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A B S T R A C T

We study the dynamics of a biophysically motivated slow–fast FitzHugh–Rinzel (FHR) model neurons in un-
derstanding the complex dynamical behavior of neural computation. We discuss the mathematical frameworks
of diverse excitabilities and repetitive firing responses due to the applied stimulus using the slow–fast system.
The results focus on the multiple time scale dynamics that include canard phenomenon induced mixed mode
oscillations (MMOs) and mixed mode bursting oscillations (MMBOs). The bifurcation structure of the system is
examined with injected current stimulus as the relevant parameter. We use the folded node theory to study the
canards near the fold points. Further, we demonstrate the homoclinic bifurcation and the transition route to
chaos through MMOs. It helps us in understanding the fundamentals of such complex rich neuronal responses.
To show the chaotic nature in certain parameter regime, we compute the Lyapunov spectrum as a function
of time and predominant parameter, 𝐼 , that establishes our findings. Finally, we conclude that our observed
results may have major significance and discuss the potential applications of MMOs in neural dynamics.
1. Introduction

This article presents a detailed discussion of a slow–fast dynami-
cal model neuron [1–4] and its characteristics that generally exhibits
elliptic bursting. It introduces the mechanism of generating complex
oscillations in a biophysical system of coupled nonlinear ODEs with
slow–fast time scales. We consider one predominant parameter in the
system and when it moves slowly, the spike transitions occur. Some
neuronal systems exhibit spontaneous firing activity with multiple
timescale dynamics, in particular called bursting that consists of periods
of repetitive firing interspersed by quiescent/silent phases. During the
active phases, it eventually shows a burst, recovers slowly during
the silent phase, and the system prepares to initiate the next burst
of spikes [5,6]. The underlying mechanism of information processing
in the neural system depends on the cellular membrane voltages,
when it reaches certain values above threshold, it exhibits spiking–
bursting oscillations by varying injected stimuli. Such oscillatory dy-
namics of membrane voltage can be mathematically modeled using
various dynamical systems of coupled ODEs (with different realistic
parameters) [7–9].
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One of the most interesting complex dynamical oscillations that
emerge from the electrical activity of neurons is the mixed-mode os-
cillations (MMOs) [10–15]. MMOs are used to describe the alternating
trajectories that is a combination of small and large amplitude oscil-
lations (SAOs and LAOs). MMOs present complex periodic waveforms
in which each period is comprised of different maxima and minima
of various amplitudes. Recently, researchers have been showing a
great interest in the theory of MMOs with canard solutions [16–20].
Such MMOs arise in the slow–fast dynamics. The neuron receives
a constant input current and produces rich firing patterns that can
represent the system dynamics regarding the neuronal responses. Using
stability analysis and bifurcation theory, we find the rich firings with
MMOs/MMBOs that can be induced by canard phenomenon. MMBOs:
there arises small amplitude slow oscillations i.e., SAOs and LAOs
sometimes consist of bursts. MMOs and MMBOs [21] may be periodic
or aperiodic in nature. These make the model fascinating and the results
provide interesting and potential applications in this type of slow–fast
biophysically plausible system. In MMBOs, the firing patterns consist
vailable online 27 September 2022
960-0779/© 2022 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.chaos.2022.112669
Received 22 June 2022; Accepted 4 September 2022

http://www.elsevier.com/locate/chaos
http://www.elsevier.com/locate/chaos
mailto:arghamondalb1@gmail.com
mailto:aziz.alaoui@univ-lehavre.fr
https://doi.org/10.1016/j.chaos.2022.112669
https://doi.org/10.1016/j.chaos.2022.112669
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2022.112669&domain=pdf


Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 164 (2022) 112669S.K. Sharma et al.

s
m
e
c
c
d
e
i
c
b

d
m
I
3
t
K
t
b
i
g
o
t
w
b
g
f
a
b
m
f
r
a
s
w
C
i
b

n
i
h
i
s
f
r
a
T
H
𝑣
t
c
f
i
c
a
q
a
w

w
a
m
a
d
T

v
s
o

of SAOs and LAOs together with bursting in the LAOs. The emergence
of MMBOs in the system creates a spike adding mechanism.

The emergence of SAOs during the occurrence of the trajectories
near a fold point is generated in the presence of folded singularity.
To understand the mechanisms of MMOs, we have to study the flow
near the folded singularities and the special solutions are canard phe-
nomenon. The canard term was first introduced to show the periodic
olutions in the Van der Pol equation that stay near the repelling slow
anifold [22]. The major part of canard cycles is that it exists for an

xponentially small region of parameters. This transition phase is called
anard explosion [12,18,23,24]. The canard solutions are derived that
onnect the attracting slow manifold with repelling slow manifold. In
ynamical systems with one or more than one slow variable, canard
merges in a robust fashion with SAOs close to the folded singular-
ty [25–28]. Our slow–fast system has the critical manifold with cubic
urve. Bursting arises through a supercritical Hopf bifurcation followed
y a canard explosion with MMOs and MMBOs induced in the system.

In previous studies, it was observed that the MMOs reflect the
ynamical and neuronal behavior of locomotion or breathing [29]. The
ultiple time scale dynamics and noise can also induce MMOs [30,31].

t was found in calcium signaling and electrocardiac systems [32–
4]. We find that, the generation of MMOs can be analyzed by using
he canard phenomenon from dynamical system approaches [25,29].
rupa et al. [35] examined the mechanism of MMOs oscillations in a

wo-compartmental model of dopaminergic neurons in the mammalian
rain stem. Previously, it was investigated the generation of MMOs
n a coupled FitzHugh–Nagumo (FHN) model [27,36]. MMOs can also
enerate a type of bursting that can be reflected in a biophysical model
f pituitary lactotroph [37] and it was also observed in stellate cells of
he medial entorhinal cortex (layer II), the mechanism of such patterns
as analyzed in a conductance-based model [26]. Recently, it has
een investigated how the changes in the conductance of the voltage-
ated calcium channels as well as the parameter corresponding to the
raction of free cytosolic calcium concentration in an excitable model
ffect the neuronal behavior leading to transition from pseudo-plateau
ursting to MMOs [38]. Bertram et al.’s work [39] showed that the
odel of pancreatic 𝛽-cells can also exhibit MMOs and MMBOs. Apart

rom these works including single and coupled biophysical models,
esearchers investigate the firing activities and collective patterns in
neural network, where neurons are connected in a complex network

tructure [40–42]. MMOs were observed in pre-Botzinger complex net-
orks (a medullary region that controls breathing in mammals) [13].
urrently, we explored the emergence of tonic spiking and MMOs

n a random network of diffusively coupled Izhikevich neurons in a
ackdrop of diverse excitabilities [43].

In this study, it has been demonstrated the dynamics of a solitary
erve membrane using the suitable FHR model [2–4], that is the mod-
fication of the classical two dimensional (2D) FHN model. We explain
ow the system dynamics differ from the FHN model [5]. It exhibits
nteresting properties that are relevant to biophysical excitabilities and
pike generation. However, the model cannot generate various rich
iring patterns especially found in cortical type neurons [44]. The
elation between spiking and bursting shows a significant phenomenon
s well as a fascinating neuronal responses, especially in neural coding.
he third variable allows to induce a recurrent crossing through the
opf Bifurcation and it induces bursting oscillations. The first variable,
depends on the two other variables. The transition phases depend on

he dynamics of the slow variable and strength of the slowly changing
urrent stimulus. It can produce self organized different firing features
or some specified fixed range of parameters. The mathematical model
s examined theoretically and numerically. The different parameter sets
orresponding to the qualitatively various dynamical properties are
nalyzed. An interesting feature of the elliptic bursting is that the fre-
uency of emerging spiking activity and ceasing the spiking is nonzero,
t that time the amplitude of the oscillations may be small [3,4]. It
2

as experimentally observed that this type of bursting can be found o
in trifacial nerves controlling the jaw movement of rodents [45,46].
Further, the model neuron exhibiting diverse oscillations can represent
large networks of distinct clusters. Recently, Xie et al. [47] studied the
dynamics of double mixed mode and double canards numerically for
the FHR model. They have used the blowup method to analyze the
desingularised system. Here, we use the geometric singular perturba-
tion theory (GSPT) [12] to study the FHR model. We show various types
of MMOs and MMBOs, that are not deeply investigated earlier. This
study can be useful as a starting point to investigate general neural net-
work structures using slow–fast models. We find the basin of different
firing/quiescent regions depending on parameter sets. The model can
produce quiescent or oscillatory behavior that can be captured by real
neurons. The three dimensional (3D) model represents an interesting
classic example of slow–fast dynamics [27,35,42] and under certain
conditions on the control parameters, it exhibits canard phenomenon,
that shows the solutions which pass from a stable manifold to an
unstable manifold for long time range in the slow system timescale [36]
and it is verified by Shilnikov bifurcation theory [48,49]. Here, we
report how the emergence of MMOs/MMBOs and this oscillations are
different from other firings with relevant biophysical significances [50].

The paper is organized as follows: In Section 2, we briefly describe
the dynamics of the excitable model equations that shows the electrical
potential called as spikes and some basic preliminaries. In Section 3,
we demonstrate the canard solution near the fold points using folded
node theory with numerical results. Then in Section 4, we discuss the
occurrence of Shilnikov type chaos in the system. Further, we report
our main findings in Section 5 where the temporal evolution of the
FHR model are elaborately discussed with performing the bifurcation
results. Finally, we conclude with a discussion in Section 6.

2. Formulation of the excitable model dynamics and some prelim-
inaries

The article focuses on the complex dynamics of the excitable FHR
system that describes the electrical activities of neural membrane volt-
age over an appropriate range of parameter values. The model is
computationally efficient to analyze widely meaningful dynamically
rich properties. The time evolution of such a mathematical model is
described by the following set of ODEs [2–4]
𝑑𝑣
𝑑𝑡

= 𝑣 − 𝑣3∕3 −𝑤 + 𝑦 + 𝐼 = 𝑓 (𝑣,𝑤, 𝑦) ,

𝑑𝑤
𝑑𝑡

= 𝛿 (𝑎 + 𝑣 − 𝑏𝑤) = 𝑔1 (𝑣,𝑤, 𝑦) , (1)

𝑑𝑦
𝑑𝑡

= 𝜇 (𝑐 − 𝑣 − 𝑑𝑦) = 𝑔2 (𝑣,𝑤, 𝑦) ,

here 𝑣, 𝑤 and 𝑦 represent the membrane voltage, recovery variable
nd slow modulation of the current respectively. The parameter, 𝐼
easures constant external injected current and 𝑎, 𝑏, 𝑐, 𝑑, 𝛿 and 𝜇

re the system parameters. 𝛿 and 𝜇 indicate small parameters that
etermine the pace of the slow system variables, 𝑤 and 𝑦 respectively.
he small parameter 𝜇 ranges in 0 < 𝜇 ≪ 1 and we consider 𝜇 =
𝛿2 [35,51,52] to make the system with three distinct time scales i.e., a
fast scale with two slow subscales. We assume 𝑏 > 0 [53], a small
parameter. The parameter 𝑎 in the 2D FHN model corresponds to the
parameter value 𝑐 of the FHR model [3]. If we decrease the value of 𝑎,
it causes longer intervals between two bursting however, there exists
relatively fixed time of bursting duration. With the increase of 𝑎, the
interburst intervals become shorter and periodic bursting changes to
tonic spiking. The model is described by the slow–fast subsystems, the
first two equations represent the classical slow–fast FHN model [27,
36,42] that generates only spiking. The variable 𝑦 indicates ‘superslow’
ariable. Particularly, it produces elliptic bursting for a certain fixed
et of parameters with large amplitude spikes and small amplitude
scillations [3,4]. It generates decay and growth of small amplitude

scillations during the silent phase of bursting and not damped rapidly.
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2.1. Slow–fast dynamical phenomenon in the system

First, we assume the neuron is the onset of firing and it shows
spike generation as the control parameter moves slowly. We provide
some basic definitions of canard and MMOs, that are observed in our
numerical results at the transition of oscillatory patterns. The slow–fast
system can be mathematically modeled as [5]

̇ (𝑡) = 𝑓 (𝑥, 𝑧),
̇ (𝑡) = 𝛿𝑔(𝑥, 𝑧),

(2)

here �̇�(𝑡) = 𝑓 (𝑥, 𝑧) (fast spiking) and �̇�(𝑡) = 𝛿𝑔(𝑥, 𝑧) (slow modulation).
𝑥 ∈ R𝑚 represents the fast variables and 𝑧 ∈ R𝑛 the slow variables
with 0 < 𝛿 << 1 measure the timescale separation parameter. In
this dynamics, the singular limit corresponding to 𝛿 = 0 is called the
layer system and then 𝑧, the slow variable presents a parameter in the
limiting system [35,36,54,55].

Definition 2.1.1. For a slow–fast dynamical system, with the timescale
separable parameter 𝛿 = 0,
𝐶 = {(𝑥, 𝑧) ∈ R𝑚 × R𝑛 ∶ 𝑓 (𝑥, 𝑧) = 0} is defined as the critical manifold
and it corresponds to the fixed points of the layer system.

Definition 2.1.2. A subset 𝐶1 ⊂ 𝐶, the critical manifold is called
normally hyperbolic if all the fixed points in 𝐶1 show hyperbolicity
condition of the layer system, i.e., 𝐷𝑥𝑓 has no eigenvalues with zero
real parts. Dynamically, 𝐶1 is called attracting (or repelling) if the
eigenvalues have negative (or positive) real part and 𝐶1 represents a
saddle if it neither attracting nor repelling.

Definition 2.1.3 ([36,55]). Suppose the set of points in 𝐶, that are not
hyperbolic points i.e., 𝐷𝑥𝑓 has at least one eigenvalue with zero real
part as follows

𝐶2 =

⎧

⎪

⎨

⎪

⎩

(𝑥, 𝑧) ∈ 𝐶 ∶

𝑟𝑎𝑛𝑘(𝐷𝑥𝑓 (𝑥, 𝑧)) = 𝑚 − 1,

𝑙𝐷2
𝑥𝑓 (𝑥, 𝑧)(𝑟, 𝑟) ≠ 0,

𝑙𝐷𝑧𝑓 (𝑥, 𝑧) ≠ 0,

⎫

⎪

⎬

⎪

⎭

where 𝑙 and 𝑟 denote left

and right eigendirections of 𝐷𝑥𝑓 . 𝐶2 shows the fold points of the critical
manifold 𝐶. 𝐶2 locally divides the critical manifold 𝐶 into subsets of
various stabilities.

Definition 2.1.4. A solution of the slow–fast system �̇�(𝑡) = 𝑓 (𝑥, 𝑧)
�̇�(𝑡) = 𝛿𝑔(𝑥, 𝑧) is called a canard if it stays within 𝜃(𝛿) of a repelling
branch of the critical manifold for a time i.e., 𝜃(1) on the slow timescale
dynamics 𝜏 = 𝛿𝑡.

This article is to show the existence of canard induced
MMOs/MMBOs in the slow–fast system. We investigate how the fixed
points and the fold points of the slow–fast dynamics play major role
in the existence of MMOs and Canard. To illustrate this, we study the
dynamics of the slow system on the critical manifold. The equilibrium
points of the slow–fast system range within a 𝜃(𝛿) neighborhood of
the equilibrium points of the reduced system [12,55]. We have to
investigate the desingularized system, that can be obtained from the
slow dynamics using a particular time scaling. The equilibrium points
of the desingularized system rest within an 𝜃(𝛿) neighborhood around
the fixed points of the slow–fast system and the fold points. To change
the new timescale domain by using 𝜏 = 𝛿𝑡, we obtain the slow–fast
dynamics as follows

𝛿�̇�(𝜏) = 𝑓 (𝑥, 𝑧),

�̇�(𝜏) = 𝑔(𝑥, 𝑧).
(3)

The singular limit corresponding to 𝛿 = 0 is called reduced system that
represents the differential algebraic equations (DAEs) [21,51] corre-
sponding to slow subsystem �̇�(𝜏) = 𝑔(𝑥, 𝑧) that is defined on the critical
manifold, 𝐶. The complete system and the reduced dynamics have the
3

same fixed points. To deduce the desingularized system [54,55], we
differentiate 𝑓 (𝑥, 𝑧) = 0 from Eq. (3) with respect to 𝜏 to obtain the
following equation

(𝐷𝑥𝑓 ).
𝑑𝑥
𝑑𝜏

+ (𝐷𝑧𝑓 ).
𝑑𝑧
𝑑𝜏

= 0. (4)

Now, multiplying both sides of Eq. (4) by adj(𝐷𝑥𝑓 ), the transpose of the
cofactor matrix of 𝐷𝑥𝑓 can be obtained as follows

−det(𝐷𝑥𝑓 ).
𝑑𝑥
𝑑𝜏

= adj(𝐷𝑥𝑓 ).(𝐷𝑧𝑓 ).𝑔(𝑥, 𝑧), (5)

here det(𝐷𝑥𝑓 ) = 0 represents the singular system, called fold points.
he standard existence uniqueness results do not hold at the fold points.
he desingularized system is obtained as follows
𝑑𝑥
𝑑𝜏 = adj(𝐷𝑥𝑓 ).(𝐷𝑧𝑓 ).𝑔(𝑥, 𝑧),
𝑑𝑧
𝑑𝜏 = −det(𝐷𝑥𝑓 ).𝑔(𝑥, 𝑧).

(6)

In the case 𝑚 = 1, 𝐷𝑥𝑓 = det(𝐷𝑥𝑓 ) =
𝜕𝑓
𝜕𝑥 is a scalar and adj(𝐷𝑥𝑓 ) =

1. To obtain the phase space flows of the reduced dynamics from
the desingularized system (depending on the new time scale 𝑑𝜏 =
−det(𝐷𝑥𝑓 )𝑑𝜏), the direction of the flows of the desingularized dynamics
must be reversed on the new branches where det(𝐷𝑥𝑓 ) > 0. Now, the
extended system (6) contains two types of fixed points, that are known
as ordinary and folded singularities respectively and we define them as
follows

Definition 2.1.5 ([36,55]). An equilibrium point of the desingularized
system (6) is called as ordinary singularity if the fixed point corresponds
to a fixed point of the reduced system and ranges in a neighborhood
(𝜃(𝛿)) of an equilibrium point of the complete dynamics. The conditions
of the singularity are stated as

𝑔(𝑥, 𝑧) = 0, det(𝐷𝑥𝑓 ) ≠ 0, adj(𝐷𝑥𝑓 )(𝐷𝑧𝑓 ).𝑔(𝑥, 𝑧) ≠ 0.

Definition 2.1.6 ([36,55]). An equilibrium point of the desingularized
system is called folded singularity if it corresponds to a folded point of
the reduced system. The conditions for a folded singularity are stated
as

det(𝐷𝑥𝑓 ) = 0, adj(𝐷𝑥𝑓 )(𝐷𝑧𝑓 ).𝑔(𝑥, 𝑧) = 0.

3. Slow–fast dynamics with canard mechanism

In this section, we first derive the layer system corresponding to
Eq. (1) that follows the fast slow dynamics (2). In our case, 𝑥 ≡ 𝑣, the
fast subsystem and 𝑧 ≡ (𝑤, 𝑦) is a two tuple vectors, i.e., it represents
that the slow subsystem is two dimensional. The system (1) has two
different time scales 𝛿 and 𝛿2 for slow (𝑤) and superslow (𝑦) variables
respectively. The layer system is obtained by taking the singular limit
𝛿 = 0 in the system (1), where the slow variables (𝑤 and 𝑦) are treated
as a parameter of the singular system (7). The layer system is described
by the following set of ODEs
𝑑𝑣
𝑑𝑡 = 𝑣 − 𝑣3∕3 −𝑤 + 𝑦 + 𝐼 = 𝑓 (𝑣,𝑤, 𝑦) ,
𝑑𝑤
𝑑𝑡 = 0,
𝑑𝑦
𝑑𝑡 = 0.

(7)

Now, changing the system (1) to the slow time scale 𝜏1 = 𝛿𝑡, we obtain
𝑑𝜏1 = 𝛿𝑑𝑡. The system (1) reduces to

𝛿 𝑑𝑣
𝑑𝜏1

= 𝑣 − 𝑣3∕3 −𝑤 + 𝑦 + 𝐼 = 𝑓 (𝑣,𝑤, 𝑦) ,
𝑑𝑤
𝑑𝜏1

= (𝑎 + 𝑣 − 𝑏𝑤) ,
𝑑𝑦 = 𝛿 (𝑐 − 𝑣 − 𝑑𝑦) ,

(8)
𝑑𝜏1
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Fig. 1. (a) Critical manifold curve (𝑀0) of the FHR model with fixed base parameters and 𝐼 = 0.21. (b) Surface plot of the critical manifold (𝑀0) with relaxation limit cycle with
the same parameters as mentioned in Fig. 1(a).
corresponding reduced system is obtained by setting 𝛿 = 0 in system
(8). Thus, the reduced system can be written as

0 = 𝑣 − 𝑣3∕3 −𝑤 + 𝑦 + 𝐼 = 𝑓 (𝑣,𝑤, 𝑦) ,
𝑑𝑤
𝑑𝜏1

= (𝑎 + 𝑣 − 𝑏𝑤) ,
𝑑𝑦
𝑑𝜏1

= 0.

(9)

It is also known as DAEs. The main purpose of studying the GSPT is to
understand the dynamics of the full system (1) using subsystems (7) and
(9) for 𝛿 > 0. The algebraic equation of the above system describes the
dynamics of critical manifold (𝑀0) which can be expressed as follows

𝑀0 = {(𝑣, 𝑤, 𝑦) ∶ 𝑓 (𝑣, 𝑤, 𝑦) = 0} ,

=
{

(𝑣, 𝑤, 𝑦) ∶ 𝑣 − 𝑣3

3 −𝑤 + 𝑦 + 𝐼 = 0
}

,

=
{

(𝑣, 𝑤, 𝑦) ∶ 𝑤 = 𝑣 − 𝑣3

3 + 𝑦 + 𝐼
}

.

(10)

The critical manifold is described by a cubic function of 𝑣 and the
shape of the manifold 𝑀0 is similar to the shape of the cubic function
(see Fig. 1(a)). It also gives the set of equilibrium points for the
layer system (7). From Eq. (9), we obtain 𝑑𝑦

𝑑𝜏1
= 0 therefore, the

variable 𝑦 in 𝑀0 is treated as a constant. The points where 𝑀0 loses
its normal hyperbolicity is known as the fold points

(

𝐿±). Hence,
𝐿± decomposes 𝑀0 into three branches, 𝑀0 = 𝑀𝑎, −

0 ∪ 𝐿− ∪ 𝑀𝑟
0 ∪

𝐿+ ∪ 𝑀𝑎, +
0 , where 𝑀𝑎, −

0 and 𝑀𝑎, +
0 are the attracting branches of

𝑀0 and is given by 𝑀𝑎, −
0 ∪ 𝑀𝑎, +

0 =
{

(𝑣, 𝑤, 𝑦) ∈𝑀0 ∶
𝜕𝑓
𝜕𝑣 < 0

}

=
{

(𝑣, 𝑤, 𝑦) ∈𝑀0 ∶ 𝑣 < −1 and 𝑣 > 1
}

. 𝑀𝑟
0 is the repelling branch of 𝑀0

and it is given by 𝑀𝑟
0 =

{

(𝑣, 𝑤, 𝑦) ∈𝑀0 ∶
𝜕𝑓
𝜕𝑣 > 0

}

=
{

(𝑣, 𝑤, 𝑦) ∈𝑀0 ∶ −1 < 𝑣 < 1
}

. The black dotted lines in Fig. 1(a)
denote the fold lines (𝐹+ and 𝐹−) of the FHR system. For better
visualization, we also draw the manifold (𝑀0) in a three dimensional
(𝑣,𝑤, 𝑦) space with a trajectory (see Fig. 1(b)). The left and right fold
lines are 𝐹+ and 𝐹− respectively. The right side of 𝐹− and left side
of 𝐹+ are the attracting sheets of 𝑀0. The trajectories can reach the
fold line 𝐹+ at a jump point (𝐿+) and follows the fast flow to reach
the attracting sheet 𝑀𝑎,−

0 . Now, the trajectories move upward on the
attracting sheet towards the fold line 𝐹− and again it jumps from
the fold point (𝐿−) to the attracting sheet 𝑀𝑎,+

0 . We can denote this
process by 𝐿+ → 𝑀𝑎,−

0 → 𝐿− → 𝑀𝑎,+
0 . The points 𝐿− and 𝐿+ are

the folds points of 𝑀0 (see Fig. 1(a)) and obtained by satisfying the
three conditions mentioned in the definition of fold points. Now, these
conditions reduce to 𝜕𝑓

𝜕𝑣 |𝐿± = 0, 𝜕
2𝑓
𝜕𝑣2

|𝐿± ≠ 0 and 𝐷(𝑤,𝑦)𝑓 |𝐿± has full rank
one for one fast and two slow subsystems [12]. From the first condition
𝜕𝑓
𝜕𝑣 |𝐿± = 0, we obtain 1− 𝑣2 = 0 i.e., 𝑣 = ±1 as fold points of the system
(1) and from remaining conditions, we obtain 𝜕2𝑓

𝜕𝑣2
|𝐿± = −2 or 2 and

𝐷(𝑤,𝑦)𝑓 |𝐿± = (−1, 1) with full rank one respectively.
Now, to describe the slow flow in terms of the fast variable 𝑣, we

differentiate the algebraic equations 𝑓 (𝑣,𝑤, 𝑦) = 0 with respect to 𝜏 ,
4

1

which gives 𝑑𝑓
𝑑𝑣

𝑑𝑣
𝑑𝜏1

+ 𝑑𝑓
𝑑𝑤

𝑑𝑤
𝑑𝜏1

+ 𝑑𝑓
𝑑𝑦

𝑑𝑦
𝑑𝜏1

= 0 or
(

1 − 𝑣2
) 𝑑𝑣
𝑑𝜏1

− 𝑑𝑤
𝑑𝜏1

= 0.
Substituting the value of 𝑑𝑤

𝑑𝜏1
from (9), we obtain

−
(

1 − 𝑣2
) 𝑑𝑣
𝑑𝜏1

= −
(

𝑎 + 𝑣 − 𝑏
(

𝑣 − 𝑣3

3
+ 𝑦 + 𝐼

))

.

Generally, one can append a slow subsystem to the above equation
to make it a slow–fast system. The resulting two-dimensional system
is singular on the fold curve. We can desingularize the slow flow
near the fold points 𝑣∗ = ±1 by rescaling the time domain as 𝑑𝜏1 =
−
(

1 − 𝑣2
)

𝑑𝜏2. Therefore, we obtain the desingularized reduced system
(DRS) expressed as [51]
𝑑𝑣
𝑑𝜏2

= −
(

𝑎 + (1 − 𝑏) 𝑣 − 𝑏
(

− 𝑣3

3 + 𝑦 + 𝐼
))

,
𝑑𝑦
𝑑𝜏2

= −𝛿
(

1 − 𝑣2
)

(𝑐 − 𝑣 − 𝑑𝑦) ,
(11)

restricted to 𝑀0. The folded singularity can be classified as folded
saddle, folded node or folded focus depending on the nature of the
eigenvalues of the Jacobian matrix of the DRS at the folded singular-
ity. We obtain the folded singularities as equilibrium of the system
(11) which lie on the fold lines 𝐹±. The DRS system (11) has two
types of singularities, one is folded singularity and other is ordinary
singularity. The unique equilibrium that stays on the fold line 𝐹+ is
𝑣∗ = 1, 𝑦∗ = 1

𝑏 (𝑎 + 1 (−2 − 3𝐼) 𝑏) with 𝑤 = 𝑎+1
𝑏 . Similarly, the only

equilibrium point that lies on the fold line 𝐹− is 𝑣∗ = −1, 𝑦∗ =
1
𝑏 (𝑎 − 1 (2 − 3𝐼) 𝑏) with 𝑤 = 𝑎−1

𝑏 . These two equilibrium points are
known as folded singularities of the DRS system (11). The ordinary
equilibrium point is obtained by solving the equations 𝑐 − 𝑣 − 𝑑𝑦 = 0
and

(

𝑎 + (1 − 𝑏) 𝑣 − 𝑏
(

− 𝑣3

3 + 𝑦 + 𝐼
))

= 0 for 𝑣 and 𝑦 respectively. The
Jacobian matrix of the DRS around the folded singularity is given by

𝐽𝐷𝑅𝑆 =
(

−1 𝑏
2𝛿𝑣∗ (𝑐 − 𝑣∗ − 𝑑𝑦∗) 0

)

.

Now, we consider 𝜉1 and 𝜉2 be the eigenvalues of 𝐽𝐷𝑅𝑆 at the point
(𝑣∗, 𝑦∗) restricted to 𝑀0. Then, we classify the point (𝑣∗, 𝑦∗) depending
on the folded singularities as follows
{

folded node if 𝜉1𝜉2 > 0, 𝜉1,2 ∈ R,

folded focus if 𝜉1𝜉2 > 0, Im(𝜉1,2) ≠ 0,

Generally, the folded node and folded saddle–node equilibria can be
observed in a system which exhibits mixed-mode dynamics [35]. Here,
we will explore different dynamics of MMOs and MMBOs in the case
of folded node.

Remark 1 ([12]). For the slow–fast system (1) with 𝛿 > 0 sufficiently
small, the following conditions hold

(a) Consider 𝜓 = 𝜉𝑤
𝜉𝑠
< 1 for a folded node, then the singular canard

�̃�𝑠 (‘‘the strong canard’’) always perturbs to a maximal canard
𝛾 . If 𝜓−1 ∉ N, then the singular canard �̃� (‘‘the weak canard’’)
𝑠 𝑤
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also perturbs to a maximal canard 𝛾𝑤, where 𝛾𝑠 and 𝛾𝑤 denote
primary canards. For a folded node, suppose 𝑛 > 0 is an integer
such that 2𝑛 + 1 < 𝜓−1 < 2𝑛 + 3 and 𝜓−1 ≠ (2𝑛 + 2). Then, in
addition to 𝛾𝑠,𝑤, there are at most 𝑛 other maximal canards, that
are indicated as secondary canards.

(b) For a folded focus, there are no maximal canards.

4. Shilnikov type chaos

Homoclinic bifurcation unfolds many fundamental stretching and
foldings of chaos. We show the evidences of MMOs as a transition route
to the homoclinic chaos. In this section, we have analytically derived
the condition for the existence of one real and two complex conjugate
roots in the system (1).

Proposition 4.1. There exists a unique real equilibrium state for the FHR
model (1) that contains one real and two complex conjugate eigenvalues for
negative discriminant of the characteristic polynomial.

Proof. The equilibrium points of the system (1) are derived as 𝑤∗ =
(𝑣∗ + 𝑎)∕𝑏, 𝑦∗ = (𝑐 − 𝑣∗)∕𝑑 and 𝑣∗3−3𝑣∗𝑟 = 𝑠, where 𝑟 =

(

1 − 1
𝑏 −

1
𝑑

)

and

=
(

3𝐼 − 3𝑎
𝑏 + 3𝑐

𝑑

)

respectively. Depending on the nature of discrimi-
ant of the cubic equation 𝑣∗3 − 3𝑣∗𝑟 − 𝑠 = 0, the system (1) can have
aximum three equilibrium states. The discriminant of the above cubic
olynomial is given by −

[

4( 3𝑏 )
3 + 27(3𝑐 + 3𝑎

𝑏 − 3𝐼)2
]

< 0 for 𝑏 > 0 and

= 1, which indicates that there exists a unique real equilibrium state.

y solving the above cubic equation, we obtain 𝑣∗ = 3 3√2
𝐴 − 𝐴

3 3√2𝑏
, where

𝐴 =
3
√

81𝑎𝑏2 +
√

(

81𝑎𝑏2 − 81𝑏3𝑐 − 81𝑏3𝐼
)2 + 2916𝑏3 − 81𝑏3𝑐 − 81𝑏3𝐼 .

ow, we can linearize the system (1) around the unique equilibrium
oint (𝑣∗, 𝑤∗, 𝑦∗) to obtain the variational matrix (𝐽 ) given by

𝐽
(

𝑣∗
)

=
⎛

⎜

⎜

⎝

1 − 𝑣∗2 −1 1
𝛿 −𝛿𝑏 0

−𝛿2 0 −𝛿2

⎞

⎟

⎟

⎠

.

The characteristic polynomial of the matrix 𝐽 is given by
𝑃 (𝜂) = 𝜂3 −

(

1 − 𝑣∗2 − 𝛿𝑏 − 𝛿2
)

𝜂2 +
(

𝛿 − 𝛿𝑏 + 𝑏𝛿2 + 𝑏𝛿𝑣∗2 + 𝛿2𝑣∗2
)

𝜂 −
(

−𝛿3 − 𝑏𝛿3𝑣∗2
)

.
The determinant of the matrix 𝐽 is obtained as det(𝐽 ) = −𝛿3(1 +

𝑏𝑣∗2) < 0, which indicates that at least one root of 𝑃 (𝜂) is negative.
To find the nature of the roots of the characteristic polynomial, we
evaluate the discriminant, 𝐷 of the above cubic polynomial, 𝑃 (𝜂),

hich is given by

= 18
(

𝑏𝛿3 − 𝑏𝛿 + 𝑏𝛿𝑣∗2 + 𝛿 + 𝛿2𝑣∗2
) (

𝑏𝛿3𝑣∗2 + 𝛿3
) (

𝑏𝛿 + 𝛿2 + 𝑣∗2 − 1
)

− 4
(

𝑏𝛿3𝑣∗2 + 𝛿3
) (

𝑏𝛿 + 𝛿2 + 𝑣∗2 − 1
)3

+
(

𝑏𝛿3 − 𝑏𝛿 + 𝑏𝛿𝑣∗2 + 𝛿 + 𝛿2𝑣∗2
)2 (𝑏𝛿 + 𝛿2 + 𝑣∗2 − 1

)2

− 4
(

𝑏𝛿3 − 𝑏𝛿 + 𝑏𝛿𝑣∗2 + 𝛿 + 𝛿2𝑣∗2
)3 − 27

(

𝑏𝛿3𝑣∗2 + 𝛿3
)2 .

If 𝐷 < 0, then 𝑃 (𝜂) has one real and a pair of complex conjugate
roots (𝜎, 𝜂1 ± 𝑖𝜂2) whereas for 𝐷 > 0, 𝑃 (𝜂) has three real roots. Here,
we are only interested in finding the value of the parameters for which
𝐷 < 0.

Definition 4.1. The equilibrium point of the 3D system (1) is called a
hyperbolic saddle focus if the eigenvalues of 𝐽 , evaluated at the same
equilibrium point, are 𝜆1 = 𝜎 and 𝜆2,3 = 𝜂1 ± 𝑖𝜂2, where 𝜎𝜂1 < 0 and
𝜂2 ≠ 0.

Proposition 4.2 ([48,49,56]). The Shilnikov-type homoclinic chaos exists
in a 3D system having saddle focus equilibrium point in a 3D continuous
autonomous dynamical system. Consider the eigenvalues of the system as
5

𝜆1 = 𝜎 and 𝜆2,3 = 𝜂1 ± 𝑖𝜂2, then the occurrence of the Shilnikov chaos
deal with the conditions 𝜎 < 0 and 𝜂1 > 0 or 𝜎 > 0 and 𝜂1 < 0 with
|

𝜎
𝜂1
| > 1, where the trajectories in the two dimensional eigenspace evolve

pirally outward from a saddle focus equilibrium and insert into it again
long the stable eigendirection with 𝜎 < 0 and 𝜂1 > 0.

Now, we define the saddle value as 𝜎1 = 𝜎 + 𝜂1 and saddle index
s 𝜈 = |

𝜂1
𝜎 |. The dynamics of the system (1) near the saddle focus is

simple for 𝜎1 < 0 or 𝜈 < 1 and complex for 𝜎1 > 0 or 𝜈 > 1 [49]. In this
study, we restrict our findings on the simpler condition |

𝜎
𝜂1
| > 1 for

the occurrence of Shilnikov chaos when we discuss the sequences of
MMOs and MMBOs with the transition route to homoclinic bifurcation
and associated firings in the slow–fast biophysical system.

The parameter sets for all the simulation results are considered as
𝑎 = 0.7, 𝛿 = 0.08, 𝑏 = 0.8, 𝑐 = −0.775, 𝑑 = 1 with varying 𝐼 [3,4]. In
order to study the system dynamics, we first analyze the equilibrium
states and then bifurcations. The numerical simulations of the systems
of ODEs are performed using the fourth-order Runge–Kutta method
with a long time span (𝑡 = 100000) and more than that using the time
step 𝛥𝑡 = 0.01. The simulation results with a smaller time step do
not show any significant differences. Bifurcation diagram of the fixed
points of the dynamical model is computed using the MatCont software
package [57].

5. Results

In this article, we present the dynamics of MMOs and MMBOs,
it creates a spike adding mechanism in the SAOs and as well as in
LAOs and how these SAOs are controlled using the folded node theory.
Here, the model neuron has been considered as a simple mathematical
framework for a single cell dynamics. The model mechanism has a
strong sensitivity of the neuronal responses by varying relevant pa-
rameters. We provide a description of a sensitive parameter slow–fast
where the system changes its firing patterns and firing frequency from
quiescent to oscillatory state. To explore the mechanism of the MMOs
and MMBOs, we study the reduced system of the FHR model. The
DRS system is described by system (11) and corresponding Jacobian
matrix is given by 𝐽𝐷𝑅𝑆 . In this section, we analyze the transition
of the dynamics from stable equilibrium solution (quiescent state) to
oscillations (bursting, MMOs, MMBOs, tonic spiking) for a range of
fixed values of 𝐼 . The interval is centered around the values of 𝐼 , where
canard solution is occurred.

5.1. Bifurcation analysis

The bifurcation analysis of the system (1) is presented by consid-
ering injected current stimulus, 𝐼 as a predominant parameter. The
system has a real fixed point for 𝐼 , that ranges in a certain fixed
interval. The solid and dotted black lines in (Fig. 2(a)) indicate sta-
ble and unstable equilibrium branches respectively. At lower current
stimulus (𝐼 < 0.13371), the system has one stable equilibrium branch
(stable focus node). There exists a supercritical Hopf bifurcation (HB1)
at 𝐼 = 0.13371 and small amplitude stable limit cycle emerges, where
the system exhibits subthreshold oscillations. Now, the steady state
vanishes and a periodic limit cycle attractor exists in a saddle focus
regime for 0.13371 < 𝐼 < 3.166224. The system has another stable focus
node at higher current stimulus (3.166224 < 𝐼 < 3.9435) and stable node
or 𝐼 > 3.9435. An interesting feature arises in the system i.e., multiple
witching between the stable (solid green lines) and unstable limit
ycle (dotted magenta lines) can be observed. Again, an unstable fixed
oint with stable limit cycle appears and the system (1) shows second
upercritical Hopf bifurcation (HB2) at 𝐼 = 3.166224. In the saddle focus

zone, the neuron which was in steady state now becomes excited and
shows different types of periodic and aperiodic oscillatory behavior.
First it exhibits various types of MMOs, MMBOs and then it shows
tonic spiking. Interestingly, as we further increase the strength of 𝐼 ,

a different MMOs pattern appear around the HB2 point and then the
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Fig. 2. Bifurcation scenarios of the FHR model (1) with the fixed parameters. (a) Stability of the equilibrium branches and limit cycles. The points HB1 and HB2 denote the
supercritical Hopf bifurcations. (b)–(c) Bifurcation diagrams describing the maximum and minimum variations in membrane voltage (𝑣) with 𝐼 in the neighborhood of HB1 and
HB2 respectively. The upper branch represents the peak of the spikes generated in the system (1) whereas the lower branch represents the peak of hyperpolarization. The dark
patches around 𝑣 = ±1 represent the SAOs in the system (1). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
system again converges to quiescent state. The maximum and minimum
variations of 𝑣 with respect to 𝐼 are shown in Fig. 2(b)–(c). At 𝐼 = 0.134,
the steady state enters into an unstable region where the system (1)
shows different oscillations. The dark region with branches around
𝑣 = ±1 denotes the SAOs with different numbers and amplitudes
emerging in the system (1). One interesting phenomenon is observed
here that as we slowly increase the value of 𝐼 , the density of dark region
around 𝑣 = −1 decreases. Thus, this indicates that the number of SAOs
decreases in the system and there is a transition in firing patterns (see
Fig. 3). A similar phenomenon is observed around 𝑣 = 1 however, with
decreasing value of 𝐼 (see Fig. 2(c)).

5.2. Diverse oscillatory responses and route to chaos

The detailed description of the firing transitions, from quiescent
state to limit cycle zone is examined as follows. The observed
MMOs/MMBOs consist of 𝑠 number of SAOs with 𝑙 number of LAOs,
i.e., spikes. Around 𝐼 = 0.15, the system exhibits MMOs from the
quiescent state (𝐼 = 0.1, see Fig. 3(a)). It consists of finitely many
SAOs of different amplitudes of slow oscillations with single spike in
LAOs. It takes the form as 𝑙𝑠𝑙𝑠𝑙𝑠... = 1𝑚1𝑚1𝑚..., where 𝑠 = 𝑚, a positive
finite integer (see Fig. 3(b)). A similar type of MMOs is also observed
at 𝐼 = 0.155 (see Fig. 3(c)). As we increase 𝐼 , the number of SAOs
decreases and the periodic nature of the firings changes with different
values of 𝑠 with 𝑙. For an example, at 𝐼 = 0.18, the sequence of MMOs
looks like 110110... for a long time integration (𝑡 = 100000) and other
forms also possible with different numbers of SAOs with variations
in the amplitude of small oscillations (see Fig. 3(d)). At 𝐼 = 0.13371,
there exists a supercritical Hopf bifurcation of system (1). There induces
canard explosion around the bifurcation point and the system enters
into the firing regime. We numerically observe a canard explosion at
𝐼 = 0.1488, where a large amplitude relaxation cycle is observed with
variation of a parameter from small amplitude oscillations.
6

The system also shows an interesting oscillations i.e., MMBOs that
are periodic or aperiodic solutions consisting of two different phases.
SAOs and LAOs occur alternatively with bursts or multiple large spikes
in the LAOs. More than single number of SAOs exhibits in the sequences
of SAOs (ranging from one to finitely many). We use the dynamical
theory of folded node for the slow–fast system on the number of
small amplitude oscillations in the MMOs, that may be controlled by
the predominant parameter 𝐼 . At 𝐼 = 0.18, the DRS system (11) in-
cludes (−0.985277,−0.0147234) and (−0.5 + 0.375269𝑖,−0.5 − 0.375269𝑖)
as eigenvalues for the equilibrium points (𝑣∗ = −1, 𝑦∗ = 0.111667) and
(𝑣∗ = 1, 𝑦∗ = 1.27833) respectively. One can easily identify that the
first eigenvalue is a folded node and the second is a folded focus.
For the folded node, we obtain from the Remark 1(a), 𝜓 = |𝜉𝑤|

|𝜉𝑠|
=

|−0.0147234|
|−0.985277| = 0.014943 < 1 and 𝜓−1 = 66.9568 ∉ N. Moreover,
𝜓−1 = 66.9568 represents that the weak eigendirection is 66.9568 times
weaker than the strong eigendirection. Here, both the strong and weak
canard perturb to maximal canard and denoted as primary canards (𝛾𝑠
and 𝛾𝑤 respectively). We also obtain 𝑛 = 32 satisfying the inequality
2𝑛 + 1 < 𝜓−1 < 2𝑛 + 3 and 𝜓−1 ≠ (2𝑛 + 2). Then in addition to the
primary canards 𝛾𝑠,𝑤, there exists at most 32 other maximal canards,
which is known as secondary canards. Thus, there are maximum 34
small amplitude oscillations exhibiting near the folded node. We obtain
10 small amplitude oscillations from numerical simulation which is
in good agreement with the analytical results (see Fig. 3(d)). The
prediction of exact number of small amplitude oscillations is valid for
sufficiently small 𝛿. The exact MMOs pattern can be predicted if 𝜓 ≫
√

𝛿 holds [26]. From Remark 1(b), we find that there is no maximal
canards exist for the folded focus. Further increasing the external
stimulus reduces the number of SAOs in the MMOs. At 𝐼 = 0.21, we
found MMOs of type 1616... and an interesting phenomenon is observed
when we shift the predominant parameter from 𝐼 = 0.21 to 𝐼 = 0.225.
Now, the system exhibits MMOs of type 14151415... (see Fig. 3(e)–(f)).
Next, the sequence changes to 13141314..., 1313..., 12131213... and 1212...
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Fig. 3. Various firing responses and transitions of the FHR model with fixed base parameters and the predominant parameter is considered as: (a) 𝐼 = 0.0.1, (b) 𝐼 = 0.15, (c)
𝐼 = 0.155, (d) 𝐼 = 0.18, (e) 𝐼 = 0.21, (f) 𝐼 = 0.225, (g) 𝐼 = 0.24, (h) 𝐼 = 0.25, (i) 𝐼 = 0.26, (j) 𝐼 = 0.275, (k) 𝐼 = 0.29, (l) 𝐼 = 0.32, (m) 𝐼 = 0.36, (n) 𝐼 = 0.375, (o) 𝐼 = 0.38, (p)
𝐼 = 0.394 and (q) 𝐼 = 3.1.



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 164 (2022) 112669S.K. Sharma et al.

d

t

5
5
h
c
2
g
w
t
t
(

c
M
s
o
e
p
F
w
t
w
w
c
M
h
w
s
.

t
h
f
p

T
p
t
a
c
|

L
f
t

6

f
a
t
s
o
i
o
n
n
T
(
I
i
t
𝐿

n
o
t
t
m
b
m
p
w
n
M

Table 1
The variations of the MMOs patterns with the predominant parameter, 𝐼 for two
ifferent values of 𝛿.
𝐼 0.15 0.155 0.18 0.21 0.225 0.24 0.26 0.29 0.36 0.375 0.38

𝛿 = 0.08 124 120 110 16 1415 1314 1213 111212 21 2131 31

𝛿 = 0.05 115 113 18 15 14 141313 1213 111112 21 212131 31

for 𝐼 = 0.24, 0.25, 0.26 and 0.275 respectively (see Fig. 3(g)–(j)). Again
at 𝐼 = 0.29, the pattern of oscillations change to 111212111212... and
hen it becomes 1111... at 𝐼 = 0.32 (see Fig. 3(k)- (l)). Now, we present

the two phases of oscillations, it consists of multiple number of SAOs
followed by a doublet, i.e., two large spikes in a single burst, and
this pattern repeats again around 𝐼 = 0.36 for a long time range
(𝑡 = 100000). The sequence is 2121... where 𝑙 = 2 and 𝑠 = 1 respectively
(Fig. 3(m)). Next, the number of LAOs (𝑙) increases as we increase
𝐼 = 0.375. The sequence follows 21312131... with 𝑙 = 2, 3 and 𝑠 = 1,
it generates alternatively (Fig. 3(n)). The number of 𝑙 again increases
and we observe MMBOs with signature 3131... in the similar way at
𝐼 = 0.38 (Fig. 3(o)). SAOs occur around the fold point 𝑣∗ = −1 for all
the above cases which we can observe from the time series of the model
(see Fig. 3(b)–(o)) and the critical manifold (see Fig. 1(b)).

The transition of firings appears in the system around 𝐼 = 0.394
(i.e., tonic spiking) with stable limit cycle (Fig. 3(p)). The tonic spiking
changes to fast spiking behavior at the intermediate phases that again
transform into MMOs of another kind. It involves the sequences of one
LAOs with one or multiple numbers of SAOs (such as 11121112...), when
we further increase the value of 𝐼 > 3, the sequence becomes 1717...
around 𝐼 = 3.1 (Fig. 3(q)). Now, the DRS system (11) has folded node
for 𝑣∗ = 1, 𝑦∗ = −1.64167 and folded focus 𝑣∗ = −1, 𝑦∗ = −2.80833.
The SAOs are generated around the folded node, 𝑣∗ = 1 (see Fig. 3(q)).
Again we obtain 𝜓 = |𝜉𝑤|

|𝜉𝑠|
= |−0.0173683|

|−0.982632| = 0.0176753 < 1 and 𝜓−1 =

6.5761 ∉ N (from Remark 1(a)). Here, the strong eigendirection is
6.5761 times stronger than the weak eigendirection. The inequality
olds in good agreement for 𝑛 = 27, i.e., there are at most 27 secondary
anards in addition to the primary canards. Thus, there exists maximum
9 SAOs around the fold point. Fig. 3(q) suggests that the system
enerates only 7 SAOs, which is in the limit of the prediction. Next,
ith further increase of 𝐼 , it goes to the quiescent regime. We show

he variations in the firing patterns for two different values of small
ime scale parameter, 𝛿 as we change the input current stimulus, 𝐼
see 1).

The sequences of MMOs appear in the intermediate periodic to
haotic states that can be observed in the bifurcation diagram. The
MOs can be observed as the alternating periodic states to Farey

equences. The transition phases of MMOs via Farey sequence are
bserved. Apart from primary and secondary MMOs, the FHR system
xhibits unique sequence of periodic MMOs as we vary the predominant
arameter (𝐼). These unique sequence of periodic MMOs is known as
arey sequence [48] i.e., it appears like 10 → ∞1 → 𝑙1 → 1𝑠 → 1∞,
hen the control parameter moves slowly to homoclinity. 10 indicates

he large amplitude limit cycles in the phase space with tonic spiking,
hile ∞1 denotes a long term tonic spiking or periodic oscillations
ith the transition to a small amplitude oscillation for once in the

omplete oscillatory domain. Then it switches to regular or irregular
MOs and MMBOs with different numbers of 𝑙 and 𝑠. The signature of

omoclinic chaos is 1∞, where one large amplitude oscillation occurs
ith countably many irregular small amplitude oscillations. The Farey

equence observed here is 1𝑚 → ...110... → ...16... → ...1415... → 1314 →

..10 → ...17 (see Fig. 3(b, d-g and p-q)).
Now, we explore the homoclinic chaos in the system (1) and try

o find out the chaotic windows in the system. The condition for
omoclinic chaos holds for 𝐼 ∈ [0.134, 0.159] and [3.142, 3.166] with
ixed value of 𝑐 = −0.775. At 𝐼 = 0.15, the unique real equilibrium
oint is obtained as (𝑣∗ = −0.962341, 𝑤∗ = −0.327926, 𝑦∗ = 0.187341).
8
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he discriminant, 𝐷 of 𝑃 (𝜂) is evaluated at the above mentioned fixed
oint as 𝐷 = −0.00219987 < 0. The negative value of 𝐷 indicates
hat 𝑃 (𝜂) has one real root and a pair of complex conjugate roots
s (−0.0109013, 0.00720096 ± 0.285853𝑖). The conditions of homoclinic
haos hold, i.e., 𝜎 = −0.0109013 < 0, 𝜂1 = 0.00720096 > 0 and
𝜎
𝜂1
| = |

−0.0109013
0.00720096 | = 1.51386 > 1. Saddle value and saddle index are

obtained as 𝜎1 = −0.00370034 and 𝜈 = 0.6605597 respectively. Here, we
obtain 𝜎1 < 0 and 𝜈 < 1, which indicates that the system (1) has simple
dynamics near the saddle focus. The phase portraits with corresponding
time series of FHR model in the homoclinic chaos regime are shown
in Fig. 4(a-d) for different 𝐼 . We observe the spiraling trajectories
around the saddle focus in all the phase portraits. We also evaluate the
Lyapunov exponents (LEs) as a function of time and the predominant
parameter 𝐼 to show the chaotic behavior of the system (1). First, we
consider the LEs as a function of time and we plot the spectrum for
𝐼 = 0.15. We found the Lyapunov coefficients as (0.000079, −0.000054 −
0.053439). The positive first Lyapunov coefficient (see Fig. 4(e), red
curve) indicates that the system exhibits chaos. Fig. 4(f) depicts the LEs
spectrum in the interval 𝐼 ∈ [0.134, 0.159] and it is found that the first
LE is positive in this interval. Therefore, the system is chaotic in this in-
terval. The system (1) exhibits MMOs with one large and finitely many
irregular small amplitude oscillations (1∞) in this interval (see Fig. 3(b)
and (c)). Thus, we observe MMOs as a transition route to homoclinic
chaos. Again at 𝐼 = 3.1440, the real equilibrium point is obtained as
(𝑣∗ = 0.962341, 𝑤∗ = 2.07793, 𝑦∗ = −1.73734). Similar to the above case,
we found that 𝐷 = −0.00219987 < 0. The corresponding eigenvalues of
the system are obtained as (−0.0109168, 0.00986154±0.285222𝑖) and the
conditions of homoclinic chaos hold, i.e., 𝜎 = −0.0109168 < 0, 𝜂1 =
0.00986154 > 0 and |

𝜎
𝜂1
| = |

−0.0109168
0.00986154 | = 1.107 > 1. Again, the system

has simple dynamics near the saddle focus as 𝜎1 < 0 and 𝜈 < 1. The
Es spectrum with respect to 𝐼 is plotted for 𝐼 ∈ [3.142, 3.166] and we
ound that the first LE is positive in this interval, which indicates that
he system (1) exhibits chaos in this interval (see Fig. 4(g)).

. Conclusions

This study is concerned with the MMOs and MMBOs in the slow–
ast FHR model, where the dynamics evolves on multiple time scales
nd its bifurcation structure. We have considered the dynamics of
he FHR model with the predominant bifurcation parameter, 𝐼 and
tudy different regions of firing characteristics. We prove the validation
f the existence of Hopf bifurcations and canard phenomenon. We
llustrate the parameter space of canard phenomenon where MMOs
ccur and our numerical simulations involved the solution of the dy-
amical system of ODEs. Further, we justify the existence of maximum
umber of SAOs between two consecutive LAOs via folded node theory.
he slow dynamics of model is explored using the reduced system
8) and corresponding critical manifold in two and three dimensions.
nterestingly, we can categorize the generations of MMOs and MMBOs
nto two different classes. One in which the SAOs are generated near
he point 𝐿− and in another class the SAOs are generated near the point
+ (see Fig. 3).

The threshold of MMOs and chaotic behavior have been studied
umerically. MMBOs consisting of SAOs and LAOs with fast oscillations
f bursts that add spikes adding transition. At the boundaries of it,
here exists different dynamical regimes such as MMOs, quiescence,
onic spiking etc. General results have been derived for a finite di-
ensional slow–fast systems with the emergence of MMOs, that could

e applied in this direction and heterogeneous system parameters
ay be introduced for further investigation. Moreover, this type of
henomenological biophysical model provides us a theoretical frame-
ork to analyze the dynamical characteristics of healthy and diseased
eurons that can be found in experimental results [40]. Previously,
MBOs were observed as the dynamical behavior of the GnRH model
euron in a small-size network, which can be helpful in the studies for
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Fig. 4. Phase portraits and corresponding time series of FHR model in the homoclinic chaos slow–fasts for (a) 𝐼 = 0.15, (b) 𝐼 = 0.155, (c) 𝐼 = 3.142 and (d) 𝐼 = 3.155. Dynamics
of Lyapunov spectrum of the model: (e) LEs as a function of time for 𝐼 = 0.15, (f)–(g) LEs as a function of 𝐼 in the intervals 𝐼 ∈ [0.134, 0.159] and 𝐼 ∈ [3.142, 3.166] respectively.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
epilepsy [21]. MMBOs are a combination of time series of canard medi-
ated MMOs and bursting oscillations. In complex biophysical systems,
different mechanisms play during the oscillatory phases that produce
spike patterns between fast and slow amplitude motions, known as
MMOs. The pyramidal neurons can generate two different types of
MMOs and the characterization of these MMOs was inspected under
antiepileptic drug conditions [43,58]. MMOs can be observed in various
types of neurons such as in the neocortex neurons, hippocampal CA1
neurons, thalamus, spinal motor neurons etc. [41,59].

The transition from the peak of the action potential to steady
states can be achieved by reducing neuronal gain with the help of
MMOs [41,50]. The impacts of SAOs or subthreshold oscillations on
different neuronal responses were studied in [59,60]. In the evolution
of MMOs and controlling spike clustering, the SAOs play an interesting
role [61,62]. Further, SAOs effect on the sensitivity of neurons with the
variations in synaptic inputs and network synchronization for certain
firing frequencies [13]. We discussed a number of possible biophysical
interpretations on the roles of MMOs and it may be useful for the
researchers working in mathematical modeling and dynamical systems
that play a crucial role in understanding neuronal rhythmic behavior.
Such mixed mode oscillations (MMOs and MMBOs) are of great interest
in current research, and it includes experimental, theoretical and com-
putational approaches in biological systems. Further, this type of work
may be extended from coupled systems to biophysical systems with
different network structures so as to investigate possible applications
in this direction.
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