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Abstract: In this article, we consider an epidemiological model in which we take into account the effects of
direct and indirect transmissions. The first mode occurs through direct contact between infectious and
susceptible individuals, and the second one will take place through the shedding of virus particles by infec-
tious individuals and their acquisition by susceptible ones. We also study the effect of latency period and time
needed for a susceptible person to become infected by indirect transmission mode. By considering the direct
and indirect basic reproduction numbers, we define the basic reproduction number R0 of the model, which
helps us to analyze the stability of equilibria and bifurcation and determine the most sensitive parameters. In
conclusion, some numerical simulations are given to confirm the analytical analysis.
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1 Introduction and mathematical model

It is well known that all infectious epidemiological diseases are infections resulting from the emergence
and transmission of diseases among a specific population, which are caused by organisms such as bacteria,
viruses, fungi, or parasites, and are serious public health problems for most countries in the world. Some
of the examples of infectious diseases can be found in [9,11,17,20,21,23,30,40,42,46]. Some infectious and com-
municable diseases can be transmitted and spread to the host population by indirect transmission
[1,7,12,15,16,18,22,26–29,32,34,35,41]. In parallel to this transmission mode, we find the direct mode, which is
caused by contact between infected individuals and susceptible ones. Some authors developed mathematical
models to study the dynamics of infectious diseases by introducing simple or multigroup mathematical models
that involve both direct and indirect transmissions. Mukandavire et al. [28,29] introduced a dynamic model of
cholera in Zimbabwe, and Eisenberga et al. [12] proposed “A cholera model in a patchy environment with
water and human movement.” In a few studies [13,14,25,37,38,45], multigroup models have been introduced to

Fatiha Najm: Department of Mathematics, Faculty of Sciences, Ibn Tofail University, Campus Universitaire, BP 133, Kenitra, Morocco,
e-mail: fatiha.najm@uit.ac.ma



* Corresponding author: Radouane Yafia, Department of Mathematics, Faculty of Sciences, Ibn Tofail University, Campus
Universitaire, BP 133, Kenitra, Morocco, e-mail: radouane.yafia@uit.ac.ma

My Ahmed Aziz Alaoui: Normandie Univ, 76063, Le Havre, France; ULH, LMAH, F-76600 Le Havre; FR-CNRS-3335, ISCN, 25 rue Ph. Lebon,
76600 Le Havre, France, e-mail: aziz.alaoui@univ-lehavre.fr
Abdessamad Tridane: Mathematical Sciences (COS), United Arab Emirates University, P.O. Box No. 15551, Al Ain, UAE,
e-mail: a-tridane@uaeu.ac.ae
Lahcen Boukrim: Department of Mathematics, Faculty of Sciences, Ibn Tofail University, Campus Universitaire, BP 133, Kenitra, Morocco

Nonautonomous Dynamical Systems 2023; 10: 20230103

Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0
International License.

https://doi.org/10.1515/msds-2023-0103
mailto:fatiha.najm@uit.ac.ma
mailto:radouane.yafia@uit.ac.ma
mailto:aziz.alaoui@univ-lehavre.fr
mailto:a-tridane@uaeu.ac.ae


describe the transmission dynamics of infectious diseases by using ordinary differential equations, while
others use delay differential equations [2,5,10,19,36,39,43,44]. Kumar and Abbas, in their study [22], used a
partial differential equation to study the dynamics of an age-structured susceptible-infectious-recovered
model by taking into account the or indirect contacts. In this article, we propose an epidemic mathematical
model that involves delays of direct and indirect transmissions. The model is given by the following delay
differential equations system:
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where all parameters are supposed to be positive and are defined as follows: Λ (resp. μ
s
) is the birth (resp.

death) rate of susceptible population, β
s
(resp. β

W
) is the direct (resp. indirect) transmission mode rate, γ is the

recovery rate, μ
I
(resp. μ

R
) is the death rate of infectious (resp. recovered) population, μ

W
is the shedding

coefficient,
ε

1 is the lifetime of the virus in the environment, τ is the period of latency, and ν is the time needed
for susceptible individuals to become infected by indirect transmission mode.

Populations are defined as follows: S is the total number of susceptible population, I is the total number of
infectious population, and R is the total number of recovered population.W is supposed to be the concentra-
tion of virus particles in the environment caused by coughing, shedding, or other methods.

As the third expression of equation (1.1)3 depends only on the second state variable I , we reduce our study
to the following model:
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The organization of the current work is as follows: Section 2, is devoted to the study of the positivity and the
boundedness of solutions; in Section 3, we prove the existence of the possible steady states and their stability
without delays by applying the Lyapunov method and the occurrence of a transcritical bifurcation for some
critical value of the basic reproduction number R0; in Sections 4 and 5, we study the effect of time delays on the
stability of the equilibrium points; in Section 6, we study the sensitivity analysis; in Section 7, we illustrate our
results through some numerical simulations. We end our work with a conclusion.

2 Boundedness and steady states

In this section, we study the positivity and boundedness of solutions of system (1.2).

Proposition 2.1. Suppose = =τ μ 0. Then,
(1) �+

3 is positively invariant under system (1.2), and
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Proof. From the first expression of equation (1.2), we deduce that
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hence another argument must be used. Let us consider the following sub-system of equation (1.2):
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Then, system (2.1) can be written as follows:

( ) ( )=X t AX t˙ ,
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and that its exponential is positive. Then, we deduce the positivity of I andW whenever ( ) >I 0 0 and ( ) >W 0 0.
This shows the first point of our proposition. To prove the second point, let = +N S I1 , then
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We deduce that S and I are uniformly bounded on Γ. From the boundedness of I and the third expression of
equation (1.2), we obtain ( ) ≤⟶∞W tlimsup .

t

μ

εμ
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S

This completes the proof. □

The possible steady states of equation (1.2) are computed by finding solutions to the system and we have

(1) The first equilibrium called disease-free equilibrium (DFE), which is given by ( )= = ⎛
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μ0 0

Λ

S

.
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number >R 10 of equation (1.2), where
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where
( )

= +R d

β

μ γ μ0

Λ
S

s I

represents the secondary infections caused directly by a single infective while =R I0

( )+
β μ

μ ε γ μ

W W

s I

represents the secondary infections caused indirectly through the environmental pathogen.

Proposition 2.2.
• If ≤R 10 , the model (1.2) has only one trivial equilibrium (DFE), i.e., ( )=E S , 0, 00 0 .
• If >R 10 , the model (1.2) has two steady states: the first is the DFE, i.e., ( )=E S , 0, 00 0 , and the second is the
endemic equilibrium, i.e., ( )=E S I W*, *, *1 .
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3 Model without delay

Suppose = =τ ν 0, then the system (1.2) is written as follows:
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3.1 Asymptotic behavior analysis

The goal of this section is to study the stability of the possible steady states E0 and E1.
By linearizing equation (3.1) around an arbitrary steady state ( )=E S I W, , , we have the corresponding

associated Jacobian matrix
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Then, we obtain the following proposition.

Proposition 3.1. If <R 10 , the trivial steady state (DFE) E0 is asymptotically stable and unstable if >R 10 .

Proof. If <R 10 , then ( ) <JTr 0
E

11

0

and ( ) >Jdet 0
E

11

0

, as well as the characteristic equation (3.2) does not admit a
real strictly positive root.

If >R 10 , then ( ) <Jdet 0
E

11

0

and associated characteristic equation (3.2) has at least one positive solu-
tion. □

Proposition 3.2. If >R 10 , the nontrivial positive steady state (endemic equilibrium) E1 is asymptotically stable.
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Proof. Considering >R 10 , the Jacobian matrix at E1 is
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All these coefficients are strictly positives if >R 10 , then the polynomial P does not admit any real strictly
positive solution. □

Proposition 3.3. If >R 10 , the nontrivial positive steady state (endemic equilibrium) E1 is globally asymptotically
stable.

Proof. Considering the following function
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where ( ) = − − >Z Z ZΦ 1 ln 0, for >Z 0. Then, V defines a Lyapunov function. It is easy to see that Φ has a
strict global minimum at 1 and ( ) =Φ 1 0 and ( ) >ZΦ 0. Then, V is nonnegative function.
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* and ( ) ≥ZΦ 0 for >Z 0, we deduce that ( )∣( ) ≤V t˙ 03.1 and the equality occurs at the

endemic equilibrium E1. Consequently, the global asymptotic stability of E1 follows from LaSalle’s invariance
principle [24]. □
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3.2 Bifurcation analysis at ==R 10

In this section, we analyze and study the occurrence of a transcritical bifurcation at =R 10 .

Theorem 3.4. The trivial steady state (DFE) E0 of equation (3.1) changes its stability from stable to unstable when

=R 10 , and a transcritical bifurcation occurs at the critical value
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This proves that at =R 10 , the trivial steady state (DFE) E0 changes its stability from stable to unstable, and the
nontrivial steady state (endemic equilibrium) E1 always exists at =R 10 . Then, a transcritical bifurcation
occurs at the critical value =R 10 . □

4 Model with one delay τ

If >τ 0 and =ν 0, then system (1.1) is written as follows:
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β S

β S,

0

0

0

and

0 0

0 0

0 0 0

.

S W

I W

W

τ

S

S0

0

0

0

0

Then, we obtain the following associated characteristic equation:

( ) ( ) ( )[ ( ) ( ) ]△ = − − = + + =− −λ λI L e L λ μ P λ Q λ edet 0.λτ
τ S

λτ
0 0 0

As = −λ μ
S1 is a root of the characteristic equation, the stability of E0 is deduced from the study of the following

equation:

( ) ( )+ =−P λ Q λ e 0,λτ
0 0

where

( ) ( ) ( )

( )

= + + + + + −
= − −

P λ λ γ μ ε λ ε γ μ μ β S

Q λ β S λ εβ S

,

.

I I W W

S S

0
2

0

0 0 0

Define F by ( ) ∣ ( )∣ ∣ ( )∣= −F y P iy Q iy0
2

0

2 (see [8]), then we have

( ) = + +F Y Y b Y b ,2
1 0

with =Y y2, and

( ) ( )

( ( ) ) ( )

= + + + +
= + − +

b γ μ β S ε μ β S

b ε γ μ μ β S εβ S

2 ,

.

I S W W

I W W S

1
2

0
2 2

0

0 0
2

0
2
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Since >b 01 and >b 02 , the function F does not admit a real strictly positive root. So there is no change in
stability.

Therefore, we summarize the above discussions in the following proposition:

Proposition 4.1. The trivial steady state (DFE) E0 is asymptotically stable for all time delays >τ 0.

4.2 Stability of nontrivial steady state

Next, we study the stability of the nontrivial positive steady state (endemic equilibrium) ( )=E S I W*, *, *1 of
system (4.1) by considering the latency period.

The linearized system of equation (4.1) around E1 is given as follows:

= +
X

t
J X J X

d

d
,

τ τ0

where

( )=
⎛

⎝
⎜

⎞

⎠
⎟ =

⎛

⎝

⎜
⎜

− − − −
+ − +

−

⎞

⎠

⎟
⎟

=
⎛

⎝
⎜⎜

− ⎞

⎠
⎟⎟X

S

I

W

J

β I β W μ β S

β I β W μ γ β S

μ ε

J

β S

β S,

* * 0 *

* * *

0

, and

0 * 0

0 * 0

0 0 0

.

S W S W

S W I W

W

τ

S

S0

Then, we obtain the following associated characteristic equation to E1

( ) ( )+ =−P λ Q λ e 0,λτ
1 1

(4.2)

where

( )

( )

= + + +
= + +

P λ λ α λ α λ α

Q λ c λ c λ c

,

,

1
3

2
2

1 0

1 2
2

1 0

with

( ) ( )( )

( )( )

= + + + + +
= + − + + + + +
= + + + −

α β I β W μ γ μ ε

α ε γ μ μ β S β I β W μ γ μ ε

α ε γ μ β I β W μ μ μ β S

* * ,

* * * ,

* * *,

S W S I

I W W S W S I

I S W S S W W

2

1

0

and

( )

= −
= − +
= −

c β S

c ε μ β S

c εβ μ S

*,

*,

*.

S

S S

S S

2

1

0

As the nontrivial steady state (endemic equilibrium) E1 is asymptotically stable for =τ 0 (see Proposition 3.2), it
is still asymptotically stable for small time delays >τ 0 [3,8] or for all time delays >τ 0. Then, one needs to find
the switch of stability, which requires finding a root of the characteristic equation with a purely imaginary
part for some critical value τc of time delay τ .

Let us replace λ by iω( )>ω 0 in equation (4.2), then we obtain

( )( )− − + + − − − − =iω α ω iα ω α c ω ic ω c ωτ i ωτcos sin 0.3
2

2
1 0 2

2
1 0 (4.3)

By separating the real and imaginary parts, we have

( )

( )

⎧
⎨
⎩

− = + −
− = − − +

ω α ω c ω ωτ c ω c ωτ

α ω α c ω c ωτ c ω ωτ

cos sin

cos sin .

3
1 1 2

2
0

2
2

0 2
2

0 1

(4.4)
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A direct computation gives us

+ + + =ω B ω B ω B 0.6
2

4
1

2
0 (4.5)

Let =z ω2, then equation (4.5) becomes

( ) = + + + =f z z B z B z B 0,3
2

2
1 0 (4.6)

where

( ) ( )

= − −
= − − −
= −

B α c α

B c c α α c α

B α c

2 ,

2 ,

.

2 2

2

2

2
1

1 0 2 0 2 1

2

1

2

0 0

2

0

2

Let the hypothesis

( ) > > − >H B B B B B: 0, 0 and 0.0 2 2 1 0 (4.7)

Proposition 4.2. If >R 10 and ( )H are satisfied, then the nontrivial steady state (endemic equilibrium) E1 is
asymptotically stable for all time delays >τ 0.

Proof. The proof is based on the well-known Routh-Hurwitz stability criterion [6]. □

5 Model with two delays == >>τ ν 0

We consider = >τ ν 0, then the model (1.2) is written as follows:

( )

( ) ( ) ( ) ( ) ( ) [ ]

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

= − − −

= + − +

= −

= ≥ = = ∈ −

S

t
β SI β SW μ S

I

t
β SI β SW γ μ I

W

t
μ I εW

S S I s φ s W s ξ s s τ

d

d
Λ

d

d

d

d

0 0, , , , 0 .

s τ W τ s

s τ W τ I

W

0

(5.1)

5.1 Local stability of E0

Linearizing the system (5.1) around the DFE E0, we obtain

= +
X

t
M X M X

d

d
,τ τ0

where

( )=
⎛

⎝
⎜

⎞

⎠
⎟ =

⎛

⎝

⎜
⎜

−
− +

−

⎞

⎠

⎟
⎟ =

⎛

⎝
⎜⎜

− − ⎞

⎠
⎟⎟X

S

I

W

M

μ

γ μ

μ ε

M

β S β S

β S β S,

0 0

0 0

0

, and

0

0

0 0 0

,

S

I

W

τ

S W

S W0

0 0

0 0

and the corresponding characteristic equation is

( ) ( )[ ( ) ( ) ]− − = + + =− −λI M e M λ μ P λ Q λ edet 0.λτ
τ S

λτ
0 2 2

(5.2)

Since = −λ μ
S1 is a solution of the characteristic equation, then the stability of E0 is deduced from
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( ) ( )+ =−P λ Q λ e 0,λτ
2 2

(5.3)

with

( ) ( ) ( )

( ) ( )

= + + + + +
= − + +

P λ λ γ μ ε λ ε γ μ

Q λ S β λ εβ μ β

,

.

I I

S S W W

2
2

2 0

Define G2 by ( ) ∣ ( )∣ ∣ ( )∣= −G y P iy Q iy2 2
2

2

2, and we have

( ) = + +G Y Y d Y d ,2
2

1 0 (5.4)

with =Y y2, and

( ) ( )

( ) ( )

( ) ( )

⎜ ⎟

= + + + − +

= + −
⎛
⎝

⎞
⎠

+

= + −

d γ μ ε S β ε γ μ

d ε γ μ
μ

εβ μ β

ε γ μ R

2 ,

Λ
,

1 .

I S I

I

S

S W W

I

1 0
2

0
2 2

2

2

2 2
0

2

Note that if >R 10 , then ( ) = <G d0 02 0 . As the function G2 is continuous and ( ) = +∞→∞G YlimY 2 , then equation
(5.4) has at least one positive root, denoted by Y0. Consequently, equation (5.2) has two conjugate roots with a
purely imaginary part ±iy

0
. Hence, we obtain the following proposition.

Proposition 5.1. The trivial steady state (DFE) E0 is stable if ≤R 10 and unstable for all time delays >τ 0

when >R 10 .

5.2 Local stability of E1

In this section, we analyze the asymptotic behaviors of the nontrivial steady state (endemic equilibrium) E1.

Proposition 5.2. If >R 10 and ( )H3 are satisfied, then the nontrivial steady state (endemic equilibrium) E1 is
asymptotically stable for all time delays = >τ ν 0.

Proof. By linearizing system (5.1) at E1, we obtain

= +
X

t
J X J X

d

d
* * ,

τ τ0

where

( )=
⎛

⎝
⎜

⎞

⎠
⎟ =

⎛

⎝

⎜
⎜

− − −
+ − +

−

⎞

⎠

⎟
⎟

=
⎛

⎝
⎜⎜

− − ⎞

⎠
⎟⎟X

S

I

W

J

β I β W μ

β I β W γ μ

μ ε

J

β S β S

β S β S, *

* * 0 0

* * 0

0

, and *

0 * *

0 * *

0 0 0

.

S W S

S W I

W

τ

S W

S W0

We obtain the following characteristic equation:

( ) ( )+ =−P λ Q λ e* * 0,λτ (5.5)

with

( )

( )

= + + +
= + +

P λ λ α λ α λ α

Q λ δ λ δ λ δ

* * * *,

* * * *,

3
2

2
1 0

2
2

1 0

where
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( )( ) ( )

( )( )

= + + + + +
= + + + + + +
= + + +

α β I β W μ γ μ ε

α μ β I β W ε γ μ ε μ γ

α ε μ γ β I β W μ

* * * ,

* * * ,

* * * ,

S W S I

S S W I I

I S W S

2

1

0

Table 1: Estimation of parameters

Parameter Value

Λ 0–0.7
β

S
0.09

β
W

0–0.7

μ
S

0.03
γ 0.02
μ

I
0.09

μ
W

0.03
ε 0–0.5
τ Positive value
ν Positive value

Table 2: Sensitisity index of R0

Parameter Sensitivity index Index at parameters value

Λ +1 +1

β
S

+
εβ

εβ β μ

S

S W W

0.7500

β
W

+
μ β

εβ β μ

W W

S W W

0.25

μ
S

‒1 ‒1

γ
+‒
γ

γ μI

‒0.1818

μ
I +‒

μ

γ μ

I

I

‒0.8182

μ
W

+
β

εβ β μ

W

S W W

8.3333

ε

+ +‒
εβ

εβ β μ

γ

γ μ

S

S W W I

0.5682

time t
0 20 40 60 80 100 120 140 160 180 200

S
,I,

W

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S(t)
I(t)
W(t)

time t
0 20 40 60 80 100 120 140 160 180 200

0

0.5

1

1.5

2

2.5

3

S(t)
I(t)
W(t)

Figure 1: Stability of E0 and nonexistence of E1 for ≥τ 0 and ≥ν 0 (left). Instability of E0 and stability of E1 for ≥τ 0 and ≥ν 0 (right).
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Figure 2: Temporal evolution of S , I , and W for different values of time delay τ : (a) =μ 3, (b) =μ 10, (c) =μ 15, and (d) =μ 20. If τ

increases, the number R0 is constant, and the endemic equilibrium remains asymptotically stable for all >τ 0.
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Figure 3: Temporal evolution of S , I , and W for different values of time delay μ: (a) =τ 3, (b) =τ 10, (c) =τ 15, and (d) =τ 20. If Λ

increases, the number R0 is constant, and the endemic equilibrium remains asymptotically stable for all >μ 0.
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Figure 4: Temporal evolution of S , I , andW for different values of Λ . If Λ increases, the number R0 increases, which implies an increase
in the infectious population and the virus concentration.
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Figure 5: Temporal evolution of S , I , and W for different values of β
W
. If β

W
increases, the number R0 increases, which implies an

increase in the infectious population and the virus concentration.
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Figure 6: Temporal evolution of S , I , andW for different values of ε. If ε increases, the number R0 decreases, which implies a decrease
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Figure 7: Temporal evolution of S , I , and W for different values of μ
W
. If μ
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increases, the number R0 increases, which implies an

increase in the infected population and the virus concentration.
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and

( ( ) )

( ) ( ) ( )

= −
= − + + + +
= − + − +

δ β S

δ β S β I β W μ ε μ β S

δ ε β S β I β W μ β S μ β W

*,

* * * * ,

1 * * * * * .

S

S S W S W W

S S W S S W W

2

1

0

Since the nontrivial steady state (endemic equilibrium) E1 is asymptotically stable for =τ 0, from Proposition
3.2 and by the continuity property, it is still asymptotically stable for small >τ 0 or for all >τ 0. To study the
switch of stability, let iω( )>ω 0 be a root of equation (5.5), then we obtain the following equation:

( )( )− − + + + − + + − =iω α ω α iω α δ ω δ iω δ ωτ i ωτ* * * cos sin 0.3
2

2
1 0 2

2
1 0 (5.6)

By separating the real and imaginary parts, we obtain

⎧
⎨
⎩

− = + −
− = − + +

ω α ω δ ω ωτ δ ω ωτ δ ωτ

α ω α δ w ωτ δ ωτ δ ω ωτ

* sin cos sin

* * cos cos sin .

3
1 2

2
1 0

2
2

0 2
2

0 1

(5.7)

It is easy to have

+ + + =ω A ω A ω A* * * 0.6
2

4
1

2
0

(5.8)

Let =z ω2, then equation (5.8) becomes

( ) = + + + =h z z A z A z A* * * 0,3
2

2
1 0

(5.9)

where

( )

( ) ( )

( ) ( )

( )

= −
= + + + + +
= − − + −
= −

A α α

β I β W μ γ μ ε

A α δ δ δ δ α α

A α δ

* * 2 *,

* * ,

* * 2 * * ,

* * .

S W S I

2 2
2

1

2 2 2

1 1
2

1

2

2

2
0 2 0 2

0 0
2

0

2

Since >A* 02 , we consider the following hypotheses:

( ) > − >H A A A A: * 0 and * * * 0.3 0 2 1 0 (5.10)

From the hypothesis ( )H3 and the Routh-Hurwitz stability criterion [6], equation (5.9) has no positive root.
Therefore, all roots of the characteristic equation (5.5) stay in the left half complex plane for all = >τ ν 0. This
completes the proof. □

6 Sensitivity analysis

The sensitivity analysis for the basic reproduction number [equation (2.2)] gives us information about the
influence of each parameter on the transmission and the spreading of the disease [33]. It is also used to detect
and determine which parameter has high impact on the epidemiological threshold R0 and will be targeted by
controlling strategies. To do that, one needs to use the normalized sensitivity index of R0 with respect to a given
parameter model, which is defined as follows.

Definition 6.1. [31] The normalized sensitivity index of R0, which is differentiable to a given parameter model
θ, is given as follows:

=
∂
∂
R

θ

θ

R
ϒ .θ

R 0

0

0

The sensitivity indices for each parameter model defined in Table 1 are summarized in Table 2.
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From Table 2, we can detect the parameters that have a significant impact on the basic reproduction
number R0 and are classified as follows: β μ μΛ, , ,

S S I
, and μ

W
. In a simple manner, an increase of the parameter

β
S
by (100%) will increase R0 by 75%, and this can be applied to the other parameters of the model.

7 Numerical simulations

In this section, and via MATLAB software, we give some numerical simulations to illustrate our analytical
results. The used parameters and related values are summarized in Table 1. Here, we assume that W is of the
same scale as the infectious population and decreases over time if no further input occurs (Figure 1).

Remark 7.1. As the study of the characteristic equation with two different delays becomes is more complicated,
numerical simulations show that the asymptotic behavior of equilibria remains the same for ≠τ ν, as illu-
strated in Figures 2 and 3.

8 Conclusion

In order to study the role of indirect transmission, we proposed a mathematical model that takes into account
the effects of four arguments: direct and indirect transmissions and their transmission delays from infectious
individuals and the environment to susceptible individuals. We proved the positivity and boundedness of
solutions and the asymptotic behaviors of the possible steady state. We also proved the occurrence of a
transcritical bifurcation at the critical value of the basic reproduction number =R 10 . To our best knowledge,
only a few articles have treated this situation. From the sensitivity analysis part and Figures 4–7, we conclude
that the best strategy to stop the propagation of infectious diseases is to decrease the concentration of
environmental viruses.
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