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A delay predator–prey model is formulated with continuous threshold prey harvesting and
Holling response function of type III. Global qualitative and bifurcation analyses are combined
to determine the global dynamics of the model. The positive invariance of the non-negative
orthant is proved and the uniform boundedness of the trajectories. Stability of equilibria is
investigated and the existence of some local bifurcations is established: saddle-node bifurcation,
Hopf bifurcation. We use optimal control theory to provide the correct approach to natural
resource management. Results are also obtained for optimal harvesting. Numerical simulations
are given to illustrate the results.
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1. Introduction

In this paper we consider a system of delay differen-
tial equations modeling the predator–prey dynam-
ics with continuous threshold prey harvesting and
Holling response function of type III.

The predator–prey model has received much
attention due to its practical importance and
also due to the rich dynamics observed in the

corresponding mathematical models (see for exam-
ple [Bohn et al., 2011; Etoua & Rousseau, 2010;
Ji & Wu, 2009; Leard et al., 2008; Martin &
Ruan, 2001; Gopalsamy, 1992; Kuang, 1993] and
the references therein). Profit, overexploitation and
extinction of a species being harvested are primary
concerns in ecology and commercial harvesting
industries.
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Harvesting has generally a strong impact on the
population dynamics of a harvested species. The
severity of this impact depends on the nature of
the implemented harvesting strategy. The study of
population dynamics with harvesting is a subject
of mathematical bio-economics, and it is related to
the optimal management of renewable resources.

Renewable resources management is compli-
cated and constructing accurate mathematical
models on the effect of harvesting on animal popu-
lations is even more complicated. This is so because
to have a perfect model we would have to take into
account many factors having an effect on the cost-
benefit criterion and on the survival of the harvested
population. According to [Clark, 1990], the manage-
ment of renewal resources is based on the notion
of maximum sustainable yield (MSY) of harvest-
ing; MSY is the maximum harvesting compatible
with survival. Hence, if the harvesting of popula-
tion exceeds its MSY (i.e. the population is overex-
ploited), then this population will become extinct.
Therefore, the best we can do is to look for analyz-
able models that describe as well as make possible
the reality or the effect of harvesting on popula-
tions. Most predator–prey models consider either
constant or linear harvesting functions ([Etoua &
Rousseau, 2010; Ji & Wu, 2009; Leard et al., 2008]
and the references therein).

In the literature, one of the predator–prey
model most commonly used is the generalized
Gause-type predator–prey model with harvesting of
prey [Gause, 1935]. It has the form{

ẋ(t) = ϕ(x(t)) −my(t)p(x(t)) −H(x(t)),

ẏ(t) = [−d+ cmp(x(t))]y(t),
(1)

where x and y represent the population of preys
and predators, respectively. d is the natural mor-
tality rate of the predators. c and m are positive
constants. The function

ϕ(x) = rx

(
1 − x

K

)
, (2)

models the behavior of preys in the absence of
predators: r is the growth rate of preys when x
is small, while K is the capacity of the environ-
ment to support the preys. The functions H(x)
and p(x) are the harvesting function of the preys
and the response function of predators to preys,
respectively.

On the other hand, time delays of one type
or another have been incorporated into biological

models by many researchers, we refer to [Gopal-
samy, 1992; Kuang, 1993] for the general delayed
biological systems; [Fan et al., 2009] and the refer-
ences cited therein for studies on delayed predator–
prey systems.

Basically a constant time delay can be incorpo-
rated into the model in three different ways [Mar-
tin & Ruan, 2001]. In this paper, a time delay τ is in
the predator response term p(x(t)) in the predator
equation, that is,{

ẋ(t) = ϕ(x(t)) −my(t)p(x(t)) −H(x(t)),

ẏ(t) = [−d+ cmp(x(t− τ))]y(t).
(3)

This delay can be regarded as a gestation period or
reaction time of the predators.

Bohn et al. [2011] considered the generalized
Gause-type predator–prey model (1) with contin-
uous threshold policy harvesting functions on the
prey and a Holling response function of type II. One
of the continuous threshold policy harvesting func-
tions on the prey is considered in [Bohn et al., 2011]:

H(x) =




0 if x < T,

h(x− T )
h+ x− T

if x ≥ T,
(4)

where T is the threshold value. In this way, once
the prey population reaches the size x = T , then
harvesting starts and increases smoothly to a limit
value h.

Etoua et al. [Etoua & Rousseau, 2010] con-
sidered the generalized Gause-type predator–prey
model (1) with constant policy harvesting functions
on the prey and a Holling response function of type
III [Bazykin, 1998]. That is,

p(x) =
x2

ax2 + bx+ 1
, (5)

where a is positive constant and b is non-negative
constant. This function is one of the potential
response functions of predators to preys, modeling
the consumption of preys by predators. It reflects
very small predation when the number of preys is
small (p′(0) = 0), and group advantage for the preys
when their number is high (p(x) tends to 1

a when x
tends to infinity).

The objective of this paper is to study the com-
bined effects of continuous threshold policy harvest-
ing function on the prey [see Eq. (4)] and a Holling
response function of type III [see Eq. (5)] into the
delay differential equation (3).
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System (3) is considered with the following ini-
tial values

x(θ) = φ0(θ) ≥ 0, θ ∈ [−τ, 0] and

y(0) = y0 ≥ 0.

This paper is organized as follows. In Sec. 2 we
show that the positive orthant is possessively invari-
ant with respect to the semi-flow of system (3) and
every solution of (3) is uniformly bounded. Section 3
is devoted to the equilibria of model (3). Stability
analysis of equilibria of model (3) is investigated in
Secs. 4 and 5. In Sec. 6, we find some bifurcations
present in the model. In Sec. 7 we analyze the opti-
mal harvesting.

In the following, we will make use of the follow-
ing assumption.

Assumption 1. We assume that:

(i) 0 < x(0) ≤ K.
(ii) T ≤ K.

Let us give some comments on Assumption 1.
(i) It is not plausible (the ecological point of view)
to have an initial value of the preys x(0) at time
t = 0 which is greater than the carrying capacity
K of the preys. (ii) From item (i) of Assumption 1,
we can find that x(t) ≤ K for all t ≥ 0 (see proof
of Theorem 1). Thus, if we assume that K < T ,
then the harvesting function H [see Eq. (4)] leads
to H(x(t)) = 0 for all x(t) ≤ K. Since x(t) ≤ K for
all t ≥ 0, we have H(x(t)) = 0 for all t ≥ 0. That
is, there is no harvesting of the preys in system (3).

Let us set

d1 =
d

cm
. (6)

2. Boundedness of Solutions

We start by showing that solutions of system (3)
that start in R

2
+ will remain there and are uniformly

bounded. Indeed, we have the following theorem.

Theorem 1. Let Assumption 1(i) hold. Then, every
solution of system (3) that starts in R

2
+ will remain

there and is uniformly bounded.

Proof. Let (x0, y0) ∈ R
2
+ be given and let us denote

for each t ≥ 0, (x(t), y(t)) the orbit of model (3)
passing through (x0, y0) at t = 0. Then, we find
that (x(t), y(t)) ∈ R

2
+ for all t ≥ 0. Thus, every

solution of system (3) that starts in R
2
+ will remain

there. From the ẋ-equation of system (3), we have

ẋ(t) ≤ rx(t)
(

1 − x(t)
K

)
.

Applying a differential inequality [Hale, 1980],
we get

x(t) ≤ 1
1
K

+
(

1
x(0)

− 1
K

)
e−rt

for all t ≥ 0. Since 0 < x(0) ≤ K [Assump-
tion 1(i)], it follows that x(t) ≤ K for all t ≥ 0.
Now, let us check for the boundedness of y(t). If
y(0) = 0, then the ẏ-equation of model (3) leads
to y(t) = 0 for all t ≥ 0. If not (i.e. y(0) > 0),
then y(t) > 0 for all t ≥ 0. Using the fact that the
function p defined by Eq. (5) is such that p(s) ≤ 1

a
for all s ≥ 0; the ẏ-equation of system (3) becomes
dy(t)
y(t) ≤ ( cm

a − d)dt. Integrating the preceding differ-
ential inequality from t− τ to t, we have

y(t) ≤ µ(τ)y(t− τ); for all t ≥ τ , (7)

where µ(τ) = e−(d− cm
a

)τ .
Let us set u(t) = cµ(τ)x(t − τ) + y(t) for

all t ≥ τ . Recalling inequality (7), then for all β
(0 < β < d) we get u̇(t) + βu(t) ≤ cµ(τ)K

4rβ (r + β)2,
for all t ≥ τ . Integrating the last differential inequal-
ity from τ to t, we have

cµ(τ)x(t− τ) + y(t)

≤ cµ(τ)K
4rβ

(r + β)2(1 − e−β(t−τ))

+ [cµ(τ)x(0) + y(τ)]e−β(t−τ);

for all t ≥ τ . Thus, y(t) ≤ cµ(τ)K
4rβ (r+β)2 as t→ ∞.

Therefore, every solution of (3), starting in R
2
+, is

uniformly bounded. �

3. Equilibrium of System (3)

The following proposition holds, concerning equilib-
ria of system (3).

Proposition 1

(1) If ad1 ≥ 1 then E0(0, 0) and F0(x0, 0) ∈ R
∗
+ ×

{0} are the equilibria of system (3) (the preda-
tor free equilibria). Equilibrium E0 (resp., F0) is
the predator free equilibrium when the number
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of prey is less than (resp., greater than or equal
to) the threshold value T .

(2) If ad1 < 1 then equilibria of the model are
E0(0, 0); F0(x0, 0) ∈ R

∗
+ × {0} and E(x�, y�) ∈

R
∗
+ ×R

∗
+ (the predator free equilibrium and the

coexistence equilibrium),

where

x� =
bd1 +

√
(bd1)2 + 4d1(1 − ad1)
2(1 − ad1)

; (8)

and

y� =
ϕ(x�) −H(x�)

md1
; (9)

with x� ∈ ]0, T [ (resp., x� ∈ [T, x0[) for the equilib-
rium E� (resp., F �) and x0 ∈ [T,K] is the unique
positive real root on [T,K] of the following equation:

rx

(
1 − x

K

)
=

h(x− T )
h+ x− T

.

Proof. An equilibrium (xe, ye) of system (3) is the
solution of system (10) [resp., system (11)] if xe < T
(resp., xe ≥ T )


rxe

(
1 − xe

K

)
−mp(xe)ye = 0,

cmp(xe)ye − dye = 0,

(10)

resp., 


rxe

(
1 − xe

K

)
−mp(xe)ye

− h(xe − T )
h+ xe − T

= 0,

cmp(xe)ye − dye = 0.

(11)

It is easily found that E0(0, 0) and EK(K, 0) (resp.,
F0(x0, 0) ∈ R

∗
+ × {0}) are always solutions of sys-

tem (10) [resp., system (11)], where x0 ∈ [T,K] is
the unique positive real root on [T,K] of the follow-
ing equation:

rx

(
1 − x

K

)
=

h(x− T )
h+ x− T

.

Let us note that EK(K, 0) is an equilibrium of sys-
tem (3) if K < T , which is a contradiction with
Assumption 1.

If ad1 < 1, then equation cmp(xe) − d = 0 has
unique positive real root x� defined by (8), from
where we obtain the value of y� defined by (9). For

E(x�, y�) to be a coexisting equilibrium, in addition
to ad1 < 1, we also need x� ∈ ]0;x0[. �

4. Stability Analysis of Model (3)
for τ = 0

The general Jacobian matrix of model (3) for x < T
and τ = 0 is

J0(x, y) =

(
ϕ′(x) −myp′(x) −mp(x)

mcyp′(x) −d+mcp(x)

)
.

The eigenvalues of J0 at equilibrium E0 are r > 0
and −d. So, E0 is always unstable (a saddle type).

The general Jacobian matrix of model (3) for
x ≥ T and τ = 0 is

J(x, y) =

(
ϕ′(x)−mp′(x)y−H ′(x) −mp(x)

cmp′(x)y cmp(x) − d

)
.

Thus at equilibrium F0 we find that the eigenval-
ues of J(x0, 0) are λ1 = ϕ′(x0) − H ′(x0) and λ2 =
cmp(x0)−d. Thus, F0 is asymptotically stable if and
only if (ϕ′(x0)−H ′(x0) < 0 and p(x0)−d1 < 0) and
F0 is unstable if and only if (ϕ′(x0)−H ′(x0) ≥ 0 or
p(x0) − d1 ≥ 0). More precisely;

(a) F0 is a saddle if ϕ′(x0) − H ′(x0) < 0 and
p(x0) − d1 > 0.

(b) F0 is unstable node if ϕ′(x0) −H ′(x0) > 0 and
p(x0) − d1 > 0.

(c) F0 is stable node if ϕ′(x0) − H ′(x0) < 0 and
p(x0) − d1 < 0.

(d) F0 is stable (resp., unstable) improper node
if (ϕ′(x0) − H ′(x0) < 0; p(x0) − d1 = 0) or
(ϕ′(x0) − H ′(x0) = 0; p(x0) − d1 < 0) [resp.,
(ϕ′(x0) − H ′(x0) > 0; p(x0) − d1 = 0) or
(ϕ′(x0) −H ′(x0) = 0; p(x0) − d1 > 0)].

We refer to Tables 1 and 2 for the sign of
ϕ′(x0) −H ′(x0) and p(x0) − d1, where

xu =
K

2




1 −
H ′
(
K

2

)
r


. (12)

The stability of the coexisting equilibrium
E(x�, y�) of model (3) for τ = 0 is given by Theo-
rem 2.

Theorem 2. Let

∆E = [ϕ′(x�) −mp′(x�)y� −H ′(x�)]2

− 4mdp′(x�)y�. (13)
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Table 1. Sign of ϕ′(x) − H ′(x) on [T, K].

Region Sign of ϕ′(x) − H ′(x)

T ≥ K

2
ϕ′(x) − H ′(x) < 0 for all x ∈ [T, K]

T <
K

2
and

h2

„
h +

k

2
− T

«2
≥ r

„
1 − 2T

K

«
ϕ′(x) − H ′(x) < 0 for all x ∈ [T, K]

T <
K

2
and

h2

„
h +

k

2
− T

«2
< r

„
1 − 2T

K

«
(i) ϕ′(x) − H ′(x) < 0 for all x ∈ [xu, K]

(ii) for x∈ [T, xu[ , ϕ′(x) − H ′(x) can be negative or not.

The stability of equilibrium E(x�, y�) for τ = 0
is given as follows:

(a) If ∆E ≥ 0 then E is a node. The node is stable
if ϕ′(x�)−mp′(x�)y�−H ′(x�) < 0 and unstable
if the inequality is reversed.

(b) If ∆E < 0 then E is a focus. The focus is stable
if ϕ′(x�)−mp′(x�)y�−H ′(x�) < 0 and unstable
if the inequality is reversed.

(c) If ϕ′(x�) − mp′(x�)y� − H ′(x�) = 0 then E is
center-type.

Proof. At equilibrium E, J(x�, y�) becomes(
ϕ′(x�) −mp′(x�)y� −H ′(x�) −md1

cmp′(x�)y� 0

)
.

The determinant cm2d1p
′(x�)y� of J(x�, y�) is

always positive. The trace and the discriminant of
the characteristic equation of J(x�, y�) are respec-
tively defined by ϕ′(x�) − mp′(x�)y� − H ′(x�)
and ∆E . Hence, the conclusions (a)–(c) follow. �

Remark 4.1. The importance of this section is due
to the fact that, if an equilibrium of system (3)
is unstable for τ = 0, it remains unstable for
τ > 0 [Culshaw & Ruan, 2000; Martin & Ruan,
2001].

Table 2. Sign of p(x) − d1 on [T, K].

Region Sign of p(x) − d1

1 − ad1 ≤ 0 p(x)− d1 < 0 for all x ∈ [T, K]

1 − ad1 > 0 p(x)− d1 < 0 for all x ∈ [T, x�[

1 − ad1 > 0 p(x)− d1 ≥ 0 for all x ∈ [x�, K]

5. Stability Analysis of System (3)
for τ > 0

Following Remark 4.1, this section deals with the
stability analysis of the equilibria F0 and E on the
following respective conditions:

(CONDF0): ϕ
′(x0) −H ′(x0) < 0 and

p(x0) − d1 < 0.

(CONDE): ϕ′(x�) −mp′(x�)y� −H ′(x�) < 0.

The general characteristic equation of sys-
tem (3) for τ > 0 at (x, y) is defined by

Q(x, y, τ, λ) = λ2 − [ϕ′(x) −mp′(x)y −H ′(x)

+ cmp(x) − d]λ+. [ϕ′(x) −mp′(x)y

−H ′(x)](cmp(x) − d)

+ cm2p(x)p′(x)y exp(−τλ). (14)

Since yF0 = 0, we deduce that the stability of
the equilibrium F0 with respect to system (3) for
τ > 0 is similar to the stability of F0, with respect
to system (3) for τ = 0, given in Sec. 4. That is,
there is no stability change for the equilibrium F0

of system (3) due to the delay τ > 0.
For the coexistence equilibrium E(x�, y�);

applying results in [Fan et al., 2009] to the model
(3), we obtain the following lemma.

Lemma 1. Assume that (CONDE) holds and let

tr(E) = ϕ′(x�) −H ′(x�) −mp′(x�)y� < 0, (15)

ω =
{

1
2

[√
tr(E)4 + 4m2d2p′(x�)2y�2

− (tr(E))2
]}1/2

, (16)
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and

τ =
1
ω

arccos
(

ω2

mdp′(x�)y�

)
. (17)

Then, the characteristic equation (14) of system (3)
at the coexisting equilibrium E(x�, y�) has a pair of
pure imaginary roots ±iω when the delay τ takes
the value τ + 2nπ

ω (with n ∈ N).

Proof. According to Eq. (14), the characteristic
equation of model (3) at equilibrium E(x�, y�) can
be written as

λ2 − tr(E)λ+mdp′(x�)y� exp(−τλ) = 0,

where tr(E) is defined by inequality (15). Moreover,
−tr(E) > 0 because of (CONDE). Then apply-
ing successively Lemma 1, Theorem 1, and Theo-
rem 2(iv.a) in [Fan et al., 2009], the result of the
lemma follows. �

The stability results of system (3) for τ > 0 is
summarized in Theorem 3.

Theorem 3

(1) The equilibrium E0 is always unstable.
(2) Stability results of equilibrium F0:

(a) F0 is a saddle if ϕ′(x0) − H ′(x0) < 0 and
p(x0) − d1 > 0.

(b) F0 is an unstable node if ϕ′(x0)−H ′(x0) >
0 and p(x0) − d1 > 0.

(c) F0 is a stable node if ϕ′(x0) −H ′(x0) < 0
and p(x0) − d1 < 0.

(d) F0 is a stable (resp., unstable) improper
node if (ϕ′(x0)−H ′(x0) < 0; p(x0)−d1 = 0)
or (ϕ′(x0) − H ′(x0) = 0; p(x0) − d1 < 0)
[resp., (ϕ′(x0)−H ′(x0) > 0; p(x0)−d1 = 0)
or (ϕ′(x0) −H ′(x0) = 0; p(x0) − d1 > 0)].

(3) Stability results of equilibrium E(x�, y�): Recall-
ing Eqs. (13), (17) and (16), we define the
following conditions:


ϕ′(x�) −mp′(x�)y� −H ′(x�) > 0 or

ϕ′(x�) −mp′(x�)y� −H ′(x�) < 0 and

τ ∈
]
τ , τ +

2π
ω

[
,

(18)

ϕ′(x�) −mp′(x�)y� −H ′(x�) < 0 and

τ ∈ [0, τ [. (19)

(a) If ∆E ≥ 0 then E(x�, y�) is a node. The
node is stable if condition (19) holds and
unstable if condition (18) holds.

(b) If ∆E < 0 then E(x�, y�) is a focus. The
focus is stable if condition (19) holds and
unstable if condition (18) holds.

(c) If ϕ′(x�) − mp′(x�)y� − H ′(x�) = 0 then
E(x�, y�) is center-type.

Proof. Since yE0 = 0 and yF0 = 0, we deduce that
the stability of the equilibria E0 and F0 with respect
to system (3) for τ > 0 is similar to their stability
with respect to the model (3) for τ = 0 given in
Sec. 4. That is, there is no stability change for the
equilibria E0 and F0 of system (3) due to the delay
τ > 0. This ends the proof of items 1 and 2 of the
theorem.

For item 3 of the theorem, the first case of
condition (18), ϕ′(x�) − mp′(x�)y� − H ′(x�) > 0,
is a consequence of Remark 4.1 and Theorem 2.
In the following, we assume that (CONDE) holds.
Recalling the transcendental equation (14), let us
define

∆(τ, λ) := Q(x�, y�, τ, λ). (20)

Setting τ0 = τ and λ0 = iω, where τ and
ω are respectively defined by (17) and (16), we
have ∆(τ0, λ0) = 0 and τ0 is the unique value of
τ ∈ [0, τ0 + 2π

ω0
[ such that ∆ has purely imaginary

roots (Lemma 1). We also find that

∂∆
∂λ

(τ, λ)
∣∣∣∣
(τ0,λ0)

= −tr(E) − τ0ω
2

+ i(2ω − τ0tr(E)ω) �= 0; (21)

where tr(E) is defined by (15) and tr(E) < 0, since
(CONDE) holds.

Thus, implicit function theorem [Fritzsche &
Grauert, 2002] leads to λ := λ(τ) for τ ∈ [0, τ0 + 2π

ω0
[.

Denote λ = α(τ) + iω(τ) (ω > 0), the roots of
the characteristic equation ∆(τ, λ) = 0, where the
real part α(τ) and the imaginary part ω(τ) depend
on the delay τ . Since the equilibrium E(x�, y�) of
the model (3) with τ = 0 is stable when (CONDE)
holds (Theorem 2); it follows that α(0) < 0 for τ =
0. By continuity of α(τ), with respect to τ , and the
fact that τ0 is the unique root of equation α(τ) = 0
on [0, τ0 + 2π

ω0
[, we see that α(τ) < 0 for τ ∈ [0, τ0[
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and E(x�, y�) is still stable. Since α(τ0) = 0 (so
that λ = iω0 is a purely imaginary root of charac-
teristic equation ∆(τ, λ) = 0), then the steady state
E(x�, y�) loses its stability and becomes unstable.
In fact, the characteristic equation ∆(τ, λ) = 0
has roots with positive real parts if and only if
it has purely imaginary roots. (Rouché’s Theorem;
[Dieudonne, 1960, Theorem 9.17.4].) �

6. Bifurcation

We wish to find some bifurcations that are present
in our system (3). Theorem 4 (resp., Theorem 5)
leads with the saddle-node (resp., Hopf) bifurca-
tion of system (3) around the equilibrium F0(x0, 0)
(resp., E(x�, y�)).

6.1. Saddle-node bifurcation

We have the following theorem concerning saddle-
node bifurcations.

Theorem 4. Assume that h2

(x0−T+h)3
− r

K �= 0;
ϕ′(x0) − H ′(x0) = 0 and p(x0) − d1 �= 0. Then
equilibrium F0 (when it is well defined) is a saddle-
node.

(i) If p(x0) − d1 < 0, then F0 is attractive saddle-
node.

(ii) If p(x0) − d1 > 0, then F0 is repelling saddle-
node.

Proof. By the translation (u1, v1) = (x− x0, y), we
bring equilibrium F0(x0, 0) to the origin. Around
the origin and using the fact that ϕ′(x0)−H ′(x0) =
0, system (3) becomes


u̇1(t) =

1
2
(ϕ′′(x0) −H ′′(x0))u2

1(t) −m

[
p′(x0)u1(t) +

p′′(x0)
2

u2
1(t)
]
v1(t) +O(|u1, v1|4),

v̇1(t) = (cmp(x0) − d)v1(t) + cmp′(x0)u1(t− τ)v1(t) +
cm

2
p′′(x0)u2

1(t− τ)v1(t) +O(|u1, v1|4).
(22)

Setting u(s) = u1(t − s) and v(s) = v1(t − s) for s ∈ [0, τ ]; system (22) can be rewritten on the space
X := C0([0, τ ],R2) as follows


u′(0) =

1
2
(ϕ′′(x0) −H ′′(x0))u2(0) −m

[
p′(x0)u(0) +

p′′(x0)
2

u2(0)
]
v(0) +O(|u, v|4),

v′(0) = (cmp(x0) − d)v(0) + cmp′(x0)u(τ)v(0) +
cm

2
p′′(x0)u2(τ)v(0) +O(|u, v|4).

(23)

At the neighborhood of the origin, system (23) is topologically equivalent to

u′(0) =
1
2
(ϕ′′(x0) −H ′′(x0))u2(0) +O(|u|3); v′(0) = (cmp(x0) − d)v(0) +O(|v|2).

Since ϕ′′(x0)−H ′′(x0) = 2[ h2

(x0−T+h)3 − r
K ] �= 0, we see that F0 is a saddle-node point. We easily find that,

if cmp(x0)−d = cm(p(x0)−d1) > 0 then the equilibrium F0 is a repelling saddle-node. This ends the proof
of part (i) of the theorem. For part (ii), we will use the center manifold theorem. The reader can consult
[Kelley, 1967; Carr, 1981; Hale, 1985; Diekmann & Van Gils, 1991].

To do so, let us rewrite system (23) as

(u′(0); v′(0))T = L(u, v) +N(u, v),

where L and N are the operators defined on X by

L(u, v) = (0; (cmp(x0) − d)v(0))T and

N(u, v) =




1
2
(ϕ′′(x0) −H ′′(x0))u2(0) −m

[
p′(x0)u(0) +

p′′(x0)
2

u2(0)
]
v(0)

cmp′(x0)u(τ)v(0) +
cm

2
p′′(x0)u2(τ)v(0)


.
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Let us remark that X = Xc ⊕Xs, where

Xc = {(u, v) ∈ X : v(0) = 0} and

Xs = {(u, v) ∈ X : v = v(0);u = 0}.
It is easily found that LXc ⊂ Xc; σ(L|Xc) ⊂ {λ ∈
C : Re(λ) = 0} and σ(L|Xs) ⊂ {λ ∈ C : Re(λ) < 0},
where σ(A) is the spectrum of operator A. The cen-
tral manifold theorem leads to the fact that the cen-
tral manifold, at the neighborhood of the origin, is
defined by M0 := {v = 0}.

Let Q be the projection of the space X on Xs;
then system (u′(0); v′(0))T = (IX − Q)[L(u, v) +
N(u, v)] on the central manifold M0 becomes

u′(0) =
1
2
(ϕ′′(x0) −H ′′(x0))u2(0) +O(|u|3);

v′(0) = (cmp(x0) − d)v(0) +O(|v|2).

Since ϕ′′(x0) − H ′′(x0) �= 0 and cmp(x0) − d < 0,
it follows that F0 is an attractive saddle-node. �

6.2. Hopf bifurcation

For more details on the Hopf bifurcation, the reader
can consult [Hassard et al., 1981].

Let us set z(t) = (x(t); y(t)) − (x�; y�),
this translation brings the coexisting equilibrium
E(x�, y�) to the origin. Then system (3) becomes

ż(t) = L(τ)zt +R(zt, τ) := F (zt, τ), (24)

where F (·, τ); L(τ) and R(·, τ) are operators defined
on Xτ := C0([0, τ ],R2) by

F (ψ, τ) =

(
ϕ(x� + ψ1(0)) −mp(x� + ψ1(0))(y� + ψ2(0)) −H(x� + ψ1(0))

cmp(x� + ψ1(τ))(y� + ψ2(0)) − d(y� + ψ2(0))

)
;

L(τ)ψ =

(
ϕ′(x�)ψ1(0) −mp′(x�)y�ψ1(0) −mp(x�)ψ2(0) −H ′(x�)ψ1(0)

mp′(x�)y�ψ1(τ) + cmp(x�)ψ2(0) − dψ2(0)

)
;

and R(·, τ) = F (·, τ) − L(τ).
Note that zt is a function defined on [0, τ ] by

zt(s) = z(t− s).
Recalling Eq. (20), we find that the character-

istic equation ∆(τ, λ) = 0 at the equilibrium E
has a pair of pure imaginary roots ±iω at τ = τ
(Lemma 1).

To see if Hopf bifurcation occurs, we need
to verify the transversality condition. Following
the proof of Lemma 1, the characteristic equa-
tion ∆(τ, λ) = 0 leads to ∆(τ, λ(τ)) = 0, for τ
in the neighborhood of τ . Differentiating equation
∆(τ, λ(τ)) = 0 with respect to τ we obtain

[2λ− tr(E) −mdp′(x�)y�τe−τλ]
dλ(τ)
dτ

= mdp′(x�)y�λe−τλ,

where tr(E) is defined by (15) and −tr(E) > 0 since
condition (CONDE) holds. Therefore

(
dλ(τ)
dτ

)−1

=
2λ− tr(E) −mdp′(x�)y�τe−τλ

mdp′(x�)y�λe−τλ
.

Following Cooke and Grossman [1982], we therefore
obtain (using equation ∆(τ2, iω2) = 0)

sign

{
Re

(
dλ(τ)
dτ

)−1
}∣∣∣∣∣

τ=τ

= sign

{
Re

(
dλ(τ)
dτ

)−1
}∣∣∣∣∣

τ=τ

=
(tr(E) + τω)2 + ω2(2 − τ tr(E))2

ω2(tr(E)2 + 2ω2)

> 0.

Thus the transversality condition is satisfied and
Hopf bifurcation occurs at τ = τ around equilib-
rium E(x�, y�).

Now we proceed as in [Diekmann & Van Gils,
1991] to determine the Hopf bifurcation direction.
This direction is given by the nonzero first term
from the Taylor development of τ around the criti-
cal value τ0 := τ ; that is

τ(ε) = τ0 + τ2ε
2 + o(ε2).

If τ2 > 0, then the bifurcation is supercritical
as the periodic orbit appears when τ > τ0.

If τ2 < 0, then the bifurcation is subcritical as
the periodic orbit appears when τ < τ0.
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The parameter τ2 is calculated as in [Diek-
mann & Van Gils, 1991] using the following formula

τ2 =
Re(c2)

Re(q2DτM0(λ0, 0)p2)
; (25)

where λ0 = iω, M0(λ, τ) is the characteristic matrix
of Eq. (24) defined by

M0(λ, τ) =

(
tr(E) − λ −md1

cmp′(x�)y�e−τλ −λ

)
;

DτM0(λ0, 0) is the derivative of M0 at (λ0, 0). The
complex constant c2 is defined by

c2 =
1
2
q2D

3
1R(0, τ0)(P2(θ), P2(θ), P2(θ))

+ q2D
2
1R(0, τ0)(e0.M−1

0 (0, τ0)

×D2
1R(0, τ0)(P2(θ), P2(θ));P2(θ))

+
1
2
q2D

2
1R(0, τ0)(e2λ0.M−1

0 (2λ0, τ0)

×D2
1R(0, τ0)(P2(θ), P2(θ));P2(θ)),

where R is the nonlinear term of Eq. (24); Di
1R

(i = 2, 3) is the ith-derivative of R with respect
to ψ. Denote by P2(θ) the eigenvector of the linear
operator A (the infinitesimal generator of the semi-
group associated to the linear part L0 = L(τ0) of
Eq. (24) with respect to the eigenvalue λ0).

More precisely, the parameter c2 is evaluated as
follows:

Let L0 = L(τ0) : X0 → R
2 the linear term of

Eq. (24). From the Riesz theorem [Hale & Verduyn
Lunel, 1993] we obtain L0ψ =

∫ τ0
0 dη(s)ψ(s), where

dη(s) =

(
tr(E)δ(s) −mp(x�)δ(s)

cmp′(x�)y�δ(τ0 − s) 0

)
,

and δ is the Dirac delta function. Then, the
infinitesimal generator A associated to the linear
part L0 of Eq. (24) is

Aψ(s) =



dψ(s)
ds

if s∈ ]0, τ0],

L0ψ if s = 0,
(26)

with the domain

D(A) =
{
φ ∈ X0 :

dφ

ds
∈ X0;

dφ(0)
ds

= L0φ

}
.

The derivatives D2
1R(0, τ0) and D3

1R(0, τ0) are
respectively given by

D2
1R(0, τ0)ψχ =

(
D2

1R1(0, τ0)ψχ

D2
1R2(0, τ0)ψχ

)
,

where

D2
1R1(0, τ0)ψχ

= ϕ′′(x�)ψ1(0)χ1(0) −mp′′(x�)y�ψ1(0)χ1(0)

−mp′(x�)ψ1(0)χ2(0) −mp′(x�)ψ2(0)χ1(0)

−H ′′(x�)ψ1(0)χ1(0),

D2
1R2(0, τ0)ψχ

= cmp′′(x�)y�ψ1(τ)χ1(τ)

+ cmp′(x�)ψ1(τ)χ2(0)

+ cmp′(x�)ψ2(0)χ1(τ)

and

D3
1R(0, τ0)ψχξ = 0,

with ψ = (ψ1, ψ2), χ = (χ1, χ2), ξ = (ξ1, ξ2) ∈ X0.
Recalling Eq. (20) and since ∆(τ0, λ0) = 0,

then λ0 is an eigenvalue of A. So, there exist an
eigenvector of the form P2(θ) = p2e

iλ0 where the
components (p21, p22) of p2 are solutions of the sys-
tem M(λ0, τ0)p = 0. By taking p21 = 1, we obtain
p22 = tr(E)−λ0

md1
.

Now, the adjoint operator A∗ of A is defined by
A∗ : X ∗

0 := C0([−τ0, 0[,R2) → R
2, where

A∗ψ(s) =



−dψ
ds

(s) for s∈ [−τ0, 0[ ,

−
∫ τ0

0
ψ(−θ)dη(θ) for s = 0,

with the domain

D(A∗) =

{
φ ∈ X ∗

0 :
dφ

ds
∈ X ∗

0;
dφ(0)
ds

= −
∫ τ0

0
φ(−θ)dη(θ)

}
.

Let Q2(s) = q2e
sλ0 be the eigenvector of A∗

associated to the eigenvalue λ0 with q2 = (q21, q22).
q2 is chosen such that the duality product (see
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[Hale & Verduyn Lunel, 1993])

〈Q2, P2〉 = Q2(0)P2(0)

−
∫ τ0

0

∫ θ

0
Q2(ξ − θ)dη(θ)P2(ξ)dξ

takes the value 1. Taking q22 = 0, we obtain q21 =
1+τ0λ0

1+τ2
0|λ0|2 .

Since Re(q2DτM0(λ0, 0)p2) = − |λ0|2
1+|λ0|2 < 0, it

appears that sign(τ2) = sign{−Re(c2)}, where c2 is
defined by

c2 =
1 + iτω

mdp′(x�)(1 + τ2ω2)

×
{
Re(B1)

[
A1 + i

p′(x�)
d1

ω

]

+ cm2p′(x�)2y�A1

}
+

1 + iτω

2W0(1 + τ2ω2)

×{[iωmp′′(x�)y� − 2iωA1

− cm2p′(x�)y�e−2iωτ ]A1

+ [md1A1 + 3iωmp′(x�)]B1}, (27)

with

A1 = ϕ′′(x�) −mp′′(x�)y� −H ′′(x�)

− 2p′(x�)
d1

(tr(E) − iω),

B1 = cmp′′(x�)y� +
2cp′(x�)
d1

(tr(E) − iω),

W0 = 2iω(2iω − tr(E)) +md1p
′(x�)y�e−2iτω.

(28)

Regrouping our results, we have the following
theorem.

Theorem 5. Recalling Eqs. (8) and (9), let
E(x�, y�) be the coexistence equilibrium of sys-
tem (3) such that ϕ′(x�)−mp′(x�)y� −H ′(x�) < 0.
Let c2 be the complex constant defined by (27).
Then, system (3) undergoes a Hopf bifurcation when
τ = τ [see Eq. (17)]; that is, a family of periodic
solutions bifurcates from E(x�, y�) as the delay τ
passes through the critical value τ . Moreover,

(i) If Re(c2) < 0, the Hopf bifurcation is supercrit-
ical and periodic solution appears for τ > τ .

(ii) If Re(c2) > 0, the Hopf bifurcation is subcritical
and periodic solution appears for τ < τ .

7. Optimal Harvesting

The first part of this section deals with the bionomic
equilibrium of system (3).

The term bionomic equilibrium is an amalga-
mation of the concepts of ecological equilibrium and
economic equilibrium. As we have already seen, an
ecological equilibrium is given by ẋ = 0 = ẏ. The
economic equilibrium is said to be achieved when
TR (the total revenue obtained by selling the har-
vested biomass) equals TC (the total cost for effort
devoted to harvesting).

Let ε = cost per unit effort for prey; ξ = price
per unit biomass for the prey. We assume that
ε < ξ.

Assuming that x ≥ T , we have the economic
rent:

π(x, h) = ξH(x, h) − εh; (29)

where H is the function defined by Eq. (4). Then,
the bionomic equilibria Bi(xe, ye, he), i = 1, 2, 3, 4,
are obtained by solving the system (with xe ≥ T )

rxe

(
1 − xe

K

)
−mp(xe)ye − he(xe − T )

he + xe − T
= 0;

(30)

(cmp(xe) − d)ye = 0; (31)

ξ
he(xe − T )
he + xe − T

− εhe = 0. (32)

The trivial cases are B1(K, 0, 0) and B2(x�,

y2, 0), where x� is given by (8) and y2 = ϕ(x�)
md1

.
Disregarding the trivial cases, there are two

equilibria of interest.

Case 1. y3 = 0; h3 > 0. This corresponds to
the removal of predators from the system. Solving
Eq. (32) for x3 gives

x3 = T +
εh3

ξ − ε
.

Substituting x3 into Eq. (30) gives

h3 =
K(ξ − ε)2

rξε

[√
∆3 − Tε

K(ξ − ε)

]
;

with

∆3 =
(

Tε

K(ξ − ε)

)2

+
T

K

(
rξ

ξ − ε

)2(
1 − T

K

)
.

Thus, we completely have the bionomic equilibrium
B3(x3, 0, h3).
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Case 2. Assuming xe, ye, he > 0; Eq. (31) gives
p(xe) = d1, i.e. x4 = x�, where x� is defined by (8).
Substituting x� into Eq. (32) gives

h4 = (x� − T )
(
ξ

ε
− 1
)
.

From Eq. (30), we deduce that

y4 =
ϕ(x�) − h4ε

ξ

md1
.

Thus, we have equilibrium B4(x4, y4, h4).
Let us notice that bionomic equilibria B2 and

B4 are plausible if and only if x� ∈ [T, x0[ .
The second part of this section deals with the

optimal harvesting.
Wilen [1985] pointed out that, from the point

of view of humans, the ultimate users of natural
resources, “population of natural organisms are not
conveniently viewed as stocks of capital or assets
which provide potential flows of services. Determin-
ing how to maximize benefits from these resources
thus becomes a problem of capital theory deciding

mainly how to use this portfolio of stocks over
time”. Hence optimal control theory provides the
correct approach to natural resource management.

The present value of a continuous time-stream
or revenue is given by

J(h) =
∫ tf

0
π(x(t), h(t))e−δtdt, (33)

where π(x(t), h(t)) is defined by (29) and δ denotes
the instantaneous annual rate of discount. Our
problem now is to find h∗ such that

J(h∗) = max
h∈Ω

J(h), (34)

where Ω = {h ∈ L1(0, tf ); 0 ≤ h ≤ K}.
The existence of an optimal harvesting is due

to the concavity of integrand of J with respect to
h, a boundedness of the state solutions (x(t), y(t)),
and the Lipschitz property of the state system (3)
with respect to the state variables (see [Pontryagin
et al., 1992]).

Using the Pontryagin’s maximum principle for
delayed control problem [Göllmann et al., 2008],
problem (34) is reduced to maximize the Hamilto-
nian H defined by:

H(x(t), y(t), x(t − τ), h(t), λ(t)) = π(x(t), h(t))e−δt + λ2(t)[cmp(x(t − τ))y(t) − dy(t)]

+λ1(t)[ϕ(x(t)) −my(t)p(x(t)) −H(x(t), h(t))],

where λ = (λ1, λ2).
The necessary conditions for the existence of solution to problem (34) are:



dλ1(t)
dt

= − ∂H
∂x(t)

(x(t), y(t), x(t − τ), h(t), λ(t))

−χ[0,tf−τ ](t)
∂H

∂x(t− τ)
(x(t+ τ), y(t+ τ), x(t), h(t + τ), λ(t+ τ)),

dλ2(t)
dt

= − ∂H
∂y(t)

(x(t), y(t), x(t − τ), h(t), λ(t))

(35)

and
∂H
∂h(t)

(x(t), y(t), x(t − τ), h(t), λ(t)) = 0, (36)

where χ[0,tf−τ ](t) is the “indicatrice” function on [0, tf − τ ].
Therefore, we obtain the adjoint system:



λ̇1(t) = −ξe−δt ∂H(x(t), h(t))
∂x(t)

− cmp′(x(t))χ[0,tf−τ ](t)y(t+ τ)λ2(t+ τ)

−
[
ϕ′(x(t)) −mp′(x(t))y(t) − ∂H(x(t), h(t))

∂x(t)

]
λ1(t),

λ̇2(t) = mp(x(t))λ1(t) − [cmp(x(t− τ)) − d]λ2(t), for t ≤ tf .

(37)
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The transversality conditions of system (37) are

λ1(t) = λ2(t) = 0, for t ∈ [tf ; tf + τ ].

By considering the optimality condition (36),
and solving for h∗; subject to the constraints (Ω
set), we have the following characterization of opti-
mal harvesting:

h∗(t) = min

{
max

(
0; (x(t) − T )

×
((

ξ − λ1(t)eδt

ε

)1/2

− 1

))
;T

}
; (38)

(when λ1(t)eδt ≤ ξ for all t ∈ [0; tf ]).

8. Numerical Simulations

Now, let us give numerical illustrations of our sta-
bility results. To do so, we give some examples of
parameters for system (3).

Example 8.1. The logistic growth function is
ϕ(x) = x(1 − x

40 ) (i.e. r = 1 and K = 40). The

parameters h and T of the harvesting function (4)
are h = 0.2 ∗ 40 and T = 0.4 ∗ 40. The parame-
ters of the Holling response function of type III are
a = 0.1 and b = 0.6. Other parameters are d = 0.67,
m = 0.1 and c = 1.

There is a predator free equilibrium F0 =
(33.44; 0) and the coexistence equilibrium E =
(13.48; 13.40). Recalling Eqs. (15) and (13), we have
tr(E) = 0.08 > 0 and ∆E = −0.97 < 0. Then The-
orem 3 implies that equilibrium E is unstable (a
periodic stable solution appeared) and there is no
change of stability due to the delay τ (see Fig. 1).

Figure 2 illustrates the effect of the continuous
threshold policy harvesting function H(x) on the
prey. We observe that increasing the value of the
harvesting rate on the prey h does not change
the behavior in time of the model.

We also notice that for a constant harvesting
on the prey (that is, H = 0.2 ∗ 40) the prey species
is driven to extinction and the system collapses
whereas this is not the case using the continuous
threshold harvesting function H(x) with harvesting
rate h = 0.2 ∗ 40.
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y)

equilibria
trajectory

Fig. 1. Behaviors of the prey and predator populations for x(0) = 40, y(0) = 14.40 and τ = 0.49. For the right one, we also
compute another trajectory with initial condition (40; 13.41).
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Fig. 2. Behaviors of the prey and predator populations for different harvesting rate h into the continuous threshold policy
harvesting function. x(0) = 40, y(0) = 14.40 and τ = 0.49.
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Fig. 3. Behaviors of the prey and predator populations for x(0) = 40, y(0) = 15.97 and τ = 2 < τ .
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Fig. 4. Behaviors of the prey and predator populations for x(0) = 40, y(0) = 15.97 and τ = 2.1 > τ .

Example 8.2. In this example, we are interested
in studying the combined effect of the delay τ and
the continuous threshold harvesting function H(x)
on the dynamics of the model. The logistic growth
function and the harvesting function (4) are the
same as in Example 8.1, i.e. (r = 1; K = 40) and
(h = 0.5 ∗ 40; T = 0.7 ∗ 40). The parameters of the
Holling response function of type III are a = 0.1
and b = 1. Other parameters are the same as in
Example 8.1 (d = 0.67, m = 0.1, c = 1).

The predator free equilibrium F0 is not plau-
sible and the coexistence equilibrium is E =
(20.95; 14.97). Recalling (15) and (13), we have
tr(E) = −0.21 < 0 and ∆E = −0.61 < 0. By
Lemma 1, there is a critical value τ = 2.0603.
By Theorem 3, the coexistence equilibrium E is
stable when τ < 2.0603 (Fig. 3); Hopf bifurca-
tion occurs when τ = 2.0603, and the equilibrium
becomes unstable and a bifurcating periodic solu-
tion exists when τ > 2.0603 (see Fig. 4). Figure 4

0 200 400 600 800 1000
0

10

20

30

40

Time (t)

P
re

Y

without harvesting
with harvesting H(x)

0 200 400 600 800 1000
0

5

10

15

20

25

Time (t)

P
re

da
to

r

without harvesting
with harvesting H(x)

Fig. 5. Behaviors of the prey and predator populations with continuous threshold policy harvesting function and without
harvesting on the prey. x(0) = 40, y(0) = 15.97 and τ = 2.1.
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Fig. 6. Optimal harvesting on the preys and optimal equilibrium of the predators for the threshold value T = 0.2 ∗ 40.
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Fig. 7. Optimal harvesting on the preys and optimal equilibrium of the predators for the threshold value T = 0.5 ∗ 40.

shows that both the prey and predator populations
reach periodic oscillations around the equilibrium
E = (20.95, 14.97) in finite time.

To highlight the fact that the harvesting func-
tion H(x) is more sound from a biological view-
point, we illustrate that the behavior of the preys
and predators with continuous threshold policy har-
vesting function on the prey is close to that without
harvesting on the prey (see Fig. 5). We also notice
that for a constant harvesting on the prey (that is,
H = 0.5 ∗ 40), the predator species is driven to
extinction and the system collapses whereas this is
not the case using the continuous threshold harvest-
ing function H(x) with harvesting rate h = 0.5∗40.

Example 8.3 deals with numerical illustration
of the optimal harvesting. To determine the opti-
mal harvesting, we proceed following the different
steps described in [Emvudu et al., 2011].

Example 8.3. Let a = 0.1; r = 1; k = 40; m = 0.1;
c = 1; b = 1; d = 2/3; τ = 0.11; δ = 1.5; tf = 50;
ξ = 45; ε = 10. For these values of parameters,
we find the optimal equilibrium (x�, y�). We find

that the optimal equilibrium x� of the preys is con-
stant with respect to the time, i.e. x� = 20.95. The
optimal equilibrium of the predators y� could not
be constant with respect to time, it depends on the
time variation of the optimal harvesting h∗(t) on the
preys. This is illustrated for two different threshold
values T (see Figs. 6 and 7).
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