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This paper deals with fractional order Chua system with cubic nonlinearity (cubic Chua system),
which is a modification of Chua system. The aim is, first, to study the chaotic behavior in
fractional order cubic Chua system. We found that chaos indeed exists in the fractional version of
this system. The necessary condition for exhibiting chaotic attractors similar to its integer order
counterpart is presented. This condition is used to distinguish for which parameters and orders
the system generates double scroll chaotic attractors. The synchronization problem between two
coupled chaotic fractional order cubic Chua systems is then addressed. An adaptive feedback
control scheme for the synchronization with suitable feedback nonlinear controller applied to
the response system is presented. Numerical simulations are performed to verify the theoretical
analysis.
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1. Introduction

Chaos is a very interesting nonlinear phenomenon
which has been intensively studied in the last three
decades. It is found to be useful or has great
potential in many fields such as secure communica-
tion, data encryption, flow dynamics and biomedi-
cal engineering [Chen & Yu, 2003]. A chaotic system
has complex dynamical behaviors with special fea-
tures, such as an extreme sensitivity to tiny vari-
ations of initial conditions or bounded trajectories
in the phase space. Despite this fact, control and

synchronization of chaotic dynamical systems have
attracted a wide range of research activity in recent
years [Yamada & Fujisaka, 1983; Pecora & Carroll,
1990; Ott et al., 1990; Aziz-Alaoui, 2006].

On the other hand, fractional calculus, as gen-
eralization of integer order integration and differ-
entiation to its noninteger (fractional) order coun-
terpart, has proved to be a valuable tool in the
modeling of many physical phenomena [Samko
et al., 1993; Podlubny, 1999]. This mathematical
phenomenon allows to describe a real object more
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accurately than the classical integer methods. Frac-
tional derivatives provide an excellent instrument
for describing systems with long-term memory [Hil-
fer, 2000; Wei et al., 2016; Caputo & Cametti, 2017;
Sandev et al., 2017], nonlocal spatial [Tarasov, 2011]
and fractal properties [Li, 2010]. The advantages or
the real objects of the fractional order systems are
that we have more degrees of freedom in the model
and that a “memory” is included in the model
[Petráš, 2008].

Recently, studying fractional order systems has
become an active research area. The chaotic dynam-
ics of fractional order systems began to attract
much attention in recent years. It has been shown
that the fractional order systems, as generalizations
of many well-known systems, can also behave chaot-
ically [Arneodo et al., 1985; Hartley et al., 1995;
Grigorenko & Grigorenko, 2003; Li & Chen, 2004a,
2004b; Deng & Li, 2005; Lu & Chen, 2006; Ge &
Ou, 2007; Baleanu et al., 2015; Hu et al., 2017;
Palanivel et al., 2017], such as the fractional Duff-
ing system [Ge & Ou, 2007], the fractional Chua
system [Hartley et al., 1995; Petráš, 2008], the frac-
tional Rössler system [Li & Chen, 2004a], the frac-
tional Chen system [Li & Chen, 2004b; Lu & Chen,
2006], the fractional Lorenz system [Grigorenko &
Grigorenko, 2003], the fractional Arneodo system
[Arneodo et al., 1985] and the fractional Lü system
[Deng & Li, 2005]. In [Hartley et al., 1995; Li &
Chen, 2004a, 2004b], it has been shown that some
fractional order systems can produce chaotic attrac-
tors with order less than 3. Moreover, other stud-
ies show that chaotic fractional order systems can
also be synchronized [Li & Zhou, 2005; Wang et al.,
2006; Li et al., 2006; Peng, 2007; Sheu et al., 2007;
Yan & Li, 2007; Li & Yan, 2007; Zhou et al., 2008;
Zhu et al., 2009; Wu & Lu, 2009; Odibat et al.,
2010; Odibat, 2010; Wu & Wan, 2010; Zeng et al.,
2011; Zhang & Yang, 2011; Taghvafard & Erjaee,
2011; Yang et al., 2011; Li et al., 2012; Wang et al.,
2012; Machado, 2012; Si et al., 2012; Yuan & Yang,
2012; Odibat, 2012; Kuntanapreeda, 2012; Moaddy
et al., 2012; Hegazi et al., 2013; Danca & Garrappa,
2015; Wu et al., 2016; El-Sayed et al., 2013; Singh
et al., 2017]. In many literatures, synchronization
among fractional order systems is only investigated
through numerical simulations that are based on
stability criteria of linear fractional order systems,
such as the work presented in [Sheu et al., 2007;
Yan & Li, 2007; Li & Yan, 2007] or on Laplace
transform theory, such as the work presented

in [Wang et al., 2006; Li et al., 2006; Zhu et al.,
2009].

The objectives of this work are twofold. Firstly,
we aim to study the chaotic behavior in fractional
order cubic Chua system. We investigate theo-
retically and numerically necessary conditions on
parameters and fractional orders for the system to
display double scroll chaotic attractors. Secondly,
using the drive-response concept and based on sta-
bility results for linear fractional order systems, we
construct an adaptive nonlinear feedback control to
achieve synchronization between two chaotic frac-
tional order cubic Chua systems.

1.1. Basic concepts

In this paper, we mainly use the Caputo defini-
tion for a fractional derivative which is a modifica-
tion of the Riemann–Liouville definition. This has
the advantage of being more appropriate for initial
value problems in which the initial conditions are
given in terms of the field variables and their integer
order, which is the case in most physical processes.
The Caputo fractional differential operator of order
α, α > 0, is defined as

Dαf(t) = Jm−αDmf(t), (1)

where m − 1 < α ≤ m, m ∈ N [Caputo, 1967;
Gorenflo & Mainardi, 1997]. Here Dm is the usual
integer differential operator of order m and Jµ is the
Riemann–Liouville integral operator of order µ > 0,
defined by

Jβf(t) =
1

Γ(β)

∫ t

0
(t − τ)β−1f(τ)dτ, t > 0. (2)

Details and properties of Caputo fractional differen-
tial operator and Riemann–Liouville fractional inte-
gral operator can be found in [Caputo, 1967; Samko
et al., 1993; Gorenflo & Mainardi, 1997; Podlubny,
1999; Hilfer, 2000].

1.2. Stability analysis of fractional
systems

Stability analysis of fractional order systems, which
is of main interest in control theory, has been thor-
oughly investigated where necessary and sufficient
conditions have been derived [Matignon, 1996; Deng
et al., 2007; Ahmed et al., 2007; Tavazoei & Haeri,
2009], see also the references therein. In this section,
we recall the main stability results. For this object,
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we consider the following n dimensional fractional
order system,



dα1x1

dtα1
= f1(x1, x2, . . . , xn),

dα2x2

dtα2
= f2(x1, x2, . . . , xn),

...

dαnxn

dtαn
= fn(x1, x2, . . . , xn),

(3)

where αi’s are equal to real number or rational num-
bers between 0 and 1 and dαi

dtαi is the Caputo frac-
tional derivative of order αi, for i = 1, 2, . . . , n. If
function fi has second continuous partial deriva-
tives in a ball centered at an equilibrium point
x∗ = (x∗

1, x
∗
2, . . . , x

∗
n), that is fi(x∗

1, x
∗
2, . . . , x

∗
n) = 0,

for i = 1, 2, . . . , n, then we have the following
results,

• If α1 = α2 = · · · = αn = α, then the equilibrium
point x∗ of system (3) is asymptotically stable
if |arg(spec(J |x∗))| > απ/2, where the matrix J
is the Jacobian matrix of the system (3) that is
defined as J = [ ∂fi

∂xj
]ni,j=1 [Ahmed et al., 2007].

• If αi’s are rational numbers between 0 and 1 such
that αi = li/mi, (li,mi) = 1, li,mi ∈ N, for
i = 1, 2, . . . , n, then the equilibrium point x∗ of
system (3) is asymptotically stable if all roots λ
of the equation det(diag(λmα1 , λmα2 , . . . , λmαn)−
J |x∗) = 0 satisfy |arg(λ)| > qπ/2, where q =
1/m and m be the least common multiple of
the denominators mi’s of αi’s [Tavazoei & Haeri,
2009].

If the integer order system is stable then any frac-
tional version of this system is also stable, indeed
systems with memory are typically stable when
their memory-less counterpart is stable [Ahmed
et al., 2007]. Fractional order systems may have
some different properties from the classical integer
order systems. For example, fractional order sys-
tems described by Caputo definition can not pro-
duce exact periodic solutions [Tavazoei, 2010]. Also,
in [Shen & Lam, 2014], it has been shown that any
equilibrium of a fractional order nonlinear system
described by either Caputo or Riemann–Liouville
definition can never be finite-time stable. The previ-
ous stability results play an important role in study-
ing the existence of chaotic attractors and the syn-
chronization between fractional order systems.

2. Cubic Chua System

Chua’s circuit system is one of the paradigms of
chaos since it exhibits a wide variety of nonlin-
ear dynamics phenomena such as bifurcations and
chaos [Chua et al., 1986; Chua & Lin, 1990; Chua
et al., 1993]. It contains three energy-store elements
(an inductor and two capacitors), a linear resistor
and a single nonlinear resistor. Hartley [1989] sug-
gested to replace the piecewise linear function by
a cubic polynomial. This system is known, later,
as cubic Chua system. Many studies for this mod-
ified system can also be found in [Huang et al.,
1996; Hwang et al., 1996; Wu & Chen, 2002; Yassen,
2003]. It is described by the following dynamical
system, 


ẋ = a(y + bx + cx3)

ẏ = x − y + z

ż = −βy − γz.

(4)

We find numerically that for some range of param-
eters, cubic Chua system (4) behaves chaotically.
Indeed the study of bifurcation diagrams numeri-
cally evidence the presence of chaos. Figures 1–3
give the bifurcation diagrams with respect to the
parameters a ∈ [8.5, 10.9], b ∈ [0.08, 0.4] and β ∈
[14.5, 19], respectively. From these figures, we can
observe numerically that cubic Chua system (4)
seems chaotic, for example, when,

(b, c, β, γ) = (0.15,−0.3, 14, 0.02), a ∈ Ia, (5)

(a, c, β, γ) = (10,−0.3, 14, 0.02), b ∈ Ib, (6)

(a, b, c, γ) = (10, 0.2,−0.3, 0.02), β ∈ Iβ , (7)

where

Ia = [9.42, 9.65] ∪ [10.1, 10.29] ∪ [10.43, 10.53]

∪ [10.54, 10.72] ∪ [10.74, 10.9],

Ib = [0.09, 0.12] ∪ [0.114, 0.122] ∪ [0.124, 0.146]

∪ [0.154, 0.265] ∪ [0.275, 0.312] and

Iβ = [15.1, 15.2] ∪ [15.215, 15.32] ∪ [15.34, 15.408]

∪ [15.425, 15.6]

(Obviously, to have a better numerical evidence of
the chaotic behavior requires at least the computa-
tion of Lyapunov exponents). For the above param-
eters, cubic Chua system (4), in most cases, dis-
plays double scroll chaotic attractors, see Figs. 4–6
in which we plot the (x, y, z) phase portrait with
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Fig. 1. Bifurcation diagrams of cubic Chua system (4), when (b, c, β, γ) = (0.15,−0.3, 14, 0.02); x-axis represents the
parameter a.

Fig. 2. Bifurcation diagrams of cubic Chua system (4), when (a, c, β, γ) = (10,−0.3, 14, 0.02); x-axis represents the
parameter b.

Fig. 3. Bifurcation diagrams of cubic Chua system (4), when (a, b, c, γ) = (10, 0.2,−0.3, 0.02); x-axis represents the
parameter β.
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Fig. 4. Chaotic attractor of cubic Chua system (4), when (a, b, c, β, γ) = (9.5, 0.15,−0.3, 14, 0.02).
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Fig. 5. Chaotic attractor of cubic Chua system (4), when (a, b, c, β, γ) = (10, 0.13,−0.3, 14, 0.02).
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Fig. 6. Chaotic attractor of cubic Chua system (4), when (a, b, c, β, γ) = (10, 0.2,−0.3, 15.45, 0.02).
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parameters (a, b, c, β, γ) = (9.5, 0.15,−0.3, 14, 0.02),
(a, b, c, β, γ) = (10, 0.13,−0.3, 14, 0.02) and (a, b, c,
β, γ)= (10, 0.2,−0.3, 15.45, 0.02), satisfying (5)–(7),
respectively. It is clear, from these figures, that
cubic Chua system (4) produces double scroll
chaotic attractors.

3. Chaotic Dynamics of Fractional
Cubic Chua System

In this section, we study the chaotic dynamics of
fractional cubic Chua system. It is obtained from
the classical system, described in (4), by replacing
the first time derivative d/dt by a fractional deriva-
tive dα/dtα, where the last denotes the differential
operator in the sense of Caputo. The fractional ver-
sion of cubic Chua system reads as,



dα1x

dtα1
= a(y + bx + cx3)

dα2y

dtα2
= x − y + z

dα3z

dtα3
= −βy − γz

(8)

where α = (α1, α2, α3) is subject to 0 < α1, α2, α3 ≤
1. In general, if the integer order cubic Chua sys-
tem, when α = 1, displays a double scroll chaotic
attractor then this system has a saddle point of
index 2 and other two unstable equilibrium points.
It is obvious that the fractional order and the inte-
ger order cubic Chua system have the same equi-
librium points. Hence, a necessary condition for
fractional order cubic Chua system to exhibit the
chaotic attractor similar to its integer order coun-
terpart is instability of the equilibrium points of the
system surrounded by scrolls.

Assume that αi = li/mi, (li,mi) = 1, li,mi ∈
N, for i = 1, 2, 3. Let m be the least common mul-
tiple of the denominators mi’s of αi’s. According to
stability results of fractional order systems and the
results presented in [Tavazoei & Haeri, 2007], a nec-
essary condition for fractional cubic Chua system to
exhibit chaotic attractor similar to its integer order
counterpart is,

min
i
{|arg(λi)|} ≤ qπ

2
, (9)

where q = 1/m and λi’s are the roots of the equa-
tion det(diag(λmα1 , λmα2 , λmα3)−J |x∗) = 0, J |x∗ is
the Jacobian matrix of system (8) evaluated at the
equilibrium point x∗, for every equilibrium point x∗.

Otherwise, one of these equilibria becomes asymp-
totically stable and attracts the nearby trajectories.
In case of α1 = α2 = α3 = α, where α is a real num-
ber between 0 and 1, then condition (9) reduces to
min{|arg(λi)|, i = 1, 2, 3} ≤ απ/2. Now, we fix the
parameters as given in (5)–(7) and perform numeri-
cal simulations to study the chaotic behavior of frac-
tional cubic Chua system (8). Section 3.1 deals with
the commensurate fractional order cubic Chua sys-
tem, where the fractional orders are equal to real
number (i.e. α1 = α2 = α3 = α). Section 3.2 deals
with the incommensurate fractional order cubic
Chua system, where the fractional orders are ratio-
nal numbers between zero and one.

3.1. Commensurate fractional
cubic Chua system

We first consider parameters (b, c, β, γ) = (0.15,
−0.3, 14, 0.02) and a ∈ Ia, for which system (8) has
three equilibria given by,


P1 : (0, 0, 0),

P2 : (0.71046119, 0.00101349,−0.70944769),

P3 : (−0.71046119,−0.00101349, 0.709447699).

(10)

The Jacobian matrix of system (8) evaluated at the
equilibrium point x∗ = (x∗, y∗, z∗) is,

Ja(x∗) =



−0.9ax∗2 + 0.15a a 0

1 −1 1

0 −14 −0.02


.

(11)

If α1 = α2 = α3 = α and, for example, a = 9.5,
then the eigenvalues of the equilibrium points are,



P1 : λ1 = 2.46978760,

λ2,3 = −1.03239380 ± 2.66462940i,

P2 : λ1 = −4.33455977,

λ2,3 = 0.21195178 ± 3.04318601i,

P3 : λ1 = −4.33455977,

λ2,3 = 0.21195178 ± 3.04318601i

(12)

and so, in view of P2 and P3, we have,

|arg(λ2,3)| = tan−1 3.04318601
0.21195178

= 1.50126063.

(13)
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Fig. 7. Simulation results for fractional cubic Chua system (8), when α = 0.98 and (a, b, c, β, γ) = (9.5, 0.15,−0.3, 14, 0.02).

Thus, if α < ( 2
π ) ∗ 1.50126063 = 0.95573220,

then the equilibria P2 and P3 become asymptot-
ically stable. Therefore, system (8) has the nec-
essary condition α > 0.95573220 for exhibiting
double scroll chaotic attractor. Figure 7 shows
numerical simulation results for α = 0.98, which
satisfies the necessary condition, and (a, b, c, β, γ) =
(9.5, 0.15,−0.3, 14, 0.02). In this case, from Fig. 7, it
is clear that system (8) is chaotic and produces dou-
ble scroll attractor. Now, if a ∈ Ia and (a, α) does
not lie in the shaded region shown in Fig. 8 then
system (8) has the necessary condition to exhibit
double scroll chaotic attractor.

Next, we consider the parameters (a, c, β, γ) =
(10,−0.3, 14, 0.02) and b ∈ Ib, then system (8) has

9.0 9.5 10.0 10.5
a0.935

0.940

0.945

0.950

0.955

0.960

0.965

Fig. 8. Critical region for fractional cubic Chua system (8),
when (b, c, β, γ) = (0.15,−0.3, 14, 0.02). If a ∈ Ia and (a, α)
lie in the shaded region, then system (8) does not satisfy
the necessary condition for exhibiting double scroll chaotic
attractor.

three equilibria given by,


P1 : (0, 0, 0),

P2 : (1.82443915δ, 0.00260262δ,−1.82183653δ),

P3 : (−1.82443915δ,−0.00260262δ, 1.82183653δ),

(14)

where,

δ =
√

0.00142857 + 1.00142857b (15)

and the Jacobian matrix of system (3), evaluated at
the equilibrium x∗ = (x∗, y∗, z∗), is,

Jb(x∗) =



−9x∗2 + 10b 10 0

1 −1 1

0 −14 −0.02


. (16)

If α1 = α2 = α3 = α and, for example, b = 0.12,
then the eigenvalues of the equilibria are,



P1 : λ1 = 2.26468570,

λ2,3 = −1.04234285 ± 2.53587840i,

P2 : λ1 = −3.97769020,

λ2,3 = 0.25744709 ± 2.91435456i,

P3 : λ1 = −3.97769020,

λ2,3 = 0.25744709 ± 2.91435456i

(17)

and so, in view of P2 and P3, we have

|arg(λ2,3)| = tan−1 2.91435456
0.25744709

= 1.48268743.

(18)
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Fig. 9. Critical region for fractional cubic Chua system (8),
when (a, c, β, γ) = (10,−0.3, 14, 0.02). If b ∈ Ib and (b, α)
lie in the shaded region, then system (8) does not satisfy
the necessary condition for exhibiting double scroll chaotic
attractor.

Thus, if α < ( 2
π ) ∗ 1.48268743 = 0.94390814, then

the equilibria P2 and P3 become asymptotically sta-
ble. Therefore, system (8) has the necessary condi-
tion α > 0.94390814 to exhibit double scroll chaotic
attractor. In general, if b ∈ Ib and (b, α) does not lie
in the shaded region shown in Fig. 9 then system (8)
has the necessary condition to exhibit double scroll
chaotic attractor.

Now we consider the parameters (a, b, c, γ) =
(10, 0.15,−0.3, 0.02) and β ∈ Iβ, then, if α1 =
α2 = α3 = α, system (8) has the necessary con-
dition that (β, α) does not lie in the shaded region
shown in Fig. 10 for exhibiting double scroll chaotic
attractor. From Fig. 10, we can see that as β varys

14.5 15.0 15.5 16.0
14.50.950

0.955

0.960

0.965

0.970

0.975

0.980

Fig. 10. Critical region for fractional cubic Chua system (8),
when (a, b, c, γ) = (10, 0.15,−0.3, 0.02). If β ∈ Iβ and (β, α)
lie in the shaded region, then system (8) does not satisfy
the necessary condition for exhibiting double scroll chaotic
attractor.

in [14.5, 16] the necessary condition to observe a
double scroll chaotic attractor is α > α0, where
α0 ∈ [0.96259843, 0.96899785].

3.2. Incommensurate fractional
cubic Chua system

If α1, α2 and α3 are rational numbers between zero
and one, which are not necessarily equal, then it is
not easy to find a region for the fractional orders
that satisfies the necessary condition for exhibiting
double scroll chaotic attractor. But we can inves-
tigate, numerically, the chaotic behavior for each
given fractional order. Here we study two special
cases.

First, we take (α1, α2, α3) = (1, 0.95, 0.975) and
(a, b, c, β, γ) = (10.5, 0.15,−0.3, 14, 0.02). Then we
have l1 = 40, l2 = 38, l3 = 39 and m = 40. Accord-
ing to the last two equilibria P2 and P3, given in
Eq. (10), the equation det(diag(λmα1 , λmα2 , λmα3)−
Ja|x∗) = 0 becomes,

(λ40 + 3.19493581)[(λ38 + 1)(λ39 + 0.02) + 14]

− 10.5(λ39 + 0.02) = 0 (19)

and simple calculations give,

min
i
{|arg(λi)|} = 0 <

π

80
. (20)

Hence, system (8) satisfies the necessary condition
for exhibiting a double scroll attractor in this case.
The numerical simulation results shown in Fig. 11
confirm this result.

Second, we take (α1, α2, α3) = (0.85, 0.9, 0.8)
and (a, b, c, β, γ) = (10, 0.16,−0.3, 14, 0.02). Here,
we have l1 = 17, l2 = 18, l3 = 16 and m = 20.
According to the last two equilibria P2 and P3,
given in Eq. (14), the equation det(diag(λmα1 , λmα2 ,
λmα3) − Jb|x∗) = 0 becomes,

(λ17 + 3.24279601)[(λ18 + 1)(λ16 + 0.02) + 14]

− 10(λ16 + 0.02) = 0 (21)

and so we get,

min
i
{|arg(λi)|} = 0.08919554 >

π

40
. (22)

Hence, system (8) does not satisfy the necessary
condition for exhibiting a double scroll attractor in
this case. Therefore, in this case, system (8) does
not display chaotic attractor.
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Fig. 11. Simulation results for fractional cubic Chua system (8), when (α1, α2, α3) = (1, 0.95, 0.975) and (a, b, c, β, γ) =
(10.5, 0.15,−0.3, 14, 0.02).

4. Synchronization of Fractional
Cubic Chua System

A way to study synchronization is to use a con-
troller to make the output of the slave (response)
system copy in some manner the master (drive)
system one. In this section, based on the stability
results of fractional differential equations, we study
the synchronization of two identical chaotic frac-
tional order cubic Chua systems via nonlinear con-
trol. Using the drive-response concept, an adaptive
feedback control is constructed to achieve synchro-
nization between the systems. In order to observe
synchronization behavior, we construct the master
system and the slave system as,

Master




dα1xm

dtα1
= a(ym + bxm + cx3

m)

dα2ym

dtα2
= xm − ym + zm

dα3zm

dtα3
= −βym − γzm

(23)

Slave




dα1xs

dtα1
= a(ys + bxs + cx3

s) + u1(t)

dα2ys

dtα2
= xs − ys + zs + u2(t)

dα3zs

dtα3
= −βys − γzs + u3(t)

(24)

where dαi

dtαi
is the fractional differential operator in

Caputo sense, 0 < αi ≤ 1, j = 1, 2, 3. Subscripts m
and s stand for the master system and slave system,
respectively, and u(t) = [u1(t), u2(t), u3(t)]T is the
nonlinear controller to be designed for the global
synchronization of fractional order systems (23)
and (24). For this purpose, we define the synchro-
nization error as,




e1(t) = xs(t) − xm(t)

e2(t) = ys(t) − ym(t)

e3(t) = zs(t) − zm(t)

(25)

Now, define the controller u(t) as follows,



u1(t) = −3ac(xme2
1 + x2

me1) + k1(e1, e2, e3)

u2(t) = k2(e1, e2, e3)

u3(t) = k3(e1, e2, e3)

(26)

where

ki(e1, e2, e3) = ki1e1 + ki2e2 + ki3e3, i = 1, 2, 3,
(27)

kij ∈ R, for 1 ≤ i, j ≤ 3, k = (k1(e1, e2, e3), k2(e1,
e2, e3), k3(e1, e2, e3)) is the linear part of coupling
matrix. Our aim is to determine the possible matri-
ces k such that the drive system (23) and the
response system (24) are synchronized (‖e(t)‖ → 0,
as t → +∞). With this controller, according to the
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synchronization error, the error system becomes,



dα1e1

dtα1
= ae2 + abe1 + ace3

1 + k1(e1, e2, e3)

dα2e2

dtα2
= e1 − e2 + e3 + k2(e1, e2, e3)

dα3e3

dtα3
= −βe2 − γe3 + k3(e1, e2, e3).

(28)

The Jacobian matrix Je, evaluated at the equi-
librium point e∗ = (e∗1, e

∗
2, e

∗
3), for the error sys-

tem (28) is given by,

Je(e∗) =




ab + 3ac(e∗1)2 a 0

1 −1 1

0 −β −γ




+




k11 k12 k13

k21 k22 k23

k31 k32 k33


. (29)

According to the stability analysis, we have the
following two cases,

Case 1. If α1 = α2 = α3 = α then the drive
system (23) and the response system (24) with
the nonlinear control law (26) are synchronized
if all eigenvalues λ of the matrix Je, evaluated
at each equilibrium point e∗, lie in the region
|arg(λ)| > απ/2.

Case 2. If αi’s are rational numbers such that
αi = li/mi, (li,mi) = 1, q = 1/m where m is
the least common multiple of the denominators
mi of αi’s, li,mi ∈ N, for i = 1, 2, 3, then the
drive system (23) and the response system (24)
with the nonlinear control law (26) are synchro-
nized if all roots λ of the characteristic equation
det(diag(λmα1 , λmα2 , λmα3) − Je) = 0, for every
equilibrium point e∗, satisfy |arg(λ)| > qπ/2.

Example 1. Taking (α1, α2, α3) = (0.95, 0.95, 0.95)
and (a, b, c, β, γ) = (10, 0.1,−0.3, 14, 0.02), then
system (8) displays double scroll chaotic attractor.

If we take k = (k1, k2, k3) = (−3e1,−2e2, 0.64e3),
then error system (29) has one real equilibrium
point e∗ = (0, 0, 0). According to Case 1, the roots
of the equation det(λI − Je) = 0 or the eigenvalues

1 2 3 4 5
t

10

10

20

30

e1, e2, e3

Fig. 12. Synchronization of fractional cubic Chua sys-
tems (23) and (24), when (α1, α2, α3) = (0.95, 0.95, 0.95),
(a, b, c, β, γ) = (10, 0.1,−0.3, 14, 0.02) and k = (k1, k2, k3) =
(−3e1,−2e2, 0.64e3).

of the equilibrium point e∗ = (0, 0, 0) are,



λ1 = −4.38985829,

λ2 = 0.00492914 + 2.63500516i,

λ3 = 0.00492914 − 2.63500516i.

(30)

In this case, we have |arg(λ2,3)| = 1.56892568 >
(0.95)π/2. Therefore, systems (23) and (24) are syn-
chronized. The error functions evolution is shown
in Fig. 12. From Fig. 12, it is obvious that the
error system (29) decays towards zero as t goes
to +∞. As a result, we can numerically conclude
that the design controller can effectively control
the chaotic fractional order cubic Chua system to
achieve synchronization between drive system (23)
and response system (24).

Example 2. If we take (α1, α2, α3) = (0.95, 1, 0.95)
and (a, b, c, β, γ) = (10.5, 0.15,−0.3, 14, 0.02), then,
as shown in the previous section, we can verify
numerically that, in this case, system (8) exhibits
double scroll chaotic attractor.

If we select the matrix k as k = (k1, k2, k3) =
(−2e1 − 10.5e2, 0.5e2, 0), then we have l1 = 19,
l2 = 20, l3 = 19, m = 20 and the error sys-
tem (29) has one equilibrium point e∗ = (0, 0, 0).
According to Case 2, the characteristic equation
det(diag(λmα1 , λmα2 , λmα3) − Je) = 0 becomes,

(λ19 + 0.425)[(λ20 + 0.5)(λ19 + 0.02) + 14] = 0.
(31)

We can simply show that all roots of the above equa-
tion lie in the region |arg(λ)| > π/40. Therefore,
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1 2 3 4 5
t

15

10

5

5

10

15

e1, e2, e3

Fig. 13. Synchronization of fractional cubic Chua sys-
tems (23) and (24), when (α1, α2, α3) = (0.95, 1, 0.95), (a, b,
c, β, γ) = (10.5, 0.15,−0.3, 14, 0.02) and k = (k1, k2, k3) =
(−2e1 − 10.5e2,−0.5e2, 0).

systems (23) and (24) are synchronized. The error
functions evolution is shown in Fig. 13. As observed
in the previous example, in which the error sys-
tem (29) decays towards zero as t goes to +∞,
we can numerically conclude that the design con-
troller can effectively control the chaotic frac-
tional order cubic Chua system to achieve synchro-
nization between drive system (23) and response
system (24).

Example 3. If we take α1 = α2 = α3 = α, where
α ∈ [0.95, 1], and (a, b, c, β, γ) = (10.8, 0.15,−0.3,
14, 0.02), then, in view of Fig. 8, system (8) satisfies
the necessary condition for exhibiting double scroll
chaotic attractor.

If we select the matrix k as k = (k1, k2, k3) =
(−4.5e1, 2e2,−1.8e3), then error system (29) has
one equilibrium point e∗ = (0, 0, 0), which gives
the eigenvalues λ1 = −3.78728071 and λ2,3 =
0.04364035 ± 2.01748657i. So, we get,

2
π
|arg(λ2,3)| =

2
π

tan−1 2.01748657
0.04364035

= 0.98623139. (32)

Therefore, according to Case 1, systems (23)
and (24) are synchronized under the control
law (26) if 0.98623139 < α < 1. If 0.95 < α <
0.98623139, then the equilibrium point e∗ is not
stable. Hence, the error system (29) does not decay
toward zero as t goes to +∞ and so, systems (23)
and (24) are not synchronized.

5. Conclusion

The chaotic dynamics of cubic Chua system with
fractional order has been studied in this paper. It
is shown that chaos exists in this system with order
less than 3. Some necessary conditions for frac-
tional cubic Chua system to exhibit chaotic attrac-
tor similar to its integer order counterpart are inves-
tigated. This condition is used to distinguish for
what parameters and orders, the system generates
double scroll chaotic attractors.

Moreover, the control and synchronization
problems of chaotic fractional cubic Chua sys-
tem are addressed. Based on stability results of
fractional order systems and using master-slave
synchronization scheme, sufficient conditions for
global synchronization of fractional cubic Chua sys-
tems are given. The designed adaptive nonlinear
controller applied to the response system affects
the system dynamics to realize synchronization.
Numerical simulations are provided to confirm the
effectiveness of the presented chaotic and synchro-
nization schemes.
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