
The generation of diverse traveling pulses and its solution scheme in an excitable
slow-fast dynamics

Arnab Mondal1, Argha Mondal2,3,∗, M. A. Aziz-Alaoui4, Ranjit Kumar Upadhyay1, Sanjeev Kumar Sharma1,
Chris G. Antonopoulos3

1 Department of Mathematics & Computing, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
2 Department of Mathematics, Sidho-Kanho-Birsha University, Purulia 723104, WB, India
3 Department of Mathematical Sciences, University of Essex, Wivenhoe Park CO4 3SQ, UK
4 Normandie Univ, UNIHAVRE, LMAH, FR-CNRS-3335, ISCN, 76600 Le Havre, France

Abstract

In this paper, we report on the generation and propagation of traveling pulses in a homogeneous network of

diffusively coupled, excitable, slow-fast dynamical neurons. The spatially extended system is modelled using the

nearest neighbor coupling theory, in which the diffusion part measures the spatial distribution of the coupling

topology. We derive analytically the conditions for traveling wave profiles that allow the construction of the shape

of traveling nerve impulses. The analytical and numerical results are used to explore the nature of the propagating

pulses. The symmetric or asymmetric nature of the traveling pulses is characterized and the wave velocity is

derived as a function of system parameters. Moreover, we present our results for an extended excitable medium by

considering a slow-fast biophysical model with a homogeneous, diffusive coupling that can exhibit various traveling

pulses. The appearance of series of pulses is an interesting phenomenon from biophysical and dynamical perspective.

Varying the perturbation and coupling parameters, we observe the propagation of activities with various amplitude

modulations and transition phases of different wave profiles that affect the speed of the pulses in certain parameter

regimes. We observe different types of traveling pulses, such as envelope solitons and multi-bump solutions and

show how system parameters and the coupling play a major role in the formation of different traveling pulses.

Finally, we obtain the conditions for stable and unstable plane waves.

Keywords: FitzHugh-Rinzel model, traveling waves, complex Ginzburg-Landau equation, perturbation theory,

solution scheme, stability, instability

The emergence of diverse traveling wave profiles might reflect the rhythmic properties

in signal processing and functional connectivity in different brain areas. In [1], we have

shown the existence of solitary wave profiles in the Hindmarsh-Rose model using the tanh

method. Here, we use a different analytical approach to find the traveling wave profiles for

a slow-fast FitzHugh-Rinzel model. We observe different types of traveling pulses, such

as envelope solitons and multi-bump solutions and show how system parameters and the

coupling play a major role in the formation of various traveling pulses. Finally, we obtain

the conditions for which plane waves become stable or unstable.

1. Introduction

Excitable biophysical mechanisms show various dynamical characteristics and can be studied from a dynamical

systems perspective. Neurons receive incoming sensory inputs, encode them into various biophysical variables and

produce relevant outputs [2, 3]. Theoretical modeling and numerical simulations are prominent tools in understand-

ing various functional mechanisms in neural computations [4, 5, 6]. Hindmarsh-Rose (HR) [7], Izhikevich [2, 3],

FitzHugh-Nagumo (FHN) [8] and FitzHugh-Rinzel (FHR) [9, 10] systems are such types of biophysical models that
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produce diverse firing properties. In extended spatial systems of coupled neuronal populations, a transmembrane

potential difference can travel across neurons by means of traveling wave propagation [11, 12, 13, 14, 15]. This may

cause the appearance and disappearance of neuronal responses with traveling pulses. Such types of dynamics are

responsible for playing a major role in the biodynamics of signal processing [16].

Traveling pulses present a characteristic feature of certain neurological disorders in humans, including epilepsy

[17] and migraines [18]. Therefore, investigating the mechanisms underlying wave propagation in neuronal tissue is

important in understanding both normal and pathological brain states. The spatial propagation of wavy profiles

in coupled neuronal networks can emerge due to variations in the electrical activities at the single cell level. One

of the key challenges is to analyze the intrinsic dynamics of neuronal activities and its characteristics [19, 20, 21].

The emergence of diverse traveling wave profiles is often associated with self-organization and interactions within

the network and might reflect the rhythmic properties in signal processing, and functional connectivity in different

brain areas [22, 23, 24].

The main goal here is to study the emergence of diverse traveling pulses using a mathematical approach for

spatially excitable media in the context of excitable biophysical systems. We combine the existence and propagation

of traveling pulses with speed equations and the stability of the solutions. Traveling pulses are special types of

solutions to a reaction diffusion system. Equilibrium solutions can lead to two types of traveling waves known as

traveling fronts and pulse solutions. A traveling front connects distinct steady states at both ends, however, a

traveling pulse connects the same steady state [25, 26].

Our study is motivated by theoretical and experimental works that assume the existence of localized excitations

in certain neuronal populations [27, 28, 29, 30, 1]. Many research articles have investigated the existence of envelope

solitons of the nerve impulse, not only in diffusively connected networks but also in memristive neuron models

[29, 30]. In [1], we have shown the existence of solitary wave profiles in the HR model using the tanh method

[31, 32]. Further, a special type of traveling pulse, i.e., the multi-bump or multi-pulse solution has been studied

in [26]. Specific mechanisms for traveling pulses have been examined mathematically. Excitable neuron models

can produce two types of traveling pulses: envelope solitons and envelope of multi-bump solutions. Envelope

solitons are observed in nonlinear and weakly dispersive systems. The wave equation in the small amplitude limit

is very important to describe envelope solitons. The disappearance of bumps changes the propagation activity. The

individual bump solution in multi-pulse wave profiles are non-propagating and transient [26]. However, there arises

important questions about the existence of analytical, exact or approximate solutions to the excitable models as it

is interesting to test the numerical solutions with theoretical approaches.

Here, we investigate different forms of nerve impulses in terms of traveling wave profiles in a diffusively coupled

network of slow-fast spiking-bursting FHR type 3 neuron models. The main objectives are analytical and numerical

approaches to find the dynamical behavior of modulated traveling pulses in an excitable diffusive network of slow-

fast dynamics. We use the multiple-scale expansion method in a semi-discrete approximation to obtain the modified

complex Ginzburg-Landau (CGL) equation using perturbation theory. Next, we derive the envelope of the traveling

pulses to observe the collective dynamics, i.e., nerve impulses. Finally, we derive the role of this type of connected

oscillators with identical coupling and the effects of small perturbations on the solution of the wave profiles to

observe both the envelope of multipulses and single solitary pulses.

The study of the propagation of various traveling pulses in such networks may be relevant, e.g., in brain

pathologies [33] and different functional mechanisms especially in cortical areas [29]. Our work describes an explicit

analytical scheme and numerical approaches to analyze the diffusively coupled FHR models for a range of coupling

strengths. First the network can be considered in the Lienard form and then it can be transformed into an extended

complex Ginzburg-Landau equation (CGLE) using perturbation theory. We apply the multiple-scale expansion

theory with a semi-discrete approximation. The reduced CGLE follows the time evolution of the modulated wave

propagation in the network. To obtain the traveling wave solution, we derive the expression of the nerve impulse

using the membrane voltage variable.

The paper is organized as follows. In Sec. 2, we describe preliminaries about the slow-fast subsystems and

present the FHR type 3 neuron model. We demonstrate the theory to derive the approximate solution using semi-

discrete approximations. In Sec. 3, we reduce the FHR model to the CGLE and find in Sec. 4, the solution to

the latter. We also present different types of traveling pulses, such as envelope solitons and multi-bump solutions.

Further, we discuss how these depend on system parameters. In Sec. 5, we obtain the conditions for which the
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plane wave becomes stable or unstable. Finally, we conclude our results in Sec. 6 following a brief discussion.

2. The biophysical excitable model and the approach to finding its solution

2.1. Formulation of the coupled network model

The dynamics of the minimal mathematical model to explore different time scales of slow and fast membrane

voltage processes can be defined as dx/dt = F (x, z), dz/dt = µG(x, z), where x ∈ R2 and z ∈ R with 0 < µ � 1.

The fast and slow subsystems are 2D and 1D abstractions of the dynamics while facilitating the geometrical

features in the phase space. The dynamics of the system evolves slowly around the slow variable when bursting

interacts dynamically with the fast subsystem. The transition between quiescent and firing states can be studied

by performing a bifurcation analysis where the bifurcation parameter is µ. The slow-fast model can be presented as

a generic model of excitabilities with diverse neuronal responses. It exhibits different nonlinear properties that are

governed by the set of three coupled ODEs in Eq. (1). Our primary goal is to study the dynamics on a spatially

extended medium with system (1) exhibiting various oscillatory firing patterns.

The FHR model was introduced by FitzHugh and Rinzel [9, 10, 34, 35, 36], and is an extended modification of

the 2D classical FHN model [8]. A z-shaped slow manifold can be observed in the case of the traditional bursting

model, while the FHR model of type 3 bursting does not have slow manifolds [37]. The most important variable

is the membrane voltage v. The third variable of the model enables us to understand the control of the resting

period between the generation of two action potentials. The equations of an excitable network of N neurons with

gap junction coupling are given by

v̇k(t) = wk − 4(v3
k − vk)− zk + I

+D(vk+1 − 2vk + vk−1),

ẇk(t) = −(4vk + 1 + wk), (1)

żk(t) = µ(1.25vk − (zk − z0)/4),

where k = 1, . . . , N , v is the membrane voltage and w the recovery variable. I measures the magnitude of the

external input stimulus current. z is a slow variable, and z0 the slow subsystem parameter that controls the nature

of bursting. The small parameter 0 < µ � 1 determines the pace of the slow variable z and D is the coupling

strength of the gap junctions.

We have already studied the dynamics of system (1) in [38]. In this work, we consider the case of two nearest-

neighbors coupled with weak coupling. Neurons can connect with their nearest neighbors electrically. The weak

coupling reflects the situation that appears in the study of bursting-like activity in β-cell islets of the pancreas that

secrete insulin [29, 39, 40]. Biophysically, the neuronal variability may reflect the characteristics at different levels of

certain receptors or differences in regulatory effects that can be induced by internal or external neuron-modulatory

processes.

In the following, we will use the semi-discrete approximation [30, 29] to derive analytically the localized traveling

pulses that propagate in a diffusively connected excitable network of FHR neurons (1). In order to investigate the

resulting interactions, the system is considered in such a way that each neuronal node follows the same coupling

topology. The dynamics of spike generation can be described by the dynamics of the FHR model (1).

2.2. The solution method

Large scale coupled neuronal networks can generate various spatial states with different structures. One of

these states give rise to traveling pulses. Here we derive analytically the emergence of traveling pulses using the

semi-discrete approach [30, 29]. In particular, we transform system (1) in the wave form by reducing its first and

second equations into the second order differential equation

v̈k + f(vk, v̇k, zk) = D(vk+1 − 2vk + vk−1)

+D(v̇k+1 − 2v̇k + v̇k−1), (2)

żk = g(vk, zk),
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where the first equation is a second-order ordinary differential equation. Equation (2) is also known as the Lienard

form. The associated constant parameters are to be derived during the study of the semi-discrete approximation.

We note that this transformation does not affect the behavior of the system. We can easily decompose the system

and obtain the transformed slow-fast system.

To study different traveling wave profiles, we treat the slow-fast system as a discrete coupled system. The

evolution of modulated waves in the network is described by a modified CGLE. To find the traveling wave profiles,

we need to reduce the system into a CGLE and find its solution using the semi-discrete approximation [30, 29]. We

consider the new variables mk and nk as

vk = εmk (3)

zk = εnk, (4)

where 0 < ε� 1. Then, system (2) becomes

m̈k + f1(mk, ṁk, nk) = D(mk+1 − 2mk +mk−1)

+D(ṁk+1 − 2ṁk + ṁk−1), (5)

ṅk = g1(mk, nk).

According to the method, which is a perturbation technique, the carrier waves are kept discrete whereas the

amplitude is considered in the continuum limit [29, 30]. The semi-discrete approximation approach is used to study

plane wave modulation due to the nonlinear terms in the system. The main objective to use the multiple-scale

expansion method is to find the solution v(x, t) in terms of the new independent space and time variables Xk and

Tk, that we discuss next. Applying the approximation, the method allows one to study the modulation of a plane

wave due to nonlinear effects [29].

In this context, we introduce the new space and time variables Xk = εkx and Tk = εkt, where x and t are the

space and time variables. Then, we consider

v(x, t) =

∞∑
k=1

εkmk(X0, X1, X2, . . . T0, T1, T2, . . .),

z(x, t) =

∞∑
k=1

εknk(X0, X1, X2, . . . T0, T1, T2, . . .).

The partial derivatives with respect to the new space and time variables are given by

∂

∂t
=

∂

∂T0
+ ε

∂

∂T1
+ ε2

∂

∂T2
+ . . .

∂

∂x
=

∂

∂X0
+ ε

∂

∂X1
+ ε2

∂

∂X2
+ . . . .

Finally, to obtain the solution, we use the new form of the voltage and slow variables, the time and space derivatives

and compare various terms at different orders of ε.

3. Equation of motion of the amplitude (CGLE)

To study the envelope solitons of wave equations in the small amplitude limit, we find the solution to this

equation analytically and compute it numerically. To proceed, it is important to transform system (1) into the

wave form. To do so, we introduce a second-order differential equation in vk for the first and second equations in
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model (1) and obtain the system of ODEs

v̈k + f(vk, v̇k, zk) = D(vk+1 − 2vk + vk−1)

+D1(v̇k+1 − 2v̇k + v̇k−1),

żk = g(vk, zk), (6)

where f(vk, v̇k, zk) = E0vk + (E1 + E2v
2
k)v̇k + E2

3 v
3
k + E3zk + I0, g(vk, zk) = µ(1.25vk − (zk − z0)/4), E0 = 1.25µ,

E1 = −3, E2 = 12, E3 = 1 − µ
4 , I0 = 1 + µz0

4 − I and D1 = D. This transformation does not change the system

(1), it only reduces its dimension from 3 to 2. The transformed system (6) is equivalent to system (1) and we can

obtain approximate solutions of the nonlinear system (6) using a perturbation technique. As we need to derive

the solution in an extended diffusive medium, we will use the perturbation vk = εmk, zk = εnk and perturb the

parameters E1, E3 and D1 up to order ε2. Then, system (6) becomes

m̈k + f1(mk, ṁk, nk) = D(mk+1 − 2mk +mk−1) (7)

+ ε2D1(ṁk+1 − 2ṁk + ṁk−1),

ṅk = g1(mk, nk), (8)

where f1(mk, ṁk, nk) = E0mk + ε2(E1 + E2m
2
k)ṁk + ε2E2

3 m
3
k + ε2E3nk, g1(mk, nk) = −snk + E0mk and s = µ

4 .

Equation (7) generates the dynamical behavior of the membrane voltages in coupled FHR neurons. Equation (8)

reflects the associated coupling term that describes the dynamics of the bursting variable. Since we are dealing with

a weakly coupled diffusively connected network with nonlinear excitations, it is possible to use the semi-discrete

approximation. In the following section, we will explore analytically and numerically the traveling pulses as envelope

solitons. We will demonstrate the method to obtain the modified CGLE. Next, we reduce it to a CGLE by using

multiple-scale expansions to find its solution.

We consider the solution of Eqs. (7)-(8) in the following forms

mk = Ake
iθk +Ake

−iθk + ε
(
Bk + Cke

2iθk + Cke
−2iθk

)
, (9)

nk = Fke
iθk + F ke

−iθk + ε(Gk +Hke
2iθk +Hke

−2iθk),

where θk = qk − ωt. q and ω indicate the normal mode wave vector and angular velocity, respectively. Here,

we use the continuum limit approximation on the amplitudes Ak(t), Bk(t) and Ck(t) (Fk(t), Gk(t) and Hk(t),

respectively) as they change slowly with respect to space and time. Using the continuum limit approximation

[29] on the amplitudes Ak(t), Bk(t) and Ck(t), the amplitudes become A(X1, X2, T1, T2), B(X1, X2, T1, T2) and

C(X1, X2, T1, T2) (similarly for F , G and H). Using Taylor expansions, Ak±1 is given by

Ak±1 = A± ε ∂A
∂X1

± ε2 ∂A
∂X2

+
ε2

2

∂2A

∂X2
1

+O(ε3). (10)

The first and second-order temporal derivatives are given by

∂Ak
∂t

= ε
∂A

∂T1
+ ε2

∂A

∂T2
+ o(ε3) (11)

and
∂2Ak
∂t2

= ε2
∂2A

∂T 2
1

+ o(ε3), (12)

respectively. Similar expressions hold for the amplitudes B, C, F , G and H. The first and second-order temporal
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derivatives of mk with respect to the new space and time variables and amplitudes A, B, C are given by

ṁk =

(
ε
∂A

∂T1
+ ε2

∂A

∂T2
− iωA

)
eiθk

+

(
ε
∂Ā

∂T1
+ ε2

∂Ā

∂T2
+ iωĀ

)
e−iθk + ε2

∂B

∂T1

+

(
ε2
∂C

∂T1
− ε2iωC

)
e2iθk

+

(
ε2
∂C̄

∂T1
+ ε2iωC̄

)
e−2iθk + o(ε3),

m̈k =

(
ε2
∂2A

∂T 2
1

− ε2iω ∂A
∂T1
− ε22iω

∂A

∂T2
− ω2A

)
eiθk

+

(
ε2
∂2Ā

∂T 2
1

+ ε2iω
∂Ā

∂T1
+ ε22iω

∂Ā

∂T2
− ω2Ā

)
e−iθk

+

(
−ε24iω

∂C

∂T1
− ε4ω2C

)
e2iθk

+

(
ε24iω

∂C̄

∂T1
− ε4ω2C̄

)
e−2iθk + o(ε3).

Similarly, the first order temporal derivatives of nk with respect to the new space and time variables and amplitudes

F , G, H are given by

ṅk =

(
ε
∂F

∂T1
+ ε2

∂F

∂T2
− iωF

)
eiθk

+

(
ε
∂F̄

∂T1
+ ε2

∂F̄

∂T2
+ iωF̄

)
e−iθk

+ ε2
∂G

∂T1
+

(
ε2
∂H

∂T1
− ε2iωH

)
e2iθk

+

(
ε2
∂H̄

∂T1
+ ε2iωH̄

)
e−2iθk + o(ε3).

Substituting the above equations in Eqs. (7) - (8) (see Appendix A) and equating the coefficients of different orders

in ε, we obtain the following important relations:

The dispersion relation of linear pulses by comparing the coefficient of e±iθk in Eq. (7) (see Eq. (A1)) is given

by

ω2 = E0 + 4D sin2
(q

2

)
. (13)

We have also shown the dispersion relation numerically in Fig. (1)(a). The dispersion relation of the traveling

pulses in the network depends on the associated parameters of the coupled system.

Similarly, comparing the coefficient of εeiθk in Eq. (7) (see Eq. (A1)), we obtain

∂A

∂T1
+ vg

∂A

∂X1
= 0, (14)

where vg is known as the group velocity, given by

vg =
D sin q

ω
. (15)

Clearly, the diffusion coefficient D plays a major role in controlling the velocity of the pulses. We have shown the

effects of diffusive coupling on the velocity of the pulses (Fig. 1(b)). Interestingly, for smaller diffusion coefficient,

the velocity vg changes very rapidly, whereas for higher diffusion coefficient, the rate of change of the velocity is very

low. We have shown a zoomed version in Fig. 1(b). The dispersion equation is related to the parameters associated
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Figure 1: The effect of q and D on ω and vg . (a) Dispersion relation of linear pulses for µ = 0.003 and D = 0.01. (b) The effect of
the diffusion coefficient D on the velocity of the pulses for µ = 0.003, q = 1.5. At smaller diffusion coefficient, velocity vg changes very
rapidly, whereas for larger diffusion coefficient, the rate of change of velocity is very low. The insets show a zoom-in of the behavior in
the black rectangles.

with the excitable network. The wave velocity depends on the diffusive property of the membrane dynamics, as the

nerve impulses move faster according to the ionic movements in the cell membrane.

Equating the coefficients without exponential terms and εe2iθk in Eq. (7), we obtain B = 0 and C = 0,

respectively. As a result of the coupling between the membrane voltage and slow variables, we get

F =
E0(s+ iω)

s2 + ω2
A

by equating the coefficients of eiθk in Eq. (8) (see Eq. (A2)).

The terms depending on ε2eiθk have the following relation in Eq. (7) (see Eq. (A1))

∂2A

∂T 2
1

− 2iω
∂A

∂T2
= iωE1A

+ (iω − 1)E2 | A |2 A−
E0E3(s+ iw)

s2 + w2
A

+ 4iωD1 sin2(
q

2
)A+ 2iD sin(q)

∂A

∂X2

+D cos(q)
∂2A

∂X2
1

. (16)

Using the transformation uk = Xk − vgTk and τk = Tk, we obtain

i
∂A

∂τ2
+
P

2

∂2A

∂u2
1

+Q | A |2 A+ i
R

2
A = 0. (17)

Equation (17) is the modified CGLE, which describes the evolution of modulated pulses in the neuronal network.

The real dispersion coefficient P is given by

P =
Dω2 cos q −D2 sin2 q

ω3
.

The two complex dissipation coefficients Q and R are given by

Q = −E2

2ω
+ i

E2

2
,

R = E1 + 4D1 sin2 q

2
− E3E0

s2 + ω2
+ i

(
sE3E0

w(s2 + ω2)

)
.

7



Figure 2: Variations of the coefficient PQr with respect to the wave vector q for µ = 0.003 and D = 0.01.

Here Qr, Rr and Qi, Ri are the real and imaginary parts of Q, R respectively.

The sign of PQr plays a major role in determining the modulational instability as the dispersion coefficient is

real. According to the Benjamin-Feir instability [30], positive and negative values of PQr indicate that plane pulses

are unstable and stable, respectively. Clearly, this stability condition is independent of wave propagation. Thus, in

the positive domain of PQr, we can find the nerve impulses for any wave carrier. We have shown the variations of

the coefficient, PQr in Fig. 2 with respect to the wave vector, q.

4. Traveling wave profiles and numerical results

In the following, we obtain the solution of Eq. (17) to understand the dynamics of the envelope solitons by

considering the purely real dissipation term R (Ri = 0). We consider the solution of Eq. (17) in the following form

A(uk, τ2) =
A0e

α

1 + e(α+ᾱ)(1+iβ)
, (18)

where α = quk − ωτ2, β = γ ±
√

2 + γ2 and γ = 3Qr

2Qi
. Substituting Eq. (18) into Eq. (17), we obtain

A = A0
e−α + cos 2αβeα

2(cosh 2α+ cos 2αβ)

+ i

(
−A0

sin 2αβeα

2(cosh 2α+ cos 2αβ)

)
. (19)

From Eq. (9), we obtain

m = 2(Ar cos θ −Ai sin θ), (20)

where Ar and Ai indicate the real and imaginary parts of A. Finally, using Eqs. (19), (20) and the expression

vk = εmk, we obtain

vk = εA0
cos(θk − 2αkβ)eαk + cos(θk)e−αk

2(cosh(2αk) + cos(2αkβ))
. (21)

In Fig. 3, we show the effects of the perturbation parameter, ε, on the nerve impulses for fixed values of the

remaining parameters. The constants A0 and q assume small values [29]. The changes of the parameters do not

affect the dynamics. The value of q is considered in the region mentioned in Fig. 1(a). At lower perturbation ε,

we observe the envelope of a multi-bump solution for fixed diffusive coupling D = 0.01 changing in time, where

each of the bumps is unstable and transient [26]. As the perturbation ε increases, there is not enough activity to

generate new bumps. As a result, there is no wave propagation. Finally, at higher perturbation ε, the nerve impulse

is localized (see Fig. 3(d)) in the coupled network, which is an asymmetric envelope soliton. The parameter ε plays

a major role not only in wave profiles but also in their amplitudes. It also affects the structural pattern of the wave

profiles as depending on its value, it can transform the pattern into single soliton pulses.
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Figure 3: Spatiotemporal evolution of the traveling wave profiles for the slow-fast FHR system (1), using Eq. (21). A series of traveling
pulses is shown. The multi-bump solution and disappearance of bumps with the generation of single solitary wave profiles and effects
of perturbation on the impulses are presented for the parameters µ = 0.003, q = 1.5, D = 0.01, t = 10, A0 = 0.1 in (a) for ε = 0.05, (b)
ε = 0.1, (c) ε = 0.25 and (d) ε = 0.7.
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Figure 4: Traveling wave profiles of analytical envelope solutions to system (1), using Eq. (21). Effects of small parameter values µ on
nerve impulses. Here q = 1.5, D = 0.01, t = 10, A0 = 0.1, ε = 0.7. Panel (a) is for µ = 0.000001, panel (b) for µ = 0.1, panel (c) for
µ = 0.4 and panel (d) for µ = 0.8.

Figure 5: Traveling wave profiles of spatial envelope solutions to system (1), using Eq. (21). Effects of small diffusion coefficient D on
the wave profiles for the parameters q = 1.5, µ = 0.003, t = 10, A0 = 0.1, ε = 0.25 for (a) D = 0.001, (b) D = 5 and (c) D = 10.
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Figure 6: Numerical results for traveling wave pulses at different times t (shown in the insets). Multi-bump solutions in the form
of (a) symmetric wave profiles with almost-same amplitudes at three different times and (b) asymmetric wave profiles with different
amplitudes at the same three different times. The different colors denote the different times shown in the insets at which the traveling
pulses are plotted. In both panels, we have used the parameters µ = 0.003, q = 1.5, D = 0.01, A0 = 0.1, with ε = 0.1 in panel (a) and
ε = 0.7 in panel (b).

The disappearance of bumps changes the propagation activity. The individual bump solution in the multi-bump

wave profiles are transient and non-propagating. The amplitude of the impulse increases as the perturbation ε

increases, which indicates the movement of more ions across the cell’s membrane, leading to the generation of high-

amplitude action potentials. This phenomenon occurs due to the fluctuations in the sequence of neuronal firing

times [23, 41]. However, the nature of the traveling impulses changes in time when the value of the slow-modulation

parameter µ in the slow subsystem changes for fixed higher values of the perturbation parameter ε. This represents

single-soliton pulses and the amplitudes of the single pulses decrease with the change in the values of µ, as shown

in Fig. 4. The value of the slow-modulation parameter must be small in the coupled dynamics to obtain higher

amplitude traveling pulses.

Next, we study the dynamics of traveling-wave profiles for ε = 0.25 and fixed time by changing the coupling

strength, D, shown in Fig. 5. They exhibit multi-pulses and the disappearance of both-end ripples changes the

propagation activity of the wave profiles. We can observe how multi-pulse wave profiles emerge with surrounding

standing pulses which collapses to single-traveling pulses. The solitary pulse corresponds to the envelope of a

multiple bump solution. We also study the changes of the nerve impulse with respect to time t in Fig. 6. The

amplitude of the envelope of a multi-bump is independent of time (see Fig. 6 (a)). The form and amplitude

of the asymmetric envelope-soliton change with time (see Fig. 6 (b)), therefore it is structurally unstable. The

corresponding pulses are highly nonlinear envelope-solitons.

Next, we are interested in finding the solution of Eq. (17), if the dissipation term has both real and imaginary

parts (i.e., Ri 6= 0). Let the solution of Eq. (17) be Anew = Aeiδτ2 . From Eq. (17), we get δ = −Ri

2 . Hence the

solution is given by

Anew = Ae−
iRi
2 τ2 . (22)

5. Instability of plane waves

In the previous section, we noticed that Eq. (17) has both envelope of a multi-bump and soliton wave profiles.

In the following, we will find under which conditions, plane waves are stable or unstable for small perturbations.

Amplitude modulated pulses emerge due to the instability of plane waves. We obtain a plane wave profile of the

form

A(uk, τ2) = A0e
i(auk−fτ2), (23)

where A0 is the plane wave amplitude and a and f are the wave number and angular frequency, respectively.

Substituting Eq. (23) into Eq. (17), from the real part, we obtain

f =
P

2
a2 +

Ri
2
−QrA2

0 (24)
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and from the complex part,

QiA
2
0 +

Rr
2

= 0. (25)

Equation (24) is known as the dispersion relation of plane waves. It is clear from Eq. (24) that the wave angular

frequency depends not only on the wave number but also on the wave amplitude.

To study the instability of the plane wave, we consider a solution of the form

A(uk, τ2) = (A0 + a1(uk, τ2))ei(auk−fτ2+a2(uk,τ2)), (26)

where the perturbation amplitude a1(uk, τ2) is very small with respect to the plane wave amplitude A0. Using Eqs.

(17), (26) and neglecting the nonlinear terms of the perturbations a1 and a2, we derive the equations

−A0a2τ2 +
P

2
a1uu − PA0aa2u + 2QrA

2
0a1 = 0, (27)

a1τ2 +
P

2
A0a2uu + Paa1u −Rra1 = 0. (28)

Equations (27) and (28) describe the evolution of the perturbation. We consider the solutions to Eqs. (27) and

(28) in the form

a1 = a10e
i(ζ1u−ζ2τ2) + c.c., (29)

a2 = a20e
i(ζ1u−ζ2τ2) + c.c., (30)

where ζ1 and ζ2 are the wave number of the perturbation and its corresponding propagation frequency respectively

and c.c. stands for complex conjugate. Generally, the wave number is real and the propagation frequency complex.

Substituting the solutions (29) and (30) in Eqs. (27) and (28), we derive the following linear homogeneous

equations for a10 and a20 (
2QrA

2
0 −

P

2
ζ2
1

)
a10 + iA0(ζ2 − Paζ1)a20 = 0, (31)

(−Rr − i(ζ2 − Paζ1))a10 −
P

2
A0ζ

2
1a20 = 0, (32)

which can be written in the matrix form

LL1 = 0,

where L =

(
2QrA

2
0 − P

2 ζ
2
1 iA0(ζ2 − Paζ1)

−Rr − i(ζ2 − Paζ1) −P2 A0ζ
2
1

)
and L1 =

(
a10

a20

)
.

Equations (31) and (32) have the nontrivial solutions, if L is a singular matrix, i.e. if det(L) = 0, from which it

results that

(ζ2 − Paζ1)2 =
P 2ζ2

1

4

(
ζ2
1 −

4Qr
P

A2
0

)
+ iRr(ζ2 − Paζ1). (33)

If y = ζ2 − Paζ1, Eq. (33) becomes

y2 − iRry −
P 2ζ2

1

4

(
ζ2
1 −

4Qr
P

A2
0

)
= 0. (34)

Equation (33) is known as the dispersion relation of the perturbation. Furthermore, for a fixed value of the wave

number ζ1, the term Qr

P plays a major role in controlling the dynamics of the angular frequency ζ2. Solving Eq.

12



Figure 7: Effects of the wave vector q on the real dissipation coefficient Rr for µ = 0.003 and D = 0.01.

(34), we obtain

y = i
Rr
2
±

√
P 2ζ2

1

(
ζ2
1 −

4Qr

P A2
0

)
−R2

r

2
. (35)

Depending on the sign of the discriminant, we examine the following three cases:

Case 1: P 2ζ2
1 (ζ2

1 −
4Qr

P A2
0)−R2

r = 0, i.e., y = iRr

2 .

The imaginary part of ζ2 is the same as the imaginary part of y, which is given by Rr

2 . From Fig. 7, it is clear

that Rr < 0, which indicates the wave oscillates about its original value and after a certain period of time the

perturbations die out. Thus, the plane wave is stable.

Case 2: P 2ζ2
1 (ζ2

1 −
4Qr

P A2
0)−R2

r > 0, i.e., =(y) = iRr

2 .

Similarly, the plane wave is also stable.

Case 3: P 2ζ2
1 (ζ2

1 −
4Qr

P A2
0)−R2

r < 0, i.e., y = iRr

2 ± i
√
R2

r−P 2ζ21 (ζ21−
4Qr
P A2

0)

2 .

As we already know the plane wave is stable if =(y) < 0, which gives

P 2ζ2
1

(
ζ2
1 −

4Qr
P

A2
0

)
> 0.

It is clear from the above expression that the plane wave solution is stable if P and Qr have opposite signs,

i.e., if PQr < 0. Similarly, we can show that the plane wave solution is unstable, i.e., the perturbations grow

exponentially in time, if PQr > 0.

In the case of modulational instability, the local growth rate or gain is given by

h =| =y |=| =ζ2 |

=
1

2

(
Rr +

√
R2
r − P 2ζ2

1 (ζ2
1 −

4Qr
P

A2
0)
)
.

The gain is maximum, i.e., the plane wave modulates itself, if the wave number ζ1 = A0

√
Qr

P and the

corresponding gain is given by

h =
1

2

(
Rr +

√
R2
r + 3Q2

rA
4
0

)
. (36)

It is clear from Eq. (36) that the amplitude of the plane wave and the dissipation coefficient of CGLE (Eq.

(17)) play an important role in controlling the growth rate of modulational instability.
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6. Conclusions and Discussion

In this paper, we studied nonlinear excitations in a locally diffusive network of excitable slow-fast FitzHugh-

Rinzel neurons. We showed that the dimension of the model can be reduced by using perturbation theory and that

it can transform to an extended complex Ginzburg-Landau equation. The solitary traveling wave profiles of the

voltage dynamics are also discussed. Our results show that the activities of the coupled neurons exhibit collective

dynamics that cannot be observed in the activity of single neurons. Furthermore, we analyzed the propagation of

wave profiles in an excitatory, diffusively coupled network of slow-fast neurons, treating it as a spatially extended

medium. The model exhibits different neuro-computational features. We showed how small amplitudes and short

wavelengths affect the homogeneous network and how they lead to traveling pulses. The wave speed was estimated

using perturbation theory. The stable traveling pulses exist for sufficiently small ε, however, the pulse is the

envelope of the multiple traveling wave profiles in which the multiple damping terms are transient and unstable.

The traveling wave profiles emerge via the appearance of multiple small-amplitude oscillations at the beginning of

the wave profile.

Our analytical treatment describes envelope solitary and multiple pulses [26] observed in numerical simulations.

Successive transitions from single pulses to multi-bump solutions are described. The modulated traveling pulses

and their properties are observed and are influenced by the diffusive coupling and the effects of small perturbations.

Our analysis shows the appearance of multiple small waves or series of pulses in the excitable network, that are

interesting to explore further as it may be possible to measure different properties of traveling pulses in excitable

media. The signature of these types of time-dependent traveling-wave profiles can be effectively measured by the

variations in the parameters of certain slow-fast excitable systems [29, 30]. Neurons can connect electrically with

other nearby neurons. This is a type of weak, diffusive, coupling and is reminiscent of bursting-like activity in

β-cell islets in the pancreas that secrete insulin [28, 39]. From a biological viewpoint, this shows that neurons

“communicate” with each other and participate in the collective processing of information exchange, a portion of

which is shared among them. As a result, the brain can effectively process information not only in the temporal but

also in the spatial domain [27, 37]. Neuronal ensembles can process stimuli in different or similar ways. The waves

(action potentials) exhibit nonlinear-envelope solitons having an up-and-down asymmetry in their amplitudes, as we

also show in this paper. The amplitude of the impulse increases as the perturbation ε increases, which indicates the

movement of more ions across the cell’s membrane, leading to the generation of high-amplitude action potentials.

This is caused by fluctuations in the sequence of neuronal firing times [22, 25, 40]. In extended spatial systems of

neuronal populations, a transmembrane potential difference can travel across neurons by means of traveling wave

propagation. Hence if one would want to measure propagation of nerve impulses in a neural network, one would

need to measure the transmembrane potential difference to observe the phenomena discussed in this paper. Our

work is theoretical and supported by numerical results that confirm the analytical findings. Hence, our findings are

qualitative and important as they pave the way for experimentalists to look out for them in experiments. Theoretical

and numerical results are important in understanding functional mechanisms in neural computations [4, 5, 6]. A

key challenge is to analyze the intrinsic dynamics of neuronal activities and its characteristics [19, 20, 21].
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Appendix A

Equations (7) and (8) can be written in terms of the amplitudes A, B, C, F , G and H in the forms(
ε2 ∂

2A
∂T 2

1
− ε2iω ∂A

∂T1
− ε22iω ∂A

∂T2
− ω2A

)
eiθk +

(
ε2 ∂

2Ā
∂T 2

1
+

ε2iω ∂Ā
∂T1

+ ε22iω ∂Ā
∂T2
− ω2Ā

)
e−iθk +

(
−ε24iω ∂C

∂T1
− ε4ω2C

)
e2iθk +

(
ε24iω ∂C̄

∂T1
− ε4ω2C̄

)
e−2iθk + E0

(
Aeiθk +Ae−iθk+

ε(B + Ce2iθk + Ce−2iθk)
)

+ ε2
(
E1 + E2(A2e2iθk + Ā2e−2iθk

+2AĀ)
) (
−iωAeiθk + iωĀe−iθk

)
+ ε2E2

3

(
A3e3iθk + Ā3e−3iθk

+3A2Āeiθk + 3AĀ2e−iθk
)

+ ε2E3(Feiθk + F̄ e−iθk) + o(ε3) =

D
(

(A+ ε ∂A∂X1
+ ε2 ∂A

∂X2
+ ε2

2
∂2A
∂X2

1
)eiqeiθk + (Ā+ ε ∂Ā∂X1

+ ε2 ∂Ā
∂X2

+

ε2

2
∂2Ā
∂X2

1
)e−iqe−iθk + ε(B + ε ∂B∂X1

+ (C + ε ∂C∂X1
)e2iqe2iθk+

(C̄ + ε ∂C̄∂X1
)e−2iqe−2iθk)− 2(Aeiθk +Ae−iθk + ε(B + Ce2iθk+

Ce−2iθk)) + (A− ε ∂A∂X1
− ε2 ∂A

∂X2
+ ε2

2
∂2A
∂X2

1
)e−iqeiθk+

(Ā− ε ∂Ā∂X1
− ε2 ∂Ā

∂X2
+ ε2

2
∂2Ā
∂X2

1
)eiqe−iθk + ε(B − ε ∂B∂X1

+

(C − ε ∂C∂X1
)e−2iqe2iθk + (C̄ − ε ∂C̄∂X1

)e2iqe−2iθk)
)

+ ε2D1(
− iωAeiqeiθk + iωĀe−iqe−iθk − 2(−iωAeiθk + iωĀe−iθk)−

iωAe−iqeiθk + iωĀeiqe−iθk
)

+ o(ε3) (A1)

and (
ε ∂F∂T1

+ ε2 ∂F∂T2
− iωF

)
eiθk +

(
ε ∂F̄∂T1

+ ε2 ∂F̄∂T2
+ iωF̄

)
e−iθk

+ε2 ∂G∂T1
+
(
ε2 ∂H∂T1

− ε2iωH
)
e2iθk +

(
ε2 ∂H̄∂T1

+ ε2iωH̄
)
e−2iθk

+s
(
Feiθk + Fe−iθk + ε(G+He2iθk +He−2iθk)

)
−

E0

(
Aeiθk +Ae−iθk + ε(B + Ce2iθk + Ce−2iθk)

)
+

o(ε3) = 0. (A2)
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