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We study the spatiotemporal dynamics of a conductance-based neuronal cable. The processes of one-
dimensional (1D) and 2D diffusion are considered for a single variable, which is the membrane voltage. A 2D
Morris-Lecar (ML) model is introduced to investigate the nonlinear responses of an excitable conductance-based
neuronal cable. We explore the parameter space of the uncoupled ML model and, based on the bifurcation
diagram (as a function of stimulus current), we analyze the 1D diffusion dynamics in three regimes: phasic
spiking, coexistence states (tonic spiking and phasic spiking exist together), and a quiescent state. We show
(depending on parameters) that the diffusive system may generate regular and irregular bursting or spiking
behavior. Further, we explore a 2D diffusion acting on the membrane voltage, where striped and hexagonlike
patterns can be observed. To validate our numerical results and check the stability of the existing patterns
generated by 2D diffusion, we use amplitude equations based on multiple-scale analysis. We incorporate 1D
diffusion in an extended 3D version of the ML model, in which irregular bursting emerges for a certain diffusion
strength. The generated patterns may have potential applications in nonlinear neuronal responses and signal
transmission.1
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I. INTRODUCTION26

Spatiotemporal pattern appears due to the occurrence of27

instability in a homogeneous medium sometimes referred to28

as Turing instability. The seminal work of Turing [1] led us29

to understand the emergence of stationary or nonstationary30

patterns in biological systems. He proposed that biological31

patterns (morphogenesis) arise due to the reaction and dif-32

fusion of chemicals in a homogeneous medium. This work33

has been further explored in many realistic situations rang-34

ing from evolution of patches in ecology [2–4] to pattern35

formation in chemical solutions [5]. Hair follicle [6], skin36

pigmentation [7,8], and tissue engineering mechanisms [9,10]37

and tomography of microemulsions [11] can also be related38

to diffusion-driven instability. The study of brain electrical39

dynamics suggests that one can understand the neurophysi-40

ological activities in the neural system by investigating the41

patterns emerging from the collective firing of a group of neu-42

rons. The mechanism of static spatial patterns or spatiotem-43

poral neurological patterns can be understood in the light44

of the collective dynamics of neurons where they crosstalk45

with each other in a reaction-diffusion way [12]. Excitable46

media represent extended spatiotemporal systems that support47

wave propagation. Spiral breakup leading to turbulence can48

occur in a two-dimensional (2D) reaction-diffusion FitzHugh-49

Nagumo (FHN) system in which the spatial interaction is50

*Corresponding author: chittaranjanhens@gmail.com

carried out only in membrane potential variables [13]. A 51

two-component reaction-diffusion system of the FHN model 52

was also investigated before the onset of subcritical Turing 53

bifurcation [14]. Recently, Gambino et al. [15] constructed 54

square and target wave patterns in a FHN reaction-diffusion 55

system. The existence and stability of the patterns are derived 56

with an amplitude equation analysis close to the bifurcation 57

threshold. In the case of the bursting Hindmarsh-Rose model, 58

the traveling-wave pattern was studied by Raghavachari and 59

Glazier [16] for a 1D cable. In addition, the dynamics and 60

synchronization pattern in the reaction-diffusion FHN system 61

have been investigated by Ambrosio and Aziz-Alaoui [17]. 62

The key question we raise here is whether an excitable cable 63

in a conductance-based neuronal system can indeed generate 64

bursting (regular or irregular) in the presence of 1D diffusion 65

where the spatial interaction is carried out only in membrane 66

potential variables. This is counterintuitive, as a homoge- 67

neous medium generates (through 1D diffusion) irregularity 68

or instability without using the Turing-like diffusion structure. 69

The 1D diffusion is a common scenario in many biophysical 70

systems [18,19] in which one of the variables interacts with 71

the others f in a spatially distributed cable. For instance, in 72

excitable neuron models, the membrane voltage plays a major 73

role as a diffusive variable in a spatial domain and influ- 74

ences the activities or firing patterns of the complete system. 75

Moreover, in this type of situation no finite band of unstable 76

wave numbers exists, therefore it violates the precondition 77

of the Turing-type instability. In addition, we are explor- 78

ing the processes in a 2D diffusion model of an excitable 79
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neural fiber. Various patterns ranging from regular hexagons80

to distorted hexagons are generated by the 2D diffusion in the81

conductance-based neuronal population. Further, we consider82

here an analytical treatment of a diffusive excitable cable to83

analyze the modulation and stability of structurally different84

patterns emerging from 2D diffusion.85

We consider a 2D and a 3D version of a conductance-based86

Morris-Lecar (ML) oscillator [20] to describe the electrical87

activities of neurons. The ML models are taken into account88

because of their diverse complex behavior ranging from spik-89

ing to bursting nature mimicking the neuronal activities of90

neurons. A 2D ML oscillator is an excitable and reduced91

version of the Hodgkin-Huxley model. The model consists of92

voltage-gated calcium and delayed potassium conductances93

for excitatory and recovery processes. Then diffusively cou-94

pled ML neurons describe a network of neurons, i.e., the elec-95

trophysiology of excitable cables. We consider three regimes96

in the parameter space of the ML model: a phasic spiking97

(the neuron fires a single spike at the onset of the applied98

current stimulus and later it remains in a quiescent state)99

regime, a bistable regime where tonic spiking (oscillatory100

dynamics) and phasic spiking coexist together, and a regime101

wxhere the single neuron reaches a steady state [21,22]. We102

have shown that a systematic 1D diffusion acting on one103

variable (1D cable) may create spatial instability in the chain104

of oscillators. We examined the various impulses of the 1D105

cables. It has already been established that the analysis for106

spatial mechanisms and its activity for neuronal cells is impor-107

tant to understand the biophysical and pathological activities108

[23–25]. Mainly, we try to find a region in the parameter109

space in which a bursting regime can emerge from a single110

cell when the cells are connected by 1D diffusive coupling to111

an extended continuous reaction-diffusion medium. Note that,112

while bursting of a single neuron is physiological, bursting113

of a fundamental cell consisting of a network of neurons is114

potentially pathological [12]. Our investigation shows that the115

system reveals a burstinglike nature at the lower diffusion,116

although the uncoupled system stays in the phasic spiking117

regime or in coexisting states (phasic spiking and tonic spik-118

ing). If we increase the diffusion coefficient, the network119

returns to the homogeneous steady states. Further, we have120

incorporated a 2D diffusion (2D cable) and observed that121

the system may show a complex pattern ranging from stable122

(unstable) hexagons to unstable stripes. We have analytically123

derived the emergence and stability of these patterns and124

successfully verified with numerical results. Interestingly, the125

possible patterns for 2D diffusion show complex behavior2 126

and this emergent dynamics may have relevance in the syn-127

chronized activities of a population of neurons particularly128

for neurological diseases [12]. The propagation of neuronal129

impulses in the coupled network is very relevant for brain130

functioning [26–28]. However, a clear and concise analytical131

treatment describing different collective nonlinear responses132

of the diffusively coupled ML neurons in three different133

regimes is lacking. We have used multiple-scale analysis134

[3,29–31] for 2D pattern selection based on the amplitude135

equations introduced by Newell and Whitehead [32] and136

Segel [33].137

Further, the model of a single neuron is extended to its 138

3D counterpart, in which the applied current stimulus is not 139

constant but rather changes in time. The uncoupled slow-fast 140

model produces regular bursting for a fixed set of parameters 141

whereas the coupled 1D chain generates irregular bursting, 142

which is an interesting feature in biophysical systems. 143

The paper is organized as follows. In Sec. II the uncou- 144

pled 2D ML model is described. In Sec. III the impact of 145

1D diffusion is examined for different diffusion strengths. 146

The proper parameter space of bursting is identified. Other 147

firing activities and instabilities are demonstrated. Further, the 148

complex patterns emerging for 2D diffusion are discussed in 149

Sec. IV with amplitude equations. We study the 1D cable in 150

an extended 3D version of ML model in Sec. V. Section VI 151

provides a summary and conclusions. 152

II. FORMULATION AND DYNAMICS OF 2D ML NEURONS 153

Morris and Lecar [20,34] suggested a simple mathematical 154

model to describe the oscillations in barnacle giant muscle 155

fiber. It consists of a membrane potential equation with in- 156

stantaneous activation of calcium current and an additional 157

equation describing slower activation of potassium current. 158

The ML neuron model is described by 159

Cu̇ = I − gL(u − VL ) − gCam∞(u − VCa)− gKv(u − VK),

v̇ = λ(u)[v∞(u) − v], (1)

where m∞, v∞, and λ(u) are assumed as 160

the functions m∞ = 0.5{1 + tanh[(u − V1)/V2]}, 161

v∞ = 0.5{1 + tanh[(u − V3)/V4]}, and λ(u) = 162

φ cosh[(u − V3)/2V4], respectively. 163

The system consists of voltage-gated Ca2+ current, delayed 164

rectifier K+ current, and the leak current, respectively. Here u 165

represents the membrane potential of the neuron and v is the 166

activation variable of K+ ion channels. The parameters gCa, 167

gK, and gL indicate the maximum conductance functions to 168

Ca2+, K+, and leak currents, respectively, and VCa, VK, and 169

VL are the reversal potentials to the different ionic current 170

functions. Further, C measures the membrane capacitance and 171

it is considered as unity; φ represents the temperature scaling 172

factor for the K+ channel opening. The parameters V1 and 173

V3 measure the potential at which m∞ = 0.5 and v∞ = 0.5, 174

respectively, and V3 and V4 represent the reciprocal slope 175

of the voltage dependence of m∞ and v∞, respectively. In 176

addition, I presents the applied stimulus current [20,21]. We 177

would like to consider the effects of various injected current 178

stimuli for the deterministic 2D ML model, which shows 179

phasic spiking, tonic spiking, and fast spiking. 180

To study the characteristic description of the ML model 181

for different sets of current stimuli, we linearly perturb the 182

system around the fixed point (u∗, v∗). The Jacobian matrix 183

corresponding to the equilibrium is 184

J =
(

a11 a12
a21 a22

)
, (2)

185
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FIG. 1. (a) Bifurcation diagram of the 2D ML oscillator with respect to the stimulus current I . The thick solid blue line indicates the stable
equilibrium branch whereas the dotted blue line indicates the unstable equilibrium branch of the system. The stable and unstable limit cycles
are denoted by solid cyan and dotted red lines, respectively. Points SH and SN represent the subcritical Hopf bifurcation and saddle-node
bifurcation, respectively. (b) Nullclines are plotted for the deterministic uncoupled 2D ML model. The intersections of the u nullcline and v

nullcline are the fixed points: the stable steady states (SS1 and SS2), unstable steady state (US), and saddle-node bifurcation (SN). The time
series of the deterministic uncoupled 2D ML model for different regimes [marked by the vertical lines in (a)] of I are (c) I = 0.052 [vertical
green line in the inset of (a)], (d) I = 0.054 [vertical magenta line in the inset of (a)], and (e) I = 0.2 (vertical black line), respectively.

where186

a11 = −0.5gCa

[
1 + tanh

(
u∗ − V1

V2

)
+

(
u∗ − 1

V2

)
sech2

(
u∗ − V1

V2

)]/
C − gKv∗

C
− gL

C
, a12 = 1

C
[−gK(u∗ − VK)],

a21 =
(

φ

2V4

){
0.5

[
1 + tanh

(
u∗ − V3

V4

)]
− v∗

}
sinh

(
u∗ − V3

2V4

)
+ x

(
φ

V4

)
cosh

(
u∗ − V3

2V4

)
0.5 sech2

(
u∗ − V3

V4

)
,

a22 =
(

−1
3

)
cosh

(
u∗ − V3

2V4

)
.

The condition for the equilibrium solution of the system to be187

stable for the deterministic model is given by a11 + a22 < 0188

and a11a22 − a12a21 > 0. The stability analysis of the above189

ML model is discussed for the following parameter values190

[21]: C = 1, gL = 0.5, VL = −0.5, gCa = 1.2, VCa = 1, gK =191

2, VK = −0.7, V1 = −0.01, V2 = 0.15, V3 = 0.1, V4 = 0.05,192

and φ = 1/3.193

The bifurcation analysis for the 2D ML system is derived194

using MATCONT software by varying the injected current195

stimulus I . At higher injected current stimulus (I > 0.1),196

the model reveals a monostable quiescent state (stable fo-197

cus). The unstable state becomes stable as a result of the198

subcritical Hopf bifurcation (SH) at lower positive value of199

stimulus current (I ∼ 0.001 830). In Fig. 1(a), the upper thick200

blue line describes the changes of this quiescent state for201

different sets of stimulus current. The lower thick blue line202

describes a stable node which collides with a saddle point at203

I ∼ 0.069 147 [SN point in Fig. 1(a)] and vanishes together. 204

We use phase-space analysis to understand the behavior of 205

the existing fixed points. The deterministic system has three 206

equilibrium points that are the intersections of the nullclines 207

of the system variables u and v, respectively. The left fixed 208

point (SS1) is asymptotically stable (stable node) and right 209

fixed point (US) is unstable [see Fig. 1(b)]. When the current 210

stimulus I is increased, the u nullcline moves upward and 211

the two fixed points move closer to each other, collide, and 212

mutually annihilate, resulting in a saddle node bifurcation 213

(SN). After that there exists only one fixed point (SS2) with 214

a further increase of I . There is another interesting behavior 215

appearing between I ∼ 0.053 and I ∼ 0.99. A stable limit 216

cycle (thick cyan line) coexists with an unstable limit cycle 217

shown by the dashed red line (also see the inset). Therefore, 218

the system becomes tristable, i.e., one stable node, one limit 219

cycle, and one stable focus coexist together. The thick green 220
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lines and dotted red lines show stable and unstable limit221

cycles, respectively. This type of feature arises due to the222

impact of hyperbolic functions in the ML system. For our223

analysis, we consider three parameter spaces. The system224

produces phasic spiking at I = 0.052; the value is marked in225

the figure with vertical green line in extreme left [Fig. 1(a),3 226

also in the inset]. The corresponding time series for phasic227

spiking is shown in Fig. 1(c). A limit cycle (tonic spiking)228

is produced at I = 0.054; the value is marked with middle229

vertical magenta line in Fig. 1(a) and the corresponding time4 230

series is shown in Fig. 1(d). The quiescent state at I = 0.2 is231

marked by the rightmost vertical solid black line in Fig. 1(a)5 232

and corresponding time series is shown in Fig. 1(e).233

III. ONE-DIMENSIONAL SYSTEM OF 2D ML NEURONS234

WITH DIFFUSION COUPLING235

We investigate a 1D cable consisting of a chain of excitable236

neurons. A nearest-neighbor diffusion through the membrane237

potential (variable u) is considered in our study. The 2D238

excitable ML model with 1D diffusion is described by the239

reaction-diffusion equations240

C
∂u
∂t

= I − gL(u − VL ) − gCam∞(u − VCa)

− gKv(u − VK) + D
∂2u
∂x2

,

∂v

∂t
= λ(u)[v∞(u) − v]. (3)

The initial conditions of these partial differential equations241

(PDEs) are considered as u(t = 0, x) > 0 and v(t = 0, x) > 06 242

for x ∈ $ and the boundary conditions are zero-flux boundary243

conditions ∂u
∂n = ∂v

∂n = 0 for x ∈ ∂$ and t > 0, where n is244

the outward normal to ∂$, the boundary of the interval and245

domain, and $ is the bounded interval or square domain for7 246

1D and 2D diffusion. In the 1D case, it is the length of the247

excitable cable (N = 10) and D is the strength of the synaptic248

coupling. We use a finite-difference scheme for numerical249

simulation of a cable of finite length. The numerical solution250

for the 1D reaction-diffusion system is computed using the251

pdepe method with zero-flux boundary conditions. The time252

step %t = 0.001 and space step %x = 0.1 are considered and253

are fixed for all the 1D simulations. The zero-flux boundary254

condition indicates that the membranes are impermeable at255

the boundaries and it acts as an isolated cable [12].256

We apply an external stimulus I to all the excitable neurons.257

As we have mentioned before, this external stimulus can258

change the dynamical behavior of the uncoupled model. We259

have investigated the spatiotemporal pattern in three regimes,260

observed at different values of I . First, the impact of the261

diffusion coefficient D has been tested by setting each neuron262

in a phasic spiking state (I = 0.052), i.e., all the neurons263

are settled into the phasic spiking regime [Fig. 1(c)]. At a264

lower diffusion (D = 0.0001), the system loses its stability265

and creates a nonhomogeneous irregular pattern [Fig. 2(a)],266

corresponding to a spiral-type instability. The vertical yellow267

and blue strips signify small oscillations deviated from the268

original uncoupled steady states. For a better understanding,269

we show the time series for an arbitrarily chosen node in270

Fig. 3(a). Here there is spatial heterogeneity, but if we con- 271

sider an oscillatory node (vertical yellow strips) from the cable 272

it shows oscillations. At a higher diffusion (D = 0.0005 and 273

D = 0.0037), a more complex desynchronized firing pattern 274

[Figs. 2(b) and 2(c)] appears where a train of irregular spiking 275

and bursting [Figs. 3(b) and 3(c)] is generated. Finally, the 276

spatial instability has vanished for a higher diffusion co- 277

efficient (D = 0.5) by stabilizing the whole chain or cable 278

into a homogeneous fixed point [see Figs. 2(d) and 3(d)], 279

which is the stable node of an uncoupled neuron. We observe 280

how firing patterns of a neuronal cable can change by the 281

impact of the diffusion coefficient value D. With systematic 282

changes in the value of D, the continuous medium (cable) 283

passes from the regime of inhomogeneous instability to a 284

uniform steady state [35] through the formation of irregular 8285

structures at intermediate values of diffusion coefficients. 286

Next we consider a slightly increased external current (I = 287

0.054). For this parameter value, regular periodic oscillations 288

like bursting emerge at an intermediate diffusion value. The 289

initial emergence of instability, an irregular spiking pattern, 290

periodic or regular bursting, and collective quiescent states has 291

been tested for the same diffusion coefficients (D = 0.0001, 292

0.0005, 0.0037, and 0.5, respectively). The spatiotemporal 293

patterns are shown in Figs. 2(e)–2(h) and the corresponding 294

time series are shown in Figs. 3(e)–3(h). Note that, in a weakly 295

coupled network of pancreatic β cells, the bursting behavior 296

becomes predominant in which pancreatic β cell secretes 297

insulin in the blood [16,36]. As we have discussed before, 298

each neuron has tristable behavior in this regime: Two of them 299

are stable fixed points (stable focus and stable node) and the 300

other is a limit cycle (tonic spiking). The basin of attraction 301

(not shown here) for each of those states is well mixed in the 302

coupled network, creating a periodic bursting-type nature at 303

an intermediate coupling strength analogous to the periodic 304

bursting pattern emerging in globally coupled discretized 305

active-inactive Josephson junctions [37]. Next we consider 306

each unit in a monostable quiescent state (I = 0.2), a state 307

far away from the bifurcation point (SH). At lower diffusion, 308

the system shows instability that creates an irregular firing 309

pattern [Fig. 2(i)]. Surprisingly, few nodes fire aperiodically 310

with high amplitudes [Fig. 3(i)], although a small increase 311

in the diffusion strength returns the continuous cable to the 312

original quiescent state shown in Figs. 2(j)–2(l) and 3(j)–3(l). 313

IV. TWO-DIMENSIONAL SYSTEM OF 2D ML NEURONS 314

WITH DIFFUSION COUPLING 315

Now we extend our study of spatiotemporal patterns by 316

allowing 2D diffusion only in the membrane potential variable 317

in the excitable 2D ML system (1). The system is described by 318

the PDEs 319

C
∂u
∂t

= I − gL(u − VL ) − gCam∞(u − VCa)

− gKv(u − VK) + D
(

∂2u
∂x2

+ ∂2u
∂y2

)
,

∂v

∂t
= λ(u)[v∞(u) − v], (4)

with the same initial and boundary conditions as before. 320
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FIG. 2. Spatiotemporal plots of the 2D ML cable with 1D diffusion for (a)–(d) I = 0.052, (e)–(h) I = 0.054, and (i)–(l) I = 0.2 and
diffusion coefficients (a), (e), and (i) D = 0.0001; (b), (f), and (j) D = 0.0005; (c), (g), and (k) D = 0.0037; and (d), (h), and (l) D = 0.5. The
color bar of all these spatiotemporal plots indicates the value of the membrane voltage u. Transient parts are also shown to understand the
patterns clearly.

A. Amplitude equations321

We have applied the multiple-scale analysis method322

[3,29,38,39] near the bifurcation point. The relevant patterns323

can be expressed by three active resonant pairs of modes324

(k j,−k j ) such that |k j | = kT for j = 1, 2, 3. Expanding the325

two trigonometric hyperbolic functions present in the sys-326

tem and avoiding the higher-order nonlinear terms, we reach327

tanh(x) ∼ x − x3

3 and cosh(x) ∼ 1 + x2

2! . Inserting these ex-328

pressions into Eq. (1), we get329

u̇ = I − gL(u − VL ) − 0.5gCa(u − VCa)

×
[

1 + u − V1

V2
− (u − V1)3

3V2
3

]
− gKv(u − VK), (5)

v̇ = 0.5
3

[
1 + (u − V3)2

8V 2
4

]

×
[

1 + u − V3

V4
− (u − V3)3

3V 3
4

− v

0.5

]
, (6)

where the meaning of the parameters V1, V2, V3, and V4 is330

the same as mentioned in Sec. II. Now simplifying the above331

system, we obtain 332

u̇ = I + a1u + a2v + a3u2 + a4uv + a5u3 + a6, (7)

v̇ = b1u + b2v + b3u2 + b4uv + b5u3 + b6u2v + b7. (8)

The expressions for all the coefficients of the above equations 333

are given in Appendix B. We consider a small perturbation 334

u = ũ + u∗ and v = ṽ + v∗ around the equilibrium point 335

(u∗, v∗). Then, expanding it with in a Taylor series expansion 336

and truncating the expression up to third order, we obtain 337

∂ ũ
∂t

= a11ũ + a12ṽ + (a3 + 3a5u∗)ũ2

+ a4ũṽ + a5ũ3 + D∇2ũ, (9)
∂ ṽ

∂t
= a21ũ + a22ṽ + (b3 + 3b5u∗ + b6v

∗)ũ2

+ (b4 + 2b6u∗)ũṽ + b5ũ3 + b6ũ2ṽ. (10)

Equations (9) and (10) can be written in the vector form 338

∂X
∂t

= LX + H, (11)

002300-5
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FIG. 3. Time series of the end oscillator of the 2D ML cable with 1D diffusion. The external current stimulus is (a)–(d) I = 0.052, (e)–(h)
I = 0.054, and (i)–(l) I = 0.2. The values of the diffusion coefficients for all the panels are the same as in Fig. 2. We choose the end oscillator
as a random node to show the temporal evaluation for each panel.

where339

X =
(

ũ
ṽ

)
, L =

(
a11 + D∇2 a12

a21 a22

)
,

H = [(a3 + 3a5u∗)ũ2 + a4ũṽ

+ a5ũ3(b3 + 3b5u∗ + b6v
∗)ũ2

+ (b4 + 2b6u∗)ũṽ + b5ũ3 + b6ũ2ṽ].

We expand the bifurcation parameter I as I − IT = εI1 +340

ε2I2 + ε3I3 + o(ε3), where |ε| ( 1 and IT is the Hopf bifur-341

cation point. Similarly, we expand the variable X and the342

nonlinear term H ,343

X =
(

ũ
ṽ

)
= ε

(
p1
q1

)
+ ε2

(
p2
q2

)
+ ε3

(
p3
q3

)
+ o(ε3) (12)

and344

H = ε2h2 + ε3h3 + o(ε3), (13)

where h2 and h3 are the second and third orders of ε in the 345

expansion of the nonlinear term H . At the same time, the 346

linear operator L can be written as 347

L = LT + (I − IT )L1 + (I − IT )2L2 + o((I − IT )3), (14)

L = LT + (I − IT )M + o((I − IT )2), (15)

where 348

Li = 1
i!

∂ iL
∂I i

,

LT =
(

aT
11 + D∇2 aT

12

aT
21 aT

22

)
,

M =
(

m11 m12
m21 m22

)
.

Now we can split the typical timescale in the time derivative 349

by [4] 350

∂

∂t
= ε

∂

∂T1
+ ε2 ∂

∂T2
+ o(ε2), (16)

where T1 = εt and T2 = ε2t . 351
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We have, from Eq. (11),352

∂

∂t

{
ε

(
p1
q1

)
+ ε2

(
p2
q2

)
+ ε3

(
p3
q3

)}

= {LT + (I − IT )M}X + ε2h2 + ε3h3.

Simplifying the above equation and comparing the order of ε,353

ε2, and ε3 from both sides, we obtain9 354

LT

(
p1
q1

)
= 0, (17)

LT

(
p2
q2

)
= ∂

∂T1

(
p1
q1

)
− I1M

(
p1
q1

)
− h2, (18)

LT

(
p3
q3

)
= ∂

∂T1

(
p2
q2

)
+ ∂

∂T2

(
p1
q1

)
− I1

×M
(

p2
q2

)
− I2M

(
p1
q1

)
− h3. (19)

The expressions of h2 and h3 are described in Appendix B.355

Solving Eq. (17), we get p1 = aT
12

Dk2−aT
11

= f and q1 = 1 and we356

can write10 357

(
p1
q1

)
=

(
f
1

)


3∑

j=1

Wj exp(ik jr) + c.c.



, (20)

i.e., (p1, q1) is the linear combination of the eigenvectors that358

corresponds to the zero eigenvalue of the linear operation359

LT , where Wj is the amplitude of the mode exp(ik jr) and360

c.c. represents complex conjugate. Now, to get the nontrivial361

solution of Eq. (18), we use the Fredholm solvability criterion362

[3], where the zero eigenvectors of operator L†
T (the adjoint11 363

operator of LT ) must be orthogonal to the right-hand side364

of Eq. (18). Note that the zero eigenvectors of the operator365

L†
T are described as (1

g)[exp(−ik jr) + c.c.], j = 1, 2, 3, where366

g = − aT
12

aT
22

. Now, from Eq. (18) we can write367

LT

(
p2
q2

)
%=

(
Fp
Fq

)
.

Here F j
p and F j

q represent the coefficients of exp(ik jr) in368

Fp and Fq, respectively. Using the orthogonality condition369

(1, g)(
F j

p

F j
q

) = 0, we can reach the relations370

( f + g)
∂W1

∂T1
= I1[ f m11 + m12 + g( f m21 + m22)]W1

+ 2(l1 + gl2)W̄2W̄3,

( f + g)
∂W2

∂T1
= I1[ f m11 + m12 + g( f m21 + m22)]W2

+ 2(l1 + gl2)W̄1W̄3,

( f + g)
∂W3

∂T1
= I1[ f m11 + m12 + g( f m21 + m22)]W3

+ 2(l1 + gl2)W̄1W̄2.

Solving Eq. (18), we have 371

(
p2
q2

)
=

(
P0
Q0

)
+

3∑

j=1

(
Pj
Qj

)
exp(ik jr)

+
3∑

j=1

(
Pj j
Qj j

)
exp(i2k jr)

+
(

P12
Q12

)
exp[i(k1 − k2)r] +

(
P23
Q23

)
exp[i(k2 − k3)r]

+
(

P31
Q31

)
exp[i(k3 − k1)r] + c.c. (21)

The coefficients of Eq. (21) are described in Appendix B. 372

Using the approach described above and following the Fred- 373

holm solvability criterion, we get [from Eq. (19)] 374

( f + g)
(

∂W1

∂T2
+ ∂Q1

∂T1

)

= [ f m11 + m12 + g( f m21 + m22)]

× (I1Q1 + I2W1) + H(Q̄2W̄3 + Q̄3W̄2)

− [G1|W1|2 + G2(|W2|2 + |W3|2)]W1. (22)

The remaining two equations (not shown here) can be ob- 375

tained through the transformation of the subscripts of W and 376

Q. Here Aj and its conjugate Ā j ( j = 1, 2, 3) are the ampli- 377

tudes of the modes k j and −k j , respectively. The amplitude 378

Aj can be expanded as Aj = εWj + ε2Qj + o(ε3). With the 379

expression of Aj and Eq. (16), we can obtain the amplitude 380

equation corresponding to A1 as 381

τ0
∂A1

∂t
= µA1 + hĀ2Ā3 − [g1|A1|2

+ g2(|A2|2 + |A3|2)]A1, (23)

where µ = (I − IT )/IT is a normalized distance to the onset 382

and g1 and g2 explore the type of instability [40]. Expressions 383

for the factors g1, g2, τ0, and h are given in Appendix B. In 384

the same way, we can calculate the remaining two equations 385

(evaluation of A2 and A3). 386

B. Amplitude stability 387

We can transform the amplitude equations [Eq. (23) for 388

A2 and A3] from rectangular coordinates to polar coordinates 389

by setting the complex amplitude as Aj = ρ j exp(iϕ j ), where 390

ρ j = |Aj | and ϕ j represents the phase angle in the system. 391

Finally, we get a set of coupled equations with a constraint 392

(ϕ = ϕ1 + ϕ2 + ϕ3) 393

τ0
∂ϕ

∂t
= −h

ρ2
1ρ2

2 + ρ2
1ρ2

3 + ρ2
2ρ2

3

ρ1ρ2ρ3
sin ϕ,

τ0
∂ρ1

∂t
= µρ1 + hρ2ρ3 cos ϕ − g1ρ

3
1 − g2

(
ρ2

2 + ρ2
3

)
ρ1,

τ0
∂ρ2

∂t
= µρ2 + hρ1ρ3 cos ϕ − g1ρ

3
2 − g2

(
ρ2

1 + ρ2
3

)
ρ2,

τ0
∂ρ3

∂t
= µρ3 + hρ1ρ2 cos ϕ − g1ρ

3
3 − g2

(
ρ2

1 + ρ2
2

)
ρ3.

(24)
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Depending on the parameters µ, g1, g2, and h, the 2D cable394

can reveal structurally different patterns including stationary,395

striped, and hexagons. (i) The stationary state is given by396

ρ1 = ρ2 = ρ3 = 0

and is stable for µ < µ2 = 0 and unstable for µ > µ2. (ii) The397

striped pattern is given by398

ρ1 =
√

µ

g1
)= 0, ρ2 = ρ3 = 0

and the stable striped pattern occurs when µ > µ3 = h2g1

(g2−g1 )2399

and it becomes unstable for µ < µ3. (iii) The hexagonal400

patterns exist when401

ρ1 = ρ2 = ρ3 = |h| ±
√

h2 + 4(g1 + 2g2)µ
2(g1 + 2g2)

,

with ϕ = 0 or π and when µ > µ1 = −h2

4(g1+2g2 ) .402

The hexagonal pattern Hπ (when ϕ = π ) will be stable403

only for µ < µ4 = 2g1+g2

(g2−g1 )2 h2 and H0 (when ϕ = 0) is al-404

ways unstable. For detailed calculation and identification of405

the parameters see Appendix A. We consider the same ML406

model explored for 1D diffusion as described in Sec. III.407

With the fixed set of parameters I = 0.052 and D = 0.001,408

we obtain h = 4075.55, g1 = −17 95 960, g2 = −2 388 310,409

µ1 = 0.631 794, µ2 = 0, µ3 = −85.0156, µ4 = −283.087,410

and µ∗ = 27.4153. Here positive h indicates that there exist411

H0 hexagons as µ∗ > µ1 and striped patterns do not exist412

(as ρ1 =
√

µ∗

g1
becomes imaginary). As H0 is always unstable,413

the solutions of ρ [Eq. (24)] will not exist. The existence of 414

H0 (although unstable) throughout a long range of diffusion 415

coefficient D is shown in Fig. 4(a), where it is clear that µ∗
416

(dashed magenta line) is always greater than µ1 (existence 417

condition shown by the solid black line). As a result, we 418

observe a mixture of regular and distorted hexagons (on a 419

blue backdrop), shown in the Fig. 5(a) (also a zoomed-in 420

view of the regular hexagons is marked with a white dashed 421

rectangle). However, as we increase the value of the diffu- 422

sion coefficient D we observe distorted hexagons [Figs. 5(b) 423

and 5(c)] only. Interestingly, if we increase D, it creates less 424

amplitude fluctuation in the membrane voltage expecting a 425

homogeneous pattern at higher D. Note that one can solve 426

the amplitude equations for negative g1,2 by considering the 427

higher-order approximations to get a better stability condition 428

[40] for hexagonal patterns, which is beyond the scope of the 429

present work. 430

Similarly, for I = 0.054 and D = 0.001, we obtain 431

h = 11 372, g1 = −21 724 200, g2 = −19 493 200, µ1 = 432

0.532 535, µ2 = 0, µ3 = −564.478, µ4 = −1635.46, and 433

µ∗ = 28.5082. Again we have h > 0 and µ∗ > µ1, which 434

leads us to the existence of unstable hexagons H0 [Fig. 4(b)], 435

therefore the stable solution of ρ will not exist throughout a 436

wide range of D. At lower diffusion (D = 0.001), a mixture 437

of regular and distorted hexagons exists [see Fig. 5(d), in 438

particular the zoomed-in view where regular hexagons are 439

marked by the dashed white line] which is similar to Fig. 5(a). 440

With an increase of D, we get more distorted hexagons in 441

our considered domain [Fig. 5(e)]. A further increase in the 442

diffusion coefficient leads most of the neurons towards the 443

(a) (b) (c)

(d)

FIG. 4. Characterization of patterns of the diffusively coupled 2D ML model: boundaries of the emergence of various structures (hexagons
and stripes) for (a) I = 0.052, (b) I = 0.054, and (c) I = 0.2. The dashed magenta line indicates the values of µ at (a) I = 0.052 (µ∗ =
27.4153), (b) I = 0.054 (µ∗ = 28.508), and (c) I = 0.2 (µ∗ = 108.2896). The thick black line indicates the condition for the existence of
hexagons whereas the thick blue and green lines indicate the boundary of the stability of stripes and Hπ hexagons, respectively. (d) Time
integration of Eq. (24) for I = 0.2.
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FIG. 5. Pattern formation in the 2D ML cable with 2D diffusion for (a)–(c) I = 0.052, (d)–(f) I = 0.054, and (g)–(i) I = 0.2 and diffusion
coefficients (a), (d), and (g) D = 0.001; (b), (e), and (h) D = 0.05; (c) and (f) D = 0.09; and (i) D = 5,.

steady state of the system and only a few distorted hexagons444

exist [see Fig. 5(f)].445

For I = 0.2 and D = 0.001, we find that h = −14 804.8,446

g1 = 5 456 040, g2 = 7 235 640, µ1 = −2.7498, µ2 = 0,447

µ3 = 377.603, µ4 = 1255.97, and µ∗ = 108.2896. Here h <448

0 and µ∗ < µ4 signify the existence of stable Hπ hexagons.449

Also, the positivity of g1 predicts the existence of a striped450

pattern. However, the inequality condition µ∗ < µ3 makes the451

existing stripes unstable. The variations of µ1,3,4 and µ∗ as a452

function of D are shown in Fig. 4(c). As we have analytically453

calculated that a stable Hπ exists in this parameter space, we454

further validate it by solving Eq. (24). The time-independent455

stable numerical values ρ1,2,3 = 0.002 732 at D = 0.001 are456

shown in Fig. 4(d). Interestingly, the values of ρ1,2,3 are prop-457

erly fitted with the analytical values of ρ mentioned in (iii),458

the condition for the existence of hexagons. In the presence of459

an unstable stripe at D = 0.001, we get a mixture of regular460

and irregular hexagons [see Fig. 5(g)]. As we increase D =461

0.05, some distorted hexagons and a small irregular stripe462

exist [Fig. 5(h)]. At a high value of the diffusion coefficient463

(D = 5), there is an unstable stripe leading to the homoge-464

neous structure as the amplitude values are not significantly465

different in the 2D spatial domain [see Fig. 5(i)]. For I = 0.2 466

we are not getting clear hexagons because unstable stripes 467

exist throughout the regime which break the hexagons. Also 468

the uncoupled system is strongly in a steady (quiescence) 469

state, therefore the amplitude is extremely small, which is 470

reflected in the diffusion patterns. 471

Note that at I = 0.052 and D = 0.001, the neurons with 472

high-amplitude oscillations (i.e., generating action potentials) 473

are distributed in a scattered way. In the spatial domain, the 474

neighboring nodes try to fire together or set themselves in 475

the steady states, although neither the synchronous firing nor 476

synchronous steady states dominate in the spatial domain. If 477

we increase the diffusive coupling to D = 0.05, hexagonlike 478

patterns (shown in red or yellow) become broader in size, sug- 479

gesting that small groups of nodes are firing asynchronously, 480

whereas inside the blue domain the neighboring nodes stay 481

below the subthreshold oscillations. With a further increase of 482

diffusion strength D = 0.09, the neurons in the spatial domain 483

form distinct clusters (shown in red) of firing surrounded by 484

a large subthreshold population, which will finally lead us 485

to a homogeneous state for higher diffusion or for a long 486

time evaluation. At I = 0.054 and D = 0.001, the network 487
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shows the same type of feature as before. However, with an488

increase of diffusion to D = 0.05, most of the neurons divide489

into two domains: One group generates firing and the other490

shows subthreshold oscillations. With a further increase of491

diffusion to D = 0.09, most of the neurons synchronize to the492

quiescent state. At I = 0.2 for intermediate diffusion, a stable493

hexagonal pattern exists in which a large number of nodes494

fires together, although the amplitudes of the oscillatory nodes495

are significantly small. The domain becomes equipotential at496

D = 5, where all the neurons show synchronized steady states497

[see Fig. 5(i)].498

The diffusively coupled 2D ML oscillator is solved us-499

ing a finite-difference scheme. We discretize the space and500

time by taking the system as N × N with N = 100 and501

step sizes are %x = %y = % = 0.25 and %t = 0.0001 for502

the spatial mesh and time-integration step size, respec-503

tively. The spatial derivative is approximated as ∂2u
∂x2 + ∂2u

∂y2 →504

1
%2 (ui−1, j + ui+1, j + ui, j−1 + ui, j+1 − 4ui, j ). Note that there505

are no significant changes in the stability if we vary the size506

of the mesh grid. The spatiotemporal behavior is investigated507

in the context of a highly nonlinear and coupled reaction-508

diffusion system where the diffusive coupling indicates the509

synaptic coupling between the individual neurons [12] while510

being solved by a finite-difference scheme.511

V. THE 1D CABLE OF THE 3D OSCILLATORY ML MODEL512

An improved version of the 3D ML model is a slow-fast513

system where the slow variable is the current injected into the514

system [21,22]. The system variables are U , the membrane515

potential of the cell; V , the activation variable of K+ ion516

channels; and W , the external injected current. We write the 517

diffusion dynamics using the PDEs 518

∂U
∂t

= −0.5gCa(U − 1)
[

1 + tanh
(

U − V1

V2

)]
− gKV

×(U − VK) − gL(U − VL ) + W + D1∇2U, (25)

∂V
∂t

= φ cosh
(

U − V3

2V4

)

×
{

0.5
[

1 + tanh
(

U − V3

V4

)
− V

]}
, (26)

∂W
∂t

= −µ(V0 + U ). (27)

The zero-flux boundary conditions are considered for mod- 519

eling the dynamical behavior of the spatially bounded ML 520

system [17,18,41]. The nonzero equilibrium point is not 521

locally asymptotically stable for the parameter values [21] 522

gCa = 1.2, V1 = −0.01, V2 = 0.15, gK = 2, VK = −0.7, gL = 523

0.5, VL = −0.5, φ = 1/3, V3 = 0.1, V4 = 0.05, V0 = 0.2, and 524

µ = 0.005. The ML system (25)–(27) presents a square wave 525

bursting pattern [21] for these parameter values in the absence 526

of diffusion. We consider a finite length of excitable cable 527

and the time step is δt = 0.01 in the numerical treatment. 528

The improved 3D ML model shows irregular bursting with 529

the influence of diffusion. The system shows an irregular 530

spike at low diffusion (D = 0.026) [Fig. 6(a)], which eventu- 531

ally leads to a nonhomogeneous irregular pattern [Fig. 6(d)]. 532

FIG. 6. Time series of the end oscillator and spatial plot of the improved 3D ML cable with 1D diffusion. The diffusion coefficients D are
(a) and (d) D = 0.026, (b) and (e) D = 0.4, and (c) and (f) D = 0.7.
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The twisted red lines in Fig. 6(d) show the high amplitude533

of spikes. At higher diffusion (D = 0.4), the system shows534

irregular bursting and we get a more complex pattern [see535

Fig. 6(b)]. The red horizontal stripes show the weakly syn-536

chronized oscillations in the system [see Fig. 6(e)]. Again537

at D = 0.7, the system shows bursting [see Fig. 6(c)] and a538

wavelike spatiotemporal pattern (the nodes appear correlated539

to each other) is generated and is shown in Fig. 6(e).540

VI. CONCLUSION541

In this paper a biophysically motivated 2D excitable ML542

model and its modification as a fast-slow 3D ML model are543

considered based on their neurocomputational activities. The544

model plays a major role in signal processing and temporal545

coding. By allowing diffusion in the conventional 2D ML546

model, we have shown several types of dynamical behavior.547

Interestingly, the 2D uncoupled model produces phasic and548

tonic spiking for a specific parameter set [21] and the system549

reaches a quiescent state for a higher external current stimu-550

lus. The diffusive coupling changes the collective behavior of551

the excitable cables and it dominates over the deterministic552

system. For instance, the entire 1D excitable cable (which553

is in the phasic spiking state or bistable regime) produces554

regular or irregular bursting dynamics for intermediate dif-555

fusion. We have explored the impact of 2D diffusion, which556

shows complex and diverse patterns including a hexagon-557

like structure to stripe or stationary states. In this paper558

the stability of corresponding patterns was thoroughly ana-559

lyzed and determined using amplitude equations. We further560

extended our work in the 3D modified ML model setting561

the parameter in the periodic bursting regime. Interestingly,562

a 1D diffusion can create irregular bursting in the spatial563

domain.564

We extensively demonstrated the spatial dynamical behav-565

ior of the excitable systems and explored different dynam-566

ical and collective features. The emerging properties may567

have particular relevance in the synchronized activities of a568

population of neurons particularly for neurological diseases.569

Analyzing pattern formation will also be helpful for the570

properties of the neural network [42]. We can apply the results571

into many areas such as associative memory, pattern recog-572

nition, and signal processing and optimization. This type of573

reaction-diffusion system provides ideas for future works on574

how chemical substances influence the dynamics of neuronal575

networks. For instance, the determining factors of seizurelike576

activities and different bursting patterns [43] can be revealed577

through our work. The study will also allow us to understand578

complex brain functions (such as brain working memory).579

Zero-flux boundary conditions show that the membranes are580

impermeable for ions [12]. Further, the method can be gen-581

eralized to the exploration of the reaction-diffusion equation582

and different neuroscience-related topics [42,44,45]. The spa-583

tiotemporal regimes studied in this paper and their relation584

to neurocomputational behavior can be further investigated585

in future experiments. This work helps us in understanding586

the nonlinear dynamics and spatial behavior of an excitable587

cable.588
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APPENDIX A: ANALYSIS OF AMPLITUDE STABILITY 599

We discuss the stability of the above three sets of fixed 600

points. In the case of striped patterns, we perturb the fixed 601

point (ρ0, 0, 0) to study the stability of the stationary solution 602

(24), where ρ0 =
√

µ/g1. Setting ρi = ρ0 + %ρi, i = 1, 2, 3, 603

the linearization of Eq. (24) can be written as 604

∂ρ

∂t
= LAρ, (A1)

where 605

LA =




µ − 3g1ρ

2
0 0 0

0 µ − g2ρ
2
0 hρ0

0 hρ0 µ − g2ρ
2
0



,

ρ =




%ρ1
%ρ2
%ρ3



.

The characteristic equation of LA can be written as 606

λ3 + R1λ
2 + R2λ + R3 = 0, (A2)

where 607

R1 = (3g1 + 2g2)ρ2
0 − 3µ,

R2 =
(
g2

2 + 6g2g1
)
ρ4

0 − (4µg2 + h2 + 6µg1)ρ2
0 + 3µ2,

R3 = 3g1g2
2ρ

6
0 − (3g1h2 + µg2

2 + 6µg1g2)ρ4
0

− (2µ2g2 + 3g1µ
2 + µh2)ρ2

0 − µ3.

The eigenvalues of the characteristic equation (A2) can be 608

obtained as 609

λ1 = −2µ,

λ2 = µ

(
1 − g2

g1

)
+ h

√
µ

g1
,

λ3 = µ

(
1 − g2

g1

)
− h

√
µ

g1
.

The system will be stable if all the eigenvalues are negative. 610

These three eigenvalues are negative if the conditions µ > 0, 611

g2
g1

> 1, and µ > µ3 = h2g1

(g2−g1 )2 hold. Next we consider the 612

case of hexagon. We perturb the fixed point (ρ0, ρ0, ρ0) to 613

study the stability of the stationary solution, i.e., Eq. (24), 614

ρi = ρ0 + %ρi (i = 1, 2, 3), where ρ0 = |h|±
√

h2+4(g1+2g2 )µ
2(g1+2g2 ) . 615

Equation (24) can be linearized as 616

∂ρ

∂t
= LBρ, (A3)
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where617

LB =





µ − 3g1ρ
2
0 − 2g2ρ

2
0 hρ0 − 2g2ρ

2
0 hρ0 − 2g2ρ

2
0

hρ0 − 2g2ρ
2
0 µ − 3g1ρ

2
0 − 2g2ρ

2
0 hρ0 − 2g2ρ

2
0

hρ0 − 2g2ρ
2
0 hρ0 − 2g2ρ

2
0 µ − 3g1ρ

2
0 − 2g2ρ

2
0



,

ρ =




%ρ1
%ρ2
%ρ3



.

The characteristic equation of LB can be written as618

λ3 + S1λ
2 + S2λ + S3 = 0, (A4)

where619

S1 = (9g1 + 6g2)ρ2
0 − 3µ,

S2 =
(
27g2

1 + 36g2g1
)
ρ4

0 + 12g2hρ3
0 − (18µg1 + 3h2 + 12µg2)ρ2

0 + 3µ2,

S3 =
(
54g2

1g2 + 27g3
1

)
ρ6

0 + 36g1g2hρ5
0 +

(
6g2h2 − 36µg1g2 − 9g1h2 − 27µg2

1

)
ρ4

0 (2h2 + 12µhg2)ρ3
0

+ (9µ2g1 + 6µ2g2 + 3µh2)ρ2
0 − µ3.

The characteristic equation (A4) can be solved to obtain the eigenvalues λ1 = λ2 = µ − hρ0 − 3g1ρ
2
0 and λ3 = µ + 2hρ0 −620

3ρ2
0 (g1 + 2g2). The system (24) has a stable solution when all the eigenvalues are negative. For ρ−

0 = |h|−
√

h2+4(g1+2g2 )µ
2(g1+2g2 ) , λ1621

and λ2 are always positive, so the corresponding pattern is always unstable. For ρ+
0 = |h|+

√
h2+4(g1+2g2 )µ

2(g1+2g2 ) , all the eigenvalues are622

negative if the parameter µ satisfies the condition µ < µ4 = 2g1+g2

(g2−g1 )2 h2.623

APPENDIX B: COMPUTATIONS OF THE PARAMETERS624

The following are the coefficients of Eqs. (7) and (8):625

a1 = −gL − 0.5gCa + 0.5gCa

V2

[
V1 − V1

3

3V 2
2

+ VCa − VCaV 2
1

V 2
2

]
,

a2 = gKVK, a3 = 0.5gCa

V2

[
−1 + V 2

1

V 2
2

+ VCaV1

V 2
2

]
,

a4 = −gK,

a5 = −0.5gCa

V 3
2

[
V1 + VCa

3

]
,

a6 = VLgL + 0.5VCagCa − 0.5VCagCaV1

V2

[
1 − V 2

1

3V 2
2

]
,

b1 = 0.5
3V4

[
1 − 5V 2

3

8V 2
4

− V3

4V4
− 5V 4

3

24V 4
4

]
,

b2 = −1
3

− V 2
3

24V 2
4

,

b3 = 0.5
3V 2

4

[
V3

V4
+ 1

8
− 3V3

8V4
+ 5V 3

3

12V 3
4

]
,

b4 = V3

12V 2
4

,

b5 = −2.5
72V 3

4
− 5V 2

3

72V 5
4

, b6 = −1
24V 2

4
,

b7 = 0.5
3

[
1 − V3

V4
− 5V 3

3

24V 3
4

+ V 2
3

8V 2
4

+ V 5
3

24V 5
4

]
.
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The following are expressions of some parameters used in the multiple-scale expansion method:12 626

(
P0
Q0

)
=

(
zp0

zq0

)
(|W1|2 + |W2|2 + |W3|2),

Pj = f Q j,

(
Pj j
Qj j

)
=

(
zp1

zq1

)
W 2

j ,

(
Pjk
Qjk

)
=

(
zp2

zq2

)
WjW̄k,

τ0 = f + g
IT [ f m11 + m12 + g( f m21 + m22)]

,

h = H
IT [ f m11 + m12 + g( f m21 + m22)]

,

g1 = G1

IT [ f m11 + m12 + g( f m21 + m22)]
,

g2 = G2

IT [ f m11 + m12 + g( f m21 + m22)]
,

H = 2(l1 + gl2),

l1 = f 2(a3 + 3a5u∗) + f a4, l2 = f 2(b3 + 3b5u∗ + b6v
∗) + f (b4 + 2b6u∗),

k2
T = %T

0

DaT
22

, %T
0 = aT

11aT
22 − aT

12aT
21,

h2 =
[
(a3 + 3a5u∗)p2

1 + a4 p1q1(b3 + 3b5u∗ + b6v
∗)p2

1 + (b4 + 2b6u∗)p1q1
]
,

h3 =
[
2(a3 + 3a5u∗)p1 p2 + a4(p1q2 + p2q1) + a5 p3

12(b3 + 3b5u∗ + b6v
∗)p1 p2 + (b4 + 2b6u∗)(p1q2 + p2q1)

+ b5 p3
1 + b6 p2

1q1
]
,

(
zp0

zq0

)

= −2
%T

0

(
aT

22l1 − aT
12l2

aT
11l2 − aT

21l1

)

,

(
zp1

zq1

)

= −1(
aT

11 − 4Dk2T
T

)
aT

22 − aT
12aT

21

(
aT

22l1 − aT
12l2

(
aT

11 − 4Dk2T
T

)
l2 − aT

21l1

)

,

α1 = (a3 + 3a5u∗), β1 = a4, γ1 = a5, δ2 = b6,
(

zp2

zq2

)

= −2(
aT

11 − 3Dk2T
T

)
aT

22 − aT
12aT

21

(
aT

22l1 − aT
12l2

(
aT

11 − 3Dk2T
T

)
l2 − aT

21l1

)

,

α2 = (b3 + 3b5u∗ + b6v
∗), β2 = (b4 + 2b6u∗), γ2 = b5,

m11 = {− [gCa(1/{V2 cosh [(V1 − u∗)/V2]2} − {tanh [(V1 − u∗)/V2]2 − 1}/V2

+ {2 sinh[(V1 − u∗)/V2](u∗ − 1)}/{V 2
2 cosh [(V1 − u∗)/V2]3})]/2}[gL + gKv∗ − (gCa{tanh[(V1 − u∗)/V2] − 1})/2

+ (gCa{tanh [(V1 − u∗)/V2]2 − 1}(VCa − u∗))/2V2]−1 − 1/(u∗ − Vk ),

m12 = (−gK)/[gL + gKv∗ − (gCa{tanh[(V1 − u∗)/V2] − 1})/2 + (gCa{tanh [(V1 − u∗)/V2]2 − 1}(VCa − u∗))/2V2],

m21 = [(φ sinh[(V3 − u∗)/2V4]{tanh[(V3 − u∗)/V4]2 − 1})/4V 2
4 − (φ cosh[(V3 − u∗)/2V4]{v∗

+ tanh[(V3 − u∗)/V4]/2 − 0.5})/4V 2
4 − {φ sinh[(V3 − u∗)/2V4]}/{4V 2

4 cosh[(V3 − u∗)/V4]2}

+ {φ cosh[(V3 − u∗)/2V4] sinh[(V3 − u∗)/V4]}/{V 2
4 cosh[(V3 − u∗)/V4]3}]/[gL + gKv∗

− (gCa{tanh[(V1 − u∗)/V2] − 1})/2 + (gCa{tanh[(V1 − u∗)/V2]2 − 1}(VCa − u∗))/2V2]

+ φ sinh[(V3 − u∗)/2V4]/2V4gK(u∗ − VK),

m22 = {φ sinh[(V3 − u∗)/2V4]}/2V4[gL + gKv∗ − (gCa{tanh[(V1 − u∗)/V2] − 1})/2

+ (gCa{tanh[(V1 − u∗)/V2]2 − 1}(VCa − u∗))/2V2],

−G1 =
[
(2α1 f + β1)

(
zp0 + zp1

)
+ β1 f

(
zq0 + zq1

)
+ 3γ1 f 3] + g

[
(2α2 f + β2)

(
zp0 + zp1

)
+ β2 f

(
zq0 + zq1

)
+ 3δ2 f 2 + 3γ2 f 3],

−G2 =
[
(2α1 f + β1)

(
zp2 + zp0

)
+ β1 f

(
zq2 + zq0

)
+ 6γ1 f 3] + g

[
(2α2 f + β2)

(
zp2 + zp0

)
+ β2 f

(
zq2 + zq0

)
+ 6γ2 f 3 + 6δ2 f 2].
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