single-layer networks, but more
frequently in multi-layer networks [27]. Take the spreading
process of a certain topic for example. Apart from com-
municating with friends or colleagues by word of mouth,
individuals may chat with netizens about this topic on public
social platforms. Therefore, investigating the diffusion process
in a single-layer online or offline network cannot accurately
depict this practical issue. It is more meaningful and practical
to discuss this topic on multi-layer networks than on an
isolated one.

Actually, in the past few years, collective behaviors of
a group of individuals, such as synchronization, diffusion
and epidemic spreading, are increasingly of interest in a
multi-layer network setting and many achievements have been
made lately [28]–[30]. In 2013, Granell et al. [31] combined
the spreading processes of a cyclic information awareness
(the cycle unaware-aware-unaware (UAU)) and an epidemic
(the susceptible-infected-susceptible (SIS)) to propose a semi-
nal UAU-SIS model on multiplex networks, and revealed that
information awareness prevented epidemic spreading. In 2017,
Wu et al. [32] studied the spread of information in which
individual decisions were based on trust, and found that
the memory of previous behaviors had profound impact on
information diffusion. Hu et al. [33] proposed a model to
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describe the opinion diffusion between the regular and the
stubborn people on two different social platforms, and found
that the final opinions of regular individuals were confined to
the convex combinations of opinions of the stubborn ones.
Wang et al. [34] reviewed some fascinating and counter-
intuitive evolutionary outcome about evolutionary game on
multi-layer networks and showed the influence of multi-layer
networks on evolutionary game.

Furthermore, most works of information diffusion focus
on evolutionary mechanisms and ignore the influence of net-
work topologies. It is found that slight changes of network
structures and dynamical systems may lead to significantly
different dynamical behaviors [35]–[37]. Perc [38] presented
an overview of information spreading on multi-layer networks
and showed that even small unimportant changes in one
layer can have catastrophic consequences in other layers.
Jia et al. [39] focused on schemes for group synchronization
in complex dynamical networks and found that group syn-
chronization could be guaranteed by enhancing the external
coupling strength between groups. Li et al. [40] explored
synchronizability of a two-layered star network with two
inter-layer links by giving an analytical expression containing
the largest and smallest nonzero eigenvalues of the Lapla-
cian matrix, and revealed that connecting two nodes in each
layer with positive node degree correlation yielded better
synchronizability than negative one. Wei et al. [41] investi-
gated synchronizability of two-layered networks with different
inter-layer linking patterns, and found that the inter-layer link-
ing weight and linking fraction had a significant impact on syn-
chronizability. Therefore, it naturally follows that inter-layer
linking may play important roles in determining dynamics of
opinion diffusion.

Based on the above motivations, we establish a probability
model to describe a common social behavior in two-layer
interconnected networks, such as information spreading on
multiple channels, new product marketing, and presidential
campaigns with citizens from various classes of the society
supporting different candidates. The main contributions of
the paper are as follows. Firstly, practical network struc-
tures are usually unknown or difficult to accurately identify,
so we expect to use some statistical characteristics of net-
work structures, rather than the particular adjacent matrices
[23], [33], to model the spreading process of opinions. There-
fore, we introduce a probability model to explore the impact
of seed (initial) fractions of opinions, inter-layer linking pat-
terns, linking number and mass media on opinion diffusion
dynamics. Secondly, in most works [20], [22], [23], [25],
[33], it is difficult to analyze the relationships between the
parameters and the prevalence of opinions according to the
probability model presented without simulations. But in this
paper, we gain that the final prevalence of opinions not only
rely on the seed fractions of opinions, but also depend on the
attributes of individuals that are active in different layers by
theoretical analysis.

The rest of the paper is organized as follows. Firstly, Sec. II
presents a mathematical model that describes the spreading
process of opinions in two-layer interconnected networks, and
theoretical analysis reveals the impact of various parameters

Fig. 1. Agents A, D, E, H, I hold Opinion 1, and agents B, C, F, G
hold Opinion 2, where agents B, D, F are uncoupled agents in layer L1,
and agents G, H, I are uncoupled agents in layer L2. Agents A, C, E are
coupled agents that are active in both layers, and they are influenced by the
neighbors with weight ω (0 < ω < 1) in layer L1 and 1 − ω in layer L2.
Solid and dotted lines represent the intra-layer links in layer L1 and L2,
respectively, and agents connected by dashed lines in panel (a) represent
coupled agents.

on the final prevalence of opinions. Next, Sec. III discusses
the effect of mass media on opinion diffusion. Then, Sec. IV
provides verification of the correctness of the proposed model
by Monte Carlo simulations and presents some very interesting
findings. Finally, Sec. V concludes the paper and presents
some discussions.

II. GENERAL MODEL AND ANALYSIS

Consider a two-layer interconnected network, consisting of
layer L1 of size N1 and layer L2 of size N2, where each layer
is a degree-degree uncorrelated undirected network with no
self-loops and two layers have different intra-layer connectiv-
ity. In the network, each node represents an individual, the link
between two nodes represents individuals’ communication
connection, and each agent has an opinion. When opinions
spread among people, there are two kinds of individuals in the
two-layer interconnected network. One is those who are active
and spread their opinions in both layers, termed as coupled
agents, and the other is those who are only active in a single
layer, termed as uncoupled agents (see Fig. 1 (a)).

Note that a coupled agent holds the same opinion in two
layers and can indicate the attributes of networks, such as
inter-layer linking patterns (the degree of coupled agents in
two layers).

Initially, agents randomly hold Opinion i, i ∈{1, 2,. . ., No},
where No (≥ 2) is the total number of opinions. Then, influ-
enced by their neighbors, agents may change their Opinion i to
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Opinion j or persist in their previous Opinion i . So, we assume
the persuasiveness of an agent is a function of his (her)
degree [42], [43]. Specifically, we denote the persuasiveness
of an agent with degree kl as f (kl), and f (kl) is a power-law
function of degree kl , that is f (kl) = kα

l , where kl is the degree
of agents in layer Ll , l (= 1, 2) represents the subscript of
layers and 0 ≤ α ≤ 4. Furthermore, since coupled agents are
influenced by their neighbors in two layers, we suppose that
coupled agents are influenced by their neighbors from layer L1
with weight ω (0 < ω < 1) and the neighbors from layer L2
with weight 1 − ω.

In order to describe the dynamical mechanism of opinion
diffusion in a two-layer interconnected network precisely,
we unfold the two-layer interconnected network into an aggre-
gated network with size N1+N2−Nc, where Nc is the number
of coupled agents (see Fig. 1 (b)). Obviously, there are three
kinds of agents, that is, uncoupled agents from layer L1 (such
as agents B, D, F in Fig. 1), uncoupled agents from layer L2
(such as agents G, H, I in Fig. 1) and coupled agents (such
as agents A, C, E in Fig. 1).

Note that the purpose of unfolding the two-layer intercon-
nected network into an aggregated network is to better describe
the attributes of coupled agents by statistical characteristics of
network structures. Different from the previous works about
information diffusion, there could be multiple edges with
different characteristics in the aggregated network (see Edge
AC in Fig. 1 (b)) in this paper.

A. General Model

In the aggregated network, for uncoupled agents in layer
Ll , l = 1, 2, the degree distribution of an agent with degree kl
is Pl,u(kl) (it is the fraction of the number of uncoupled agents
in layer Ll out of the number of all agents in the aggregated
network). At time step t + 1, the probability of uncoupled
agents having degree kl and Opinion i is

Ot+1
l,u (kl , i)

= Ot
l,u (kl, j)

∑
k′

l
pl(k ′

l |kl)qt
l (i |k ′

l) f (k ′
l)∑

k′
l

∑
j pl(k ′

l |kl)qt
l ( j |k ′

l) f (k ′
l)

+Ot
l,u(kl , i)

(

1 −
∑

k′
l

pl(k ′
l |kl)(1 − qt

l (i |k ′
l)) f (k ′

l)∑
k′

l

∑
j pl(k ′

l |kl)qt
l ( j |k ′

l) f (k ′
l)

)

, (1)

where Ot
l,u(kl, j) is the probability of uncoupled agents having

degree kl and Opinion non-i , and Ot
l,u (kl, j) = Pl,u(kl) −

Ot
l,u(kl , i), j &= i . pl(k ′

l |kl) denotes the conditional probability
that agents in layer Ll with degree kl are connected with
agents in layer Ll with degree k ′

l , and ql(i |kl) represents the
conditional probability that agents in layer Ll with degree kl
hold Opinion i . On the right-hand side of Eq. (1), the first
term is the probability that uncoupled agents with degree kl
change their opinions from non-i to i , and the second term is
the probability that uncoupled agents with degree kl stick to
their Opinion i .

Note that the denominator of the fractions or probabilities
denoted by capital letters is the number of all agents in the
aggregated network (i.e. N1 + N2 − Nc), and that of denoted

by lowercase letters is the number of all agents in the layer
(i.e. N1 or N2).

Since we assume that connections in each layer are uncorre-
lated with node degrees and opinions are distributed randomly,
there are pl(k ′

l |kl) = k′
l p(k′

l )
〈kl 〉 and qt

l (i |k ′
l) = ot

l (k
′
l ,i)

pl (k′
l )

, where

ot
l (k

′
l , i) represents the probability that agents in layer Ll have

Opinion i and degree k ′
l at time step t , and pl(k ′

l) is the degree
distribution of agents in layer Ll , l = 1, 2. Then, Eq. (1) can
be simplified as

Ot+1
l,u (kl , i) = Pl,u(kl) · gt

l (i), (2)

where gt
l (i) =

∑
k′
l

k′
l ot

l (k
′
l ,i) f (k′

l )∑
k′
l

k′
l pl (k′

l ) f (k′
l )

. Apparently, gt
l (i) represents

the influence of Opinion i in layer Ll at time step t .
Similarly, in the aggregated network, for coupled agents

with degree k1 in layer L1 and k2 in layer L2, the probability
of them holding Opinion i is

Ot+1
c (k1, k2, i)

= ω

[

Ot
c(k1, k2, j)

∑
k′

1
p1(k ′

1|k1)qt
1(i |k ′

1) f (k ′
1)∑

k′
1

∑
j p1(k ′

1|k1)qt
1( j |k ′

1) f (k ′
1)

+ Ot
c(k1, k2, i)

(

1 −
∑

k′
1

p1(k ′
1|k1)(1 − qt

1(i |k ′
1)) f (k ′

1)∑
k′

1

∑
j p1(k ′

1|k1)qt
1( j |k ′

1) f (k ′
1)

)]

+(1−ω)

[

Ot
c(k1, k2, j)

∑
k′

2
p2(k ′

2|k2)qt
2(i |k ′

2) f (k ′
2)∑

k′
2

∑
j p2(k ′

2|k2)qt
2( j |k ′

2) f (k ′
2)

+Ot
c(k1, k2, i)

(

1−
∑

k′
2

p2(k ′
2|k2)(1− qt

2(i |k ′
2)) f (k ′

2)∑
k′

2

∑
j p2(k ′

2|k2)qt
2( j |k ′

2) f (k ′
2)

)]

,

(3)

where Ot
c(k1, k2, j) is the probability of coupled agents with

degree k1 in layer L1 and k2 in layer L2 having Opinion
non-i , and Ot

c(k1, k2, j)= Pc(k1, k2)−Ot
c(k1, k2, i). Pc(k1, k2)

is the degree distribution of coupled agents with degree k1
in layer L1 and k2 in layer L2. On the right-hand side of
Eq. (3), the first term is the probability that coupled agents
with degree k1 in layer L1 and k2 in layer L2 influenced by
their neighbors in layer L1 hold Opinion i , and the second
term is the probability that coupled agents with degree k1 in
layer L1 and k2 in layer L2 influenced by their neighbors in
layer L2 hold Opinion i . Eq. (3) can be simplified as

Ot+1
c (k1, k2, i)=ωPc(k1, k2)gt

1(i) + (1 − ω)Pc(k1, k2)gt
2(i).

(4)

Since Ot
l,u (i) = ∑

kl
Ot

l,u (kl, i), l = 1, 2 and Ot
c(i) =∑

k1

∑
k2

Ot
c(k1, k2, i), we can obtain Ot

l,u(i) and Ot
c(i), where

Ot
l,u(i) is the probability of uncoupled agents holding Opin-

ion i in the aggregated network at time step t and Ot
c(i) is

the probability of coupled agents holding Opinion i in the
aggregated network at time step t . Therefore, in layer Ll of
the two-layer interconnected network, we get the fraction of
coupled agents holding Opinion i at time step t , denoted by
ot

l,c(i), the fraction of uncoupled agents holding Opinion i
at time step t , denoted by ot

l,u(i), and the fraction of agents
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holding Opinion i at time step t , denoted by ot
l (i), that is,

ot
l,c(i)=ηl Ot

c(i), ot
l,u(i)=ηl Ot

l,u (i), ot
l (i)=ot

l,c(i)+ot
l,u(i),

(5)

where ηl = N1+N2−Nc
Nl

, l = 1, 2 and i ∈ {1, . . . , No}.

B. Analytical Expression

Suppose that the seed fractions of all agents holding Opin-
ion i in layer L1 and L2 are o0

1(i) = ρ0 and o0
2(i) =

ρ0 + ε, respectively. Obviously, ε = 0 represents that the seed
fractions of Opinion i in two layers are identical, and ε > 0
(< 0) represents that the seed fraction of Opinion i in layer L2
is larger (smaller) than that in layer L1. According to Eqs. (2)
and (4), we can get

ot+1
1 (k1, i) = η1



P1,u(k1)gt
1(i) + ω

∑

k2

Pc(k1, k2)gt
1(i)

+(1 − ω)
∑

k2

Pc(k1, k2)gt
2(i)



 ,

ot+1
2 (k2, i) = η2



P2,u(k2)gt
1(i) + ω

∑

k1

Pc(k1, k2)gt
1(i)

+(1 − ω)
∑

k1

Pc(k1, k2)gt
2(i)



 . (6)

Since P1,c(k1) = ∑
k2

Pc(k1, k2) and P2,c(k2) =∑
k1

Pc(k1, k2), there are p1(k1) = η1
(
P1,u(k1) + P1,c(k1)

)

and p2(k2)=η2
(
P2,u(k2) + P2,c(k2)

)
. Eq. (6) can be written

as

ot+1
1 (kl, i) = p1(k1)gt

1(i)+η1(1 − ω)P1,c(k1)
(
gt

2(i)−gt
1(i)

)
,

ot+1
2 (k2, i) = p2(k2)gt

2(i)+η2ωP2,c(k2)
(
gt

1(i)−gt
2(i)

)
, (7)

where Pl,c(kl) represents the probability of coupled agents
having degree kl in the aggregated network, and l = 1, 2.

Initially, opinions are distributed randomly among agents,
which implies o0

l (kl, i) = pl(kl)o0
l (i). Substituting it into

Eq. (7), at time step t = 1, we obtain

o1
1(k1, i) = p1(k1)ρ0 + P1,c(k1) · η1(1 − ω)ε,

o1
2(k2, i) = p2(k2)(ρ0 + ε) − P2,c(k2) · η2ωε.

Then, at time step t = 2, we have

o2
1(k1, i) = p1(k1)ρ0 + p1(k1) · η1(1 − ω)c1ε

+P1,c(k1) · η1(1 − ω)[1−η1(1 − ω)c1−η1ωc2]ε,
o2

2(k2, i) = p2(k2)(ρ0 + ε) − p2(k2) · η2ωc2ε

−P2,c(k2) · η2ω[1 − η2(1 − ω)c1 − η2ωc2]ε,

where cl =
∑

k′
l

k′
l Pl,c(k′

l ) f (k′
l )∑

k′
l

k′
l pl (k′

l ) f (k′
l )

, l = 1, 2. Obviously, cl represents

the total influence of coupled agents in layer Ll .

By that analogy, we obtain the analytic expressions of
ot

1(k1, i) and ot
2(k2, i), that is,

ot
1(k1, i) = p1(k1)ρ0+ p1(k1)

t∑

s=2

η1(1−ω)c1[1−η1(1−ω)c1

−η2ωc2]s−2ε+ P1,c(k1)η1(1−ω)[1−η1(1−ω)c1

−η2ωc2]t−1ε,

ot
2(k2, i) = p2(k2)(ρ0+ε)− p2(k2)

t∑

s=2

η2ωc2[1−η1(1−ω)c1

−η2ωc2]s−2ε+ P2,c(k2)η2ω[1−η1(1−ω)c1

−η2ωc2]t−1ε. (8)

From Eq. (8), we obtain that when the seed fraction of
Opinion i in layer L1 (i.e. ρ0) is approximately equal to that
of layer L2 (i.e. ρ0 + ε), that is ε ≈ 0, the final fraction
of Opinion i approximates the seed fraction, regardless of
the attributes of coupled agents in the network. However,
if the seed fraction of Opinion i in layer L1 (i.e. ρ0) differs
from that of layer L2 (i.e. ρ0 + ε), that is ε &= 0, the final
fraction of Opinion i not only relies on the seed fraction, but
also depends on network structures, especially the attributes
of coupled agents, including inter-layer linking patterns and
linking number.

C. Stability Analysis

Now we wonder whether the fraction of each opinion in
two layers tends to a positive constant (i.e. fixed point) as
t → +∞, and if the fixed points exist, what is the relationship
between the fraction of one opinion in layer L1 and that of
corresponding one in layer L2?

Substituting Eq. (5) into Eq. (2), we can obtain

Ot+1
1,u (k1, i) = p1,u(k1)

(∑
k′

1
k ′

1 Ot
1,u(k ′

1, i) f (k ′
1)∑

k′
1

k ′
1 p1(k ′

1) f (k ′
1)

+
∑

k′
1

∑
k2

k ′
1 Ot

c(k
′
1, k2, i) f (k ′

1)∑
k′

1
k ′

1 p1(k ′
1) f (k ′

1)

)

Ot+1
2,u (k2, i) = p2,u(k2)

(∑
k′

2
k ′

2 Ot
2,u(k ′

2, i) f (k ′
2)∑

k′
2

k ′
2 p2(k ′

2) f (k ′
2)

+
∑

k′
2

∑
k1

k ′
2 Ot

c(k1, k ′
2, i) f (k ′

2)∑
k′

2
k ′

2 p2(k ′
2) f (k ′

2)

)

, (9)

where pl,u(kl) is the probability of uncoupled agent in layer
Ll with degree kl and pl,u(kl) = ηl Pl,u(kl), l = 1, 2.

Similarly, substituting Eq. (5) into Eq. (4), we can obtain

Ot+1
c (k1, k2, i)

= ωp1,c(k1, k2)

(∑
k′

1
k ′

1Ot
1,u(k ′

1, i) f (k ′
1)∑

k′
1

k ′
1 p1(k ′

1) f (k ′
1)

+
∑

k′
1

∑
k2

k ′
1Ot

c(k
′
1, k2, i) f (k ′

1)∑
k′

1
k ′

1 p1(k ′
1) f (k ′

1)

)

+(1−ω)p2,c(k1, k2)

(∑
k′

2
k ′

2 Ot
2,u(k

′
2, i) f (k ′

2)∑
k′

2
k ′

2 p2(k ′
2) f (k ′

2)

+
∑

k′
2

∑
k1

k ′
2Ot

c(k1, k ′
2, i) f (k ′

2)∑
k′

2
k ′

2 p2(k ′
2) f (k ′

2)

)

(10)
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where pl,c(k1, k2) is the probability that coupled agents in
layer Ll have degree k1 in layer L1 and degree k2 in layer L2,
and pl,c(k1, k2) = ηl Pc(k1, k2).

Let St
1,u(i) = (Ot

1,u(k1
1, i), . . . , Ot

1,u(kmax
1 , i)), St

2,u(i) =
(Ot

2,u(k1
2, i), . . . , Ot

2,u(kmax
2 , i)), St

c(i) = (Ot
c(k

1
1, k1

2, i), . . . ,
Ot

c(k
1
1, kmax

2 , i), . . . , Ot
c(k

max
1 , k1

2, i), . . . , Ot
c(k

max
1 , kmax

2 , i)),
then St (i) = (St

1,u(i), St
2,u(i), St

c(i))
,. According to Eqs. (9)

and (10), we get

St+1(i) =



R11 0|Sk1 |×|Sk2 | R13

0|Sk2 |×|Sk1 | R22 R23

R31 R32 R33



 St (i), (11)

where Sk1 = {k1
1, . . . , kmax

1 } and Sk1 = {k1
2, . . . , kmax

2 } are
degree set of layer L1 and L2, respectively, |Sk1 | and |Sk2 |
are the cardinal numbers of set Sk1 and Sk2 , respectively,
0|Sk1 |×|Sk2 | (0|Sk2 |×|Sk1 |) is the |Sk1 |×|Sk2 | (|Sk2 |×|Sk1 |) matrix
with each entry being 0, 1|Sk1 | (1|Sk2 |) is a |Sk1 |-dimensional
(|Sk2 |-dimensional) column vector with each entry being 1, ⊗
is the Kronecker product, , is the transpose of a vector or a
matrix, r1, r2, R11, R22, R31, R32, R13, R23, R33, as shown at
the bottom of the page.

Thus, the characteristic equation is

λα[(λ − r3 − ωr4)(λ − r5 − (1 − ω)r6)−ω(1 − ω)r4r6]=0

(12)

where α = |Sk1|+|Sk2|+|Sk1|·|Sk2|−2, r3 =
∑

k′
1
k′

1 p1,u (k′
1) f (k′

1)
∑
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1
k′

1 p1(k′
1) f (k′

1)
,
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∑
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1 pc(k′
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1)
∑

k′
1
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1 p1(k′
1) f (k′

1)
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∑
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2
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2 p2,u (k′
2) f (k′

2)
∑

k′
2
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2 p2(k′
2) f (k′

2)
and

r6 =
∑
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1

∑
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2

k′
2 pc(k′

1,k
′
2) f (k′

2)
∑

k′
2

k′
2 p2(k′

2) f (k′
2)

.

It follows from Eq. (12) that we only need to consider the
eigenvalues of

f1(λ)=(λ−r3−ωr4)(λ−r5−(1−ω)r6)−ω(1−ω)r4r6 =0.

And we discover





' = (r3 + ωr4 + r5 + (1 − ω)r6)2 + 4ω(1−ω)r4r6 > 0,

f (0) = r3r5 + (1 − ω)r3r6 + ωr4r5 > 0,

0 < r3+ωr4+r5+(1−ω)r6
2 < 1,

f (1)=(1−r3−ωr4)(1−r5−(1−ω)r6)

−ω(1−ω)r4r6 =0.

(13)

In fact, for the third equation of Eq. (13), p1(k ′
1) =

p1,u(k ′
1) + ∑
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2
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2) and 0 < ω < 1, so r3 +
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< 1. In the same

way, r5 + (1 − ω)r6 < 1. Thus, r3+ωr4+r5+(1−ω)r6
2 <

1. For the fourth equation of Eq. (13), 1 − r3 −
ωr4 =

∑
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=

(1−ω)r4. Similarly, 1−r5−(1−ω)r6 = ωr6. Thus, f (1) = 0.
Therefore, we can obtain |λ| ≤ 1 and Eq. (11) is stable,

which indicates that the fraction of each opinion in two layers
trends to a fixed point.

Furthermore, as opinions are stabilized, we can easily derive
the following results, that is,

o∞
1,c(i) = o∞

2,c(i), o∞
1,u(i) = o∞

2,u(i), o∞
1 (i) = o∞

2 (i). (14)
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R13 = R11 ⊗ 1,
|Sk2 |,

R23 = 1,
|Sk1 | ⊗ R22,

R33 = R31 ⊗ 1,
|Sk2 | + 1,

|Sk1 | ⊗ R32
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It is analogous to diffusion (mixture) of multiple gases
in connected containers. The different gases will not stop
diffusing until the fraction of each gas in one container is
identical to that in another one.

III. MODEL WITH MASS MEDIA

In the real world, besides being influenced by their neigh-
bors, people may also be impacted by mass media, such as
information conveyed by TV, and the radio or newspapers.
In general, mass media is a global open source of information
for people, which indicates that it may impact all agents’
opinions [44]–[46]. Therefore, we set that mass media holds
opinion m ∈ {1, . . . No} and the impact of mass media on
agents is Pm (0 < Pm < 1). Since Pm can be regarded as
a measure of the intrinsic individual determination relative
to the impact exerted by mass media, the large-Pm scenario
implies a social environment with individuals subject to strong
social pressure, while the small-Pm case represents a society
characterized by loose social pressure.

In the aggregated network, the probability of uncoupled
agents in layer Ll , l = 1, 2, having degree kl and holding
Opinion i (i &= m) is

Ot+1
l,u (kl, i) = (1− Pm)Ot

l,u(kl, j)

∑
k′

l
pl(k ′

l |kl)qt
l (i |k ′

l) f(k ′
l)∑

k′
l

∑
j pl(k ′

l |kl)qt
l ( j |k ′

l) f(k ′
l)

+(1− Pm)Ot
l,u(kl, i)

×
(

1−
∑

k′
l

pl(k ′
l |kl)(1−qt

l (i |k ′
l)) f (k ′

l)∑
k′

l

∑
j pl(k ′

l |kl)qt
l ( j |k ′

l) f (k ′
l)

)

. (15)

In this case, the agents are actually not influenced by mass
media. Specifically, on the right-hand side of Eq. (15), the first
term is the probability that uncoupled agents with degree kl
change their opinion from non-i to i and the second term is
the probability that they stick to their Opinion i . Eq. (15) can
be further simplified into

Ot+1
l,u (kl , i) = (1 − Pm)Pl,u(kl) · gt

l (i). (16)

For uncoupled agents in layer Ll , l = 1, 2, holding Opinion
m(∈ {1, . . . No}), the probability of them having degree kl and
Opinion m is

Ot+1
l,u (kl, m)

= Ot
l,u (kl, j)

×
[

Pm + (1 − Pm)

∑
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l
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]

.

(17)

On the right-hand side of Eq. (17), the first term is the
probability that uncoupled agents with degree kl change their
opinion from non-m to m, and in this process mass media
impacts on uncoupled agents’ opinion. The second term is the

probability that they stick to their Opinion m. Then, Eq. (17)
can be simplified as

Ot+1
l,u (kl , m) = Pm Pl,u(kl) + (1 − Pm)Pl,u(kl) · gt

l (m). (18)

Analogously, for coupled agents with degree k1 in layer
L1 and degree k2 in layer L2 in the aggregated network,
the probability of them holding Opinion i ( &= m) is

Ot+1
c (k1, k2, i) = ω(1− Pm)Pc(k1, k2)gt

1(i)

+(1 − ω)(1 − Pm)Pc(k1, k2)gt
2(i). (19)

On the right-hand side of Eq. (19), the first term is the
probability that coupled agents with degree k1 in layer L1 and
degree k2 in layer L2 influenced by their neighbors in layer
L1 hold Opinion i , and the second term is the probability
that coupled agents with degree k1 in layer L1 and degree
k2 in layer L2 influenced by their neighbors in layer L2 hold
Opinion i . In this situation, we discover that coupled agents
are not impacted by mass media.

And for coupled agents with degree k1 in layer L1 and
degree k2 in layer L2, the probability of them holding Opinion
m is

Ot+1
c (k1, k2, m)= PmPc(k1, k2)+ω(1− Pm)Pc(k1, k2)gt

1(i)

+(1−ω)(1− Pm)Pc(k1, k2)gt
2(i). (20)

On the right-hand side of Eq. (20), the first term is the
probability that coupled agents with degree k1 in layer L1
and degree k2 in layer L2 influenced by mass media hold
Opinion m, the second term is the probability that coupled
agents with degree k1 in layer L1 and k2 in layer L2 influenced
by their neighbors in layer L1 hold Opinion m, and the third
term is the probability that coupled agents with degree k1 in
layer L1 and k2 in layer L2 influenced by their neighbors in
layer L2 hold Opinion m.

Comparing Eqs. (16) with (2), and Eqs. (19) with (4),
we can obtain that mass media will restrain the spread of
opinions that are different from its own. Similarly, comparing
Eqs. (18) with (2) and Eqs. (20) with (4), we can observe that
mass media will promote the spreading of opinions that are in
accordance with its own.

IV. NUMERICAL SIMULATION

To confirm the previous analytical prediction, we proceed
with numerical simulations in two-layer interconnected net-
works with the size of each layer being N1 = N2 = 1000.
The average node degree of each independent layer is approx-
imately 4. Consider three topologies: ER-ER networks with
each layer being independently formed by the algorithm pro-
posed by Erdös and Rényi for generating random graphs [47],
WS-WS networks with each layer being independently formed
by the algorithm proposed by Watts and Strogatz for generat-
ing small-world graphs [48], and BA-BA networks formed by
the algorithm proposed by Barabási and Albert for generating
scale-free networks [49]. Specifically, in the ER graphs, each
link is included with a probability p = 0.004. In the WS
graphs, we start with a nearest-neighbor network, where each
node is connected to its 4 nearest neighbors, then rewire one
end of each link with a probability of p = 0.05 and connect
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Fig. 2. The validity of the general model. From left to right, the panels are the evolutions of Opinion 1 in two-layer ER-ER (left), WS-WS (middle) and
BA-BA (right) networks. The top panels display the theoretical results from Eq. (8), and the bottom panels are the corresponding results obtained from MC
simulations. We set the seed fractions o0

1(1) = 0.3 and o0
2(1) = 0.5, and the linking number Nc = 50. The solid and dashed curves represent the evolution

of Opinion 1 in layer L1 and L2, respectively. The circle, triangle, square and rhombus markers represent the L L , H L , L H and H H inter-layer linking
patterns, respectively.

it to a new node randomly selected from the network. In the
BA graphs, we start with a fully connected network of 100
nodes. Then, we sequentially add the remaining nodes, where
each node is connected to 2 existing nodes with probability
that is proportional to the number of links that the existing
nodes already have.

In a two-layer interconnected network, coupled agents may
have diverse attributes. For example, a coupled agent may be
a hub or a peripheral node in a layer. Therefore, if coupled
agents have high (low) degrees in layer L1 and high (low)
degrees in layer L2, we call this case the H H (L L) inter-layer
linking pattern, whereas if coupled agents have high (low)
degrees in layer L1 and low (high) degrees in layer L2, we call
this case the H L (L H ) linking pattern. Specifically, since
coupled agents hold the same opinion in two layers, in the
H H (L L) linking pattern, we suppose that agents holding
Opinion i in each layer are ordered by decreasing (increasing)
degrees and the first Nc agents are coupled agents. Similarly,
in the H L (L H ) linking pattern, agents having Opinion i in
layer L1 and L2 are ordered by decreasing (increasing) and
increasing (decreasing) degrees, respectively.

For simplicity, we discuss the case that there are two
opinions spreading (No = 2) in two-layer interconnected
networks. Initially, Opinions 1 and 2 are randomly seeded in
all the agents and all coupled agents hold Opinion 1. Since
ot

l (1)+ot
l (2) = 1, we only need to know the dynamics of one

term. Therefore, we will focus on the fraction of Opinion 1
and omit that of Opinion 2. Furthermore, we set the parameter

in the persuasiveness function f (kl) as α = 0.5 and the weight
of influence on coupled agents from their neighbors in layer
L1 as ω = 0.4. Monte Carlo (MC) simulations are employed
and repeated 100 times for each fixed two-layer interconnected
network with 20 network generations randomly to calculate
the final prevalence of each opinion and compare with the
theoretical results.

Note that if some of the coupled agents hold Opinion 1 and
the others hold Opinion 2, there could be 16 (i.e. 42) kinds of
inter-layer linking cases in two-layer interconnected networks.
These cases could cause more complicated spreading process
of opinions, which is adverse to analyse opinion diffusion.
Therefore, we assume that all coupled agents hold Opinion 1.

A. The Validity of the Model

First, we verify the correctness of the theoretical results of
final prevalence of each opinion in two-layer interconnected
networks. Fig. 2 shows the evolutions of Opinion 1 in ER-ER
(left), WS-WS (middle) and BA-BA (right) networks, where
the seed fractions o0

1(1) = 0.3 and o0
2(1) = 0.5, and the

number of coupled agents is Nc = 50 (only 50 agents are
active in both layers L1 and L2). It is obvious that the MC
simulations are basically in agreement with the theoretical
results, although there are some discrepancies, which should
be due to randomness caused by the MC simulation. Further-
more, we can observe that the final prevalence (fraction) of
Opinion 1 in layer L1 is identical with that in layer L2, which
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Fig. 3. The impact of the seed fractions of Opinion 1 on the final fraction of Opinion 1. Specifically, with the seed fractions of Opinion 1 varying from
0.05 to 0.95 with step 0.05, the panels from top to bottom are the final fraction of Opinion 1 in the L L (top), H L (top-middle), L H (bottom-middle) and
H H (bottom) linking patterns on two-layer ER-ER (left), WS-WS (middle), and BA-BA (right) networks. We set the number of coupled agents Nc = 50.
The color represents the value of the final fraction of Opinion 1 (o∞

1 (1) or o∞
2 (1)) as shown in the color bars.

coincide with Eq. (14). In addition, we observe that it takes
the least time for opinions to reach a steady state for the H H
linking pattern, and it takes the longest time for opinions to
get stabilized for the L L pattern, and the other two linking

patterns are in between. The phenomenon is more obvious
for the two-layer BA-BA networks than for the ER-ER or
WS-WS networks. It should be due to the reason that nodes
in BA networks are heterogenous whereas nodes in ER or WS
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Fig. 4. The impact of linking number on the fractions of Opinion 1. From top to bottom, the panels are the evolutions of Opinion 1 in the L L (top),
H L (top-middle), L H (bottom-middle) and H H (bottom) linking patterns on ER-ER (left), WS-WS (middle), and BA-BA (right) networks. We set the seed
fractions of Opinion 1 in layer L1 and L2 as o0

1(1) = 0.3 and o0
2(1) = 0.5. The color of each curve represents the value of the inter-layer linking number

Nc as shown in the color bars. The solid and dashed curves represent the evolution of Opinion 1 in layer L1 and L2, respectively.

networks are homogeneous. Thus, different inter-layer linking
patterns in BA-BA networks will result in a more obviously
different result than that in the other two.

B. The Impact of Seed Fractions

Next, we explore how the seed fractions of Opinion 1 in
the two layers, o0

1(1) and o0
2(1), impact the final prevalence

of Opinion 1 in two-layer interconnected networks. In Fig. 3,
we vary the seed fractions of Opinion 1 from 0.05 to 0.95,
and divide the plane (0.05, 0.95) × (0.05, 0.95) into four
regions, that is, Region I ((0.05, 0.5)× (0.05, 0.5)), Region II
((0.5, 0.95)×(0.05, 0.5)), Region III ((0.5, 0.95)×(0.5, 0.95))
and Region IV ((0.05, 0.5)× (0.5, 0.95)). On one hand, when
the seed fractions of Opinion 1 are in Region I, its final
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Fig. 5. The impact of mass media on the fractions of Opinion 1. From left to right, the panels are the evolutions of Opinion 1 in two-layer ER-ER (left),
WS-WS (middle), and BA-BA (right) networks with the impact of mass media for Pm = 0.1. The orange color represents that mass media hold Opinion 1
(that is, m = 1), whereas the celeste color represents that mass media hold Opinion 2 (that is, m = 2). We set the seed fractions o0

1(1) = 0.3 and o0
2(1) = 0.5,

and the linking numbers Nc = 50. The solid and dashed curves represent the evolution of Opinion 1 in layer L1 and L2, respectively. The circle, triangle,
square and rhombus markers represent the L L , H L , L H and H H linking patterns.

fraction is the largest with the H H linking pattern, whereas
when the seed fractions are in Region III, the final prevalence
of Opinion 1 change slightly for the four different linking
patterns. These phenomena reveal that when Opinion 1 are not
dominant in either layer (see Region I), coupled agents having
high degrees in the two layers are more favorable for the
spread of Opinion 1, whereas when Opinion 1 are dominant in
both layers (see Region III), the degrees of coupled agents have
little impact on the final prevalence of this opinion. Indeed,
when a cultural fad or a new product are not of high popularity,
celebrities (agents with larger degrees) definitely have greater
influence on the spread of them than ordinary people, that is
celebrity charm. However, when a culture fad or a new product
has become very popular, celebrities might play little role in
their spread, that is why some popular products are rarely
advertised but they still sell well.

On the other hand, from Fig. 3, we can also observe that
when the seed fractions of Opinion 1 are in Region II, the final
fraction of the opinion is the largest in the L H linking pattern.
Likewise, the final fraction of Opinion 1 is the largest in the
H L linking pattern when the seed fractions of Opinion 1 are
in Region IV. These phenomena indicate that, if the coupled
agents have low degrees in the layer where the seed fraction
of the opinion is dominant and have high degrees in the
layer where the seed fraction of the opinion is subordinate,
the spread of Opinion 1 can be faster than any other case.
This result seems to be paradoxical but can explain some
social phenomena. Take online celebrities for example. Online
celebrities have hundreds of thousands of online fans who
are usually civilians, but they may have few friends in the
circle of the rich. And luxury goods are popular among the
rich, but not so attractive to civilians. Suppose that the group
of individuals including the rich and the online celebrities
as layer L1, and the group of civilians and celebrities as
layer L2. Here the online celebrities can be regarded as
coupled agents, and the will to buy luxury goods as Opinion 1.
According to our result, online celebrities can promote the
sale of luxury goods, which coincides with the fact of “online
celebrity economy”. Moreover, we discover that the tendency

of the final fractions of Opinion 1 differ in the three types of
two-layer interconnected networks. Particularly, the tendency
of the final prevalence of Opinion 1 is approximately the
same for the four linking patterns in WS-WS networks, which
implies that the inter-layer linking pattern has little impact on
diffusion in WS-WS networks.

C. The Impact of Linking Number

In the following, we vary the number of coupled agents
Nc , from 10 to 300, and display the evolutions of fractions
of Opinion 1, where the color of each curve represents the
value of the inter-layer linking number as shown by the color
bars. It is obvious that with the number of coupled agents
increasing, it takes less time for the opinion to reach a steady
state, regardless of network structures and the inter-layer
linking patterns. Furthermore, with the number of coupled
agents rising, the final fraction of Opinion 1 decreases in
the H L linking pattern, while it increases in the L H linking
pattern. When coupled agents have low degrees in one layer
and high degrees in the other layer, with the increase of the
number of coupled agents, the final prevalence of Opinion 1
will tend to the fraction of Opinion 1 of the layer with
coupled agents having high degrees. This partially reflects
that coupled agents with high degrees play significant role in
determining the prevalence of Opinion 1. But, it is not always
the best way to improve the spread of an opinion by coupling
agents with high degrees in the two layers (see Region IV
of panels (d) and (j) in Fig. 3), which is an intriguing result.
Additionally, we can observe that in each kind of two-layered
interconnected networks, the H H linking pattern basically
leads to the fastest stabilization, while the L L leads to the
slowest, especially when there are few coupled agents.

D. The Impact of Mass Media

Finally, we discuss the impact of mass media on the
dynamics of opinion diffusion. From Fig. 5, we observe that
all agents finally reach consensus and take mass media’s opin-
ion, regardless of the linking patterns or network structures.
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In particular, all agents finally hold Opinion 2, even if coupled
agents hold Opinion 1 but the mass media holds Opinion 2.
The phenomenon is in agreement with the analysis we get in
Sec IV, which further indicates that mass media plays a pivotal
role in determining the final prevalence of opinions. It also
provides hints for us to deal with some practical problems.
Take the spread of rumors for example. When rumors are
prevalent, mass media can stand out to suppress the spread
of rumors by refuting the rumor or broadcasting the right
information.

V. CONCLUSION AND DISCUSSIONS

In the paper, we propose an opinion diffusion model to
describe a practical and generic diffusion process in two-
layer interconnected networks. Our results demonstrate that
when the seed fractions of opinions in two layers differ from
each other, the final prevalence of different opinions not only
relies on the seed fractions, but also depends on the network
structures, especially the inter-layer linking patterns and link-
ing number. Furthermore, mass media facilitates the spread
of the opinion that is the same with its own. In particular,
we explore the spread of two opinions in three types of
two-layer interconnected networks under all coupled agents
holding the same opinion. We discover that coupled agents,
who have low degrees in the layer that the seed fraction of
an opinion is dominant and have high degrees in the layer
that the seed fraction of the same opinion is subordinate, will
favor diffusion of the opinion. In this case, with the increase
of the number of coupled agents, the final prevalence of the
opinion will get closer to the seed fraction of the opinion in the
layer with coupled agents having high degrees. The findings
reported here are of interest to researchers seeking to better
understand the diffusion of various opinions in multi-layer
networks, as well as to practitioners (governors) seeking
guidance to orientate the prevalence of a special opinion in
the real world.
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