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a b s t r a c t

This paper describes a fish prey–predator model with a new functional response. The
dynamics of the system is discussed mainly from the point of view of permanence
and stability. We obtain conditions that affect the persistence of the system. Local
asymptotic stability of various equilibrium solutions is explored to understand the
dynamics of the model system. The global asymptotic stability of positive interior
equilibrium solution is established using suitable Lyapunov functional. We then
examine possibilities of the existence of bionomic equilibrium. Lastly, the optimal
harvesting policy is obtained by using the Pontryagin’s maximum principle. The
objective is to maximize the monetary social benefit as well as conservation of the
ecosystem.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction and mathematical model

Predator–prey dynamics are usually represented by a functional response, which is the amount of prey
eaten per predator and per unit of time. This functional is a proxy of the flux of matter from one trophic
level to another as it determines the transfer of biomass in the food chain [1]. Typically, a predator–prey
model focuses on interactions between two species taking into account some aspects that are considered
nodal to explain the dynamics. These interactions depend on the nature of the studied species [2–4].
Recently, in [5], authors proposed a new response functional in order to explain the influence of changing
water level fluctuations in an artificial lake on fish predator–prey dynamics. In the studied lake, two
interdependent species are considered; the pike (brochet in French) which is the most important predator
and the roach (gardon in French) which is the prey. This response functional is based on the following general
considerations. When a predator attacks a prey, it has access to a certain quantity of food depending on the
water level. When the water level is low, during the autumn, the predator is more in contact with the prey,
and the predation increases. Conversely, when the water level is high, in the spring, it is more difficult for
the predator to find a prey and the predation decreases. It is assumed that the accessibility function b(t) for
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the prey is continuous and 1-periodic, the minimum value b1 is reached in spring and the maximum value
b2 is attained during autumn. The predator needs a quantity γ as food, but it has access to a quantity

g(x, y) = b(t)x
y + D

,

which depends on the water level, where D measures other causes of mortality outside of predation. Thus,
if

g(x, y) ≥ γ,

then the predator will be satisfied with the quantity γ for his food. Otherwise, if

g(x, y) < γ,

the predator will content himself with

g(x, y) = b(t)x
y + D

.

To summarize, the quantity of food received per predator and per unit of time is

min
(

b(t)x
y + D

, γ

)
. (1)

The authors in [5] studied the following non-autonomous prey–predator model⎧⎪⎪⎨⎪⎪⎩
ẋ = ax(t)

(
1 − x(t)

K

)
− min

(
b(t)x(t)
y(t) + D

, γ

)
y(t),

ẏ = −dy(t) + e min
(

b(t)x(t)
y(t) + D

, γ

)
y(t).

(2)

The constants mentioned above are all positive. The prey grow logistically with carrying capacity K and
intrinsic growth rate a. By using Gaines and Mawhin’s continuation theorem of coincidence degree theory [6],
the authors have established sufficient conditions for the existence of positive periodic solutions of the prey–
predator system (2). Such a solution describes an equilibrium situation consistent with the variability of
environmental conditions, such that both populations survive. The trajectories in the phase plane of these
solutions of the nonautonomous system take the place of the equilibria points of the autonomous system. In
the numerical simulations given in [5], the periodic predation rate function b(t) = b(1 + 0.5cos(2πt)) is used,
for more details, see [5,7–9].

In the present work, we focus on the autonomous case and use as predation rate, the mean function
b =

∫ 1
0 b(t)dt. Moreover, to investigate the effects of harvesting on the prey–predator ecosystem, we

incorporate and extend the work done by [5]. We aim to obtain some results which are theoretically beneficial
to maintaining the sustainable development of the prey–predator system as well as keeping the economic
interest of harvesting at an ideal level. Therefore, we study the following prey–predator model:⎧⎪⎪⎨⎪⎪⎩

ẋ = ax(t)
(

1 − x(t)
K

)
− min

(
bx(t)

y(t) + D
, γ

)
y(t) − qEx(t) := F1(x, y),

ẏ = −dy(t) + e min
(

bx(t)
y(t) + D

, γ

)
y(t) := F2(x, y),

(3)

where q is the catchability coefficient of the prey species and E denotes the effort devoted to the harvesting.
The present article is organized as follows: In Section 2, we focus on the dynamics of the system (3),

specifically, we establish sufficient criteria for the boundedness, permanence, and predator extinction. The
local and the global stability of the dynamical system for the model are studied in Section 3. In Section 4,
the existence of a bionomic equilibrium is investigated. The optimal harvesting policy is studied with the
help of Pontryagin’s maximum principle in Section 5. Some numerical examples are taken up to illustrate
the results. Brief concluding remarks are given in Section 6 to close this work.
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2. Mathematical analysis and main result

In this section, we give a qualitative analysis of system (3). From the standpoint of biology, we are only
interested in the dynamics of model (3) in the closed first octant R2

+. Thus, we consider the biologically
meaningful initial condition x(0) = x0 ≥ 0 and y(0) = y0 ≥ 0.

It is easy to see that if E > a
q then ẋ < 0, hence, throughout this analysis, we make the following

assumption on the fishing effort:

E <
a

q
. (H0)

We also assume throughout this work that the predation rate b satisfies:

b < min

{
γ(y0 + D)

x0
,

4aγDd

K(a + d − qE)2

}
:= b̃. (H1)

Biologically, assumption (H0) means that if the fishing effort increases beyond a threshold value (that is if
E > a

q ), then the two species vanish eventually.
Assumption (H1) will be used in Subsection 2.1 to prove the persistence of system (3), and means that

if the predation rate is less than a threshold value b̃, all the species are present and none of them will go to
extinction.

We start by showing that solutions of (3) starting into R2
+, exist, will remain there and are uniformly

bounded. First of all, we state the following lemma:

Lemma 1. Let h : (x, y) → min(g(x, y), γ). If g is locally Lipschitz, then it is also goes for h.

Proof. It is easy to see that

h(x, y) = min (g(x, y), γ) = g(x, y) + γ − |g(x, y) − γ|
2 .

The form of h with respect to g obviously shows that if g is locally Lipschitz, then h is locally Lipschitz.
Hence, local existence and uniqueness of solutions of system (3) are obtained for the corresponding Cauchy
problem [10]. □

Regarding the positivity and boundedness of the solution for system (3) we have the following lemma:

Lemma 2. 1. The positive cone R2
+ is positively invariant for (3).

2. All the solutions of system (3) which initiate in R2
+ are bounded, with ultimate bound.

Proof. Let the interval [0, Tmax) be the maximal interval of existence of solutions of system (3).
1. From system (3), it follows that x = 0 (resp. y = 0) is an invariant subset, that is, x = 0 (resp. y = 0)

if and only if x(t) = 0 (resp. y(t) = 0) for some t. Thus if x(0) > 0 (resp. y(0) > 0), then x(t) > 0 (resp.
y(t) > 0) for all t ∈ [0, Tmax).

2. Let us consider w(t) = ex(t) + y(t), then the time derivative along the solutions of the system (3) is
given by

dw

dt
= e

dx

dt
+ dy

dt
= eax

(
1 − x

K

)
− eqEx − dy.

Hence
dw

dt
+ dw = ex

[
(a − qE + d) − a

K
x

]
≤ e

K

4a
(a − qE + d)2 := µ
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where µ is the maximum value of the function ex
[
(a−qE+d)− a

K x
]
. By using the differential inequality [10],

we obtain

0 ≤ w(t) ≤ e−dtw(0) + µ

d
(1 − e−dt)

≤ max
(

w(0), µ

d

)
.

From the well known extension theorem, we have Tmax = ∞, therefore the solutions are bounded. Moreover,
we have limt→∞w(t) ≤ µ

d , which is independent of the initial condition.
Hence all the solutions of (3) that initiate in R2

+ are confined in the region

B =
{

(x, y) ∈ R2
+ : 0 ≤ w = ex + y ≤ µ

d
+ ε

}
,

for any ϵ > 0 as t → ∞.

2.1. Persistence and permanence

In this subsection, we analyze the persistence (weak and strong) and permanence behavior of system (3).

Definition 1 (Persistence). System (3) is said to be weakly persistent if every solution (x(t), y(t)) satisfies
two conditions:

(i) x(t) ≥ 0, y(t) ≥ 0, ∀t ≥ 0.
(ii) lim supt→+∞x(t) > 0, lim supt→+∞y(t) > 0.
System (3) is said to be strongly persistent if every solution (x(t), y(t)) satisfies the following condition

along with the first condition of the weak persistence:
(iii) lim inft→+∞x(t) > 0, lim inft→+∞y(t) > 0.

Definition 2 (Permanence and non-permanence). System (3) is said to be permanent if there exist positive
constants 0 < m ≤ M such that,

min

{
lim inf
t→+∞

x(t), lim inf
t→+∞

y(t)
}

≥ m, max

{
lim sup
t→+∞

x(t), lim sup
t→+∞

y(t)
}

≤ M

for all solutions (x(t), y(t)) of system (3) with positive initial values.
System (3) is said to be non-permanent if there is a positive solution (x(t), y(t)) of (3) and such that,

min

{
lim inf
t→+∞

x(t), lim inf
t→+∞

y(t)
}

= 0.

Geometrically, persistence means that trajectories that initiate in a positive cone are eventually bounded
away from coordinate planes. On the other hand, permanently coexistence (uniform persistence) implies the
existence of a region in the phase space at a non-zero distance from boundary in which population vectors
must lie ultimately. The last ensures the survival of species in biological sense.

To establish the persistence for system (3), we need to recall the following lemma, whose proof can be
found in [11].

Lemma 3. If a, b > 0 and dX
dt ≤ (resp. ≥)X(t)(a − bX(t)), with X(0) > 0, then we have

lim sup
t−→∞

X(t) ≤ a

b

(
resp. lim inf

t−→∞
X(t) ≥ a

b

)
.
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Let us denote:

m1
def= K

a
(a − qE − b),

m2
def= ebm1

d
− D,

M1
def= K,

M2
def= ebM1

d
− D,

then Mi > mi, i = 1, 2. We will show that max{mi, 0}(i = 1, 2) are the lower bounds for the limiting bounds
of species, as time t goes to infinity. This is obvious when mi ≤ 0. Therefore, it is assumed that:

mi > 0, i = 1, 2. (H2)

Our main result is stated in the following proposition.

Proposition 1. In addition to (H0), (H1), assume further that (H2) holds. Then system (3) is permanent,
i.e., any positive solution (x(t),y(t)) of system (3) satisfies

0 < m1 ≤ lim inf
t−→∞

x(t) ≤ lim sup
t−→∞

x(t) ≤ M1,

0 < m2 ≤ lim inf
t−→∞

y(t) ≤ lim sup
t−→∞

y(t) ≤ M2.

Proof. As the variables x, y are positive, from the first equation of system (3), it follows that:

dx

dt
≤ ax

(
1 − x

K

)
,

using Lemma 3, we get

lim sup
t→∞

x(t) ≤ M1. (4)

Thus, for arbitrary ε1 > 0, there exists a positive real number T1 such that

x(t) ≤ M1 + ε1, ∀t ≥ T1.

Further, from the predator equation, it follows that for t ≥ T1,

dy

dt
≤ y

(
−d + eb(M1 + ε1)

y + D

)
,

= y

y + D
(eb(M1 + ε1) − dD − dy) ,

≤ 1
D

y (eb(M1 + ε1) − dD − dy) .

Using Lemma 3 and the arbitrariness of ε1, we obtain

lim sup
t→∞

y(t) ≤ M2. (5)

Thus, for arbitrary ε2 > 0, there exists a positive real number T2 > T1, such that

y(t) ≤ M2 + ε2, ∀t ≥ T2.

Hence, system (3) is dissipative.
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Before proving the strongly persistence of system (3), we give the following result.

Proposition 2. Under hypothesis (H1), we have for all t ≥ 0,

bx(t) < γ(y(t) + D).

Proof. Let

u(t) = bx(t) − γ(y(t) + D),

note that u(0) < 0 by assumption (H1). It is claimed that u(t) < 0 for all t ≥ 0. If this was not the case,
there exists t0 > 0 such that:

u(t0) = 0 and du

dt
(t0) ≥ 0.

The condition u(t0) = 0 implies that

y(t0) = bx(t0)
γ

− D.

From (3), we get

du

dt
(t0) = b

dx

dt
(t0) − γ

dy

dt
(t0)

= −b(b + eγ) y(t0)
y(t0) + D

x(t0) + b(a + d − qE)x(t0) − γdD − ba

K
(x(t0))2,

it follows that
du

dt
(t0) ≤ −ba

K
(x(t0))2 + b(a + d − qE)x(t0) − γdD.

Condition (H1) implies that

du

dt
(t0) < 0,

which leads to a contradiction. Therefore u(t) < 0 for all t ≥ 0. □

Consequently under hypothesis (H1) system (3) is reduced to the simple form⎧⎪⎨⎪⎩
dx

dt
= ax

(
1 − x

K

)
− bxy

y + D
− qEx,

dy

dt
= −dy + ebxy

y + D
.

(6)

Now, we come back to the proof of the (strongly) persistence of system (6) (which is equivalent to system
(3) under hypothesis (H1)).

According to the first equation of system (6), it is easy to see that

dx

dt
= x

(
a − ax

K
− by

y + D
− qE

)
≥ x(a − qE − b − ax

K
).

Using Lemma 3, we obtain

lim inf
t→∞

x(t) ≥ m1. (7)
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For arbitrary ε3 > 0, there exists a positive real number T3 such that

x(t) ≥ m1 − ε3, ∀t ≥ T3. (8)

Thus, by applying (8) to the second equation of system (6), we obtain

dy

dt
≥ y

y + D

(
eb(m1 − ϵ3) − dD − dy

)
,

and for t ≥ T4 = max{T2, T3}, we get

dy

dt
≥ 1

M2 + ϵ2 + D
y
(

eb(m1 − ϵ3) − dD − dy
)

, ∀t ≥ T4.

Using Lemma 3 and the arbitrariness of ε2 and ε3, we obtain

lim inf
t→∞

y(t) ≥ ebm1

d
− D := m2. (9)

Eqs. (4), (5), (7) and (9), show that under the assumption of Proposition 1, system (3) is permanent. □
In the next proposition, we are able to give sufficient conditions under which the given system is not

persistent.

Proposition 3. If M2 < 0, then limt→∞y(t) = 0, that is, the predator goes to extinction.

Proof. Using the upper bounds for x, from the predator equation, we have

dy

dt
≤ y

(
−d + ebM1

D

)
,

then

y(t) ≤ y0e

(
−d+ ebM1

D

)
t
.

Thus, under the given hypothesis, y(t) → 0 as t → ∞. That is predator goes to extinction. □

Remark 1. Biologically, it means that, when the predation rate is enough small, the predator disappears.

3. Steady states and their existence

System (6) possesses the following three equilibria:
(i) The trivial equilibrium P 0 = (0, 0).
(ii) The predator free equilibrium P 1 = (x̄, 0), where x̄ = K

a (a − qE).
(iii) The steady state of coexistence (interior equilibrium point) P ∗ = (x∗, y∗). The last is the point of

intersection of the prey zero growth rate isocline (i.e., dx
dt = 0) and the predator zero growth rate isocline

(i.e., dy
dt = 0) given by ⎧⎪⎨⎪⎩

a

(
1 − x∗

K

)
− by∗

y∗ + D
− qE = 0,

−d + ebx∗

y∗ + D
= 0,

(10)

where y∗ = 1
2

(
−B +

√
B2 − 4C

)
, x∗ = d

eb (y∗ + D)
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and
B = 2D − ebK(a−qE−b)

ad = D − m2, C = D2 − ebKD(a−qE)
ad .

Note that
√

B2 − 4C is always positive, then, the interior equilibrium is positive if one of the two cases
holds:

1. B < 0, (m2 > D) which is equivalent to 0 < E < a
q (1 − 2dD

ebK ) − b
q ,

2. B ≥ 0 and C < 0, that is 0 < a
q (1 − 2dD

ebK ) − b
q ≤ E < a

q (1 − dD
ebK ).

Hence, the interior equilibrium is positive if and only if condition

0 < E <
a

q

(
1 − dD

ebK

)
, (H3)

holds.

3.1. Dynamical behavior: stability analysis

The stability of the equilibrium state is determined by the nature of the eigenvalues of the Jacobian
matrix around the equilibrium point.

Proposition 4. 1. The equilibrium point P 0 is always a saddle point.
2. The point P 1 is stable iff

E >
a

q

(
1 − dD

ebK

)
. (Hc

3)

3. The Steady state P ∗ is locally asymptotically stable when it exists.

Proof.
To obtain the local stability results, we use the Jacobian matrix associated to system (6)

J (x, y) =

⎛⎜⎜⎝a − qE − 2ax

K
− by

y + D

−bDx

(y + D)2

eby

y + D
−d + ebDx

(y + D)2

⎞⎟⎟⎠ .

The Jacobian matrix of the equilibrium P0 = (0, 0) is

J (0, 0) =
(

a − qE 0
0 −d

)
.

Hence, P0 is a saddle point.
• The Jacobian matrix of the equilibrium P1 = (x̄, 0) is

J (x̄, 0) =

⎛⎜⎝−(a − qE) −bK(a − qE)
Da

0 −d + ebK(a − qE)
Da

⎞⎟⎠ .

If (Hc
3) holds, then P1 is stable, and there is no interior equilibrium, otherwise, if

E <
a

q

(
1 − dD

ebK

)
,

then P1 is unstable.
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Fig. 1. Both the prey and predator populations converge to their equilibrium values. a = 12, b = 10, K = 20, e = 1.25, p = 1, D =
4, q = 6, E = 0.15.

• The Jacobian matrix for P ∗ is

J (x∗, y∗) =

⎛⎜⎜⎝
−ax∗

K
− bDx∗

(y∗ + D)2

eby∗

y∗ + D
− ebx∗y∗

(y∗ + D)2

⎞⎟⎟⎠ .

It is easy to see that the trace of J (x∗, y∗) is

trJ (x∗, y∗) = −ax∗

K
− ebx∗y∗

(y∗ + D)2 < 0,

and its determinant is

detJ (x∗, y∗) = aebx∗2y∗

K(y∗ + D)2 + eb2Dx∗y∗

(y∗ + D)3 > 0.

Hence (x∗, y∗) is locally asymptotically stable whenever it exists (see Figs. 1 and 2). □

3.2. Global stability

In this subsection, we shall establish the global asymptotic stability of the co-existing equilibrium point
P ∗ by constructing a suitable Lyapunov function.

Theorem 1. If conditions (H0)–(H3) hold, then, the co-existing equilibrium point P ∗ is globally
asymptotically stable.

Proof. Let

V (x, y) =
[
(x − x∗) − x∗ log( x

x∗ )
]

+ α

[
(y − y∗) − y∗ log

(
y

y∗

)]
,

where α is a positive constant to be chosen suitably in the subsequent steps. It can be easily verified that
the function V is zero at the equilibrium (x∗, y∗) and is positive for all other positive values of x, y.
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Fig. 2. Phase space trajectories corresponding to different initial conditions.

The time derivative of V along the trajectories of (6) is given by

dV

dt
= x − x∗

x

dx

dt
+ α

y − y∗

y

dy

dt

= (x − x∗)
[
(a − qE) − a

K
x − by

y + D

]
+ α (y − y∗)

[
−d + ebx

y + D

]
.

(11)

Also we have the set of equilibrium equations corresponding to the steady state P2 = (x∗, y∗):

a

(
1 − x∗

K

)
− by∗

y∗ + D
− qE = 0,

−d + ebx∗

y∗ + D
= 0. (12)

We can write Eq. (11) together with the above two equations in the form:

dV

dt
= (x − x∗)

[
− a

K
x − by

y + D
+ a

K
x∗ + by∗

y∗ + D

]
+ α (y − y∗)

[
ebx

y + D
− ebx∗

y∗ + D

]
.

By choosing

α = D

e(y∗ + D) ,

we obtain

dV

dt
= −

[
a

K
(x − x∗)2 + ebhx∗

(y + D) (y∗ + D) (y − y∗)2
]

thus, dV
dt < 0 strictly for all x, y > 0 except the interior equilibrium point (x∗, y∗) where dV

dt = 0. Thus
V (x, y) satisfies Lyapunov’s asymptotic stability theorem [10], and the interior equilibrium point P ∗ of
system (6) is globally asymptotically stable. □

Remark 2. The consequence of global stability is that exploitation will not irreversibly change the system.
As long as the prey are not made extinct by excessive exploitation of their food supply, the system is able
to recover.
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4. Bionomic equilibrium

As we have already seen, a biological equilibrium is given by ẋ = ẏ = 0. The bionomic equilibrium is
said to be achieved when the total revenue obtained by selling the harvested biomass equals the total cost
utilized in harvesting it [12].

Let c be a constant fishing cost per unit effort and p the constant price per unit biomass of prey fish.
Then, the economic rent (net revenue) at any time is given by,

π = (pqx − c) E. (13)

The bionomic equilibrium is P∞(x∞, y∞, E∞), where x∞, y∞, E∞ are the positive solutions of

a
(

1 − x

K

)
− by

y + D
− qE = 0,

−d + ebx

y + D
= 0,

π = (pqx − c)E = 0.

(14)

It may be noted here that if c > pqx, i.e., if fishing cost exceeds the revenue obtained from it, then the
economic rent obtained from the fishery becomes negative. Hence the fishery will be closed and no bionomic
equilibrium exists. Therefore, in order to achieve the bionomic equilibrium, the following inequality must
hold c < pqx.

Solving the above equations, we get,

x∞ = c

pq
, (15)

y∞ = ebc

pqd
− D, (16)

where y∞ > 0, if
ebc

pqd
− D > 0 (H4)

and

E∞ = 1
q

[
a

(
1 − c

pqK

)
− by∞

y∞ + D

]
. (17)

Since c < pqx < pqK, therefore 1 − c
pqK > 0, and since (H4) is satisfied, hence

E∞ > 0, if

a

(
1 − c

pqK

)
>

by∞

y∞ + D
. (H5)

Therefore, we have the following theorem.

Theorem 2. The bionomic equilibrium P∞(x∞, y∞, E∞) exists if in addition to (H0)– (H3), conditions (H4)
and (H5) hold together.

Interpretation. If E > E∞, then the total cost utilized in harvesting the prey population would exceed
the total revenues obtained from the fishery. Hence, some of the fishermen would be in loss and, naturally,
they would withdraw their participation from the fishery. Hence E > E∞ cannot be maintained indefinitely.
If conversely E < E∞, then the fishery is more profitable, and hence in an open access fishery it would attract
more and more fishermen. This will have an increasing effect on the harvesting effort. Hence E < E∞ also
cannot be maintained indefinitely (see Fig. 3).
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Fig. 3. Phase diagram showing the unique bionomic equilibrium. a = 12, b = 10, K = 20, e = 1.25, p = 1, D = 4, q = 6, E = 0.15.

5. Optimal harvesting policy

The fundamental problem in the determination of an optimal harvest policy in a commercial fishery is to
determine the optimal trade-off between the current and future harvests [12–18]. As observed by Clark [12],
this problem, which is the very essence of resource conservation, is an exceedingly difficult one, not from
a mathematical point of view perhaps, but certainly from a political and philosophical viewpoint. The
standard device used to handle questions of inter temporal economic benefits is time discounting. Although
there is considerable controversy as to the social justifiability of this concept [19], time discounting is a
normal practice in business management.

To determine an optimal harvesting policy, we consider the present value J of a continuous time-stream
of revenues, given by

J(E) =
∫ ∞

0
e−δtπ(x, y, E)dt, (18)

where π is given by π = (pqx − c)E and δ is the instantaneous annual rate of discount.
Let us denote by Eδ an optimal control with corresponding states xδ and yδ. We take Aδ = (xδ, xδ) as

optimal equilibrium point. Here we intend to derive optimal control Eδ such that

J(Eδ) = max{J(E), E ∈ V },

where V = [0, Emax] is the control set, and Emax is a feasible upper limit for the harvesting effort.
Now the Hamiltonian of this optimal control problem is

H = e−δt (pqx − c) E + λ1

(
ax

(
1 − x

K

)
− bxy

y + D
− qEx

)
+λ2

(
−dy + ebxy

y + D

)
, (19)

where λ1 and λ2 are the adjoint variables.
The objective functional and the differential equations are linear in the control with bounded states, and

one can show by standard results that an optimal control and corresponding optimal states exist [20].
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Since the Hamiltonian is linear in the control, we must consider if the optimal control is bang–bang (at its
lower or upper bound), singular or a combination. The singular case could occur if the slope or the switching
function

∂H

∂E
= e−δt (pqx − c) − λ1qx := σ(t) (20)

is zero on non-trivial interval of time. Note that the optimal control would be at its upper bound or its lower
bound according to:

σ(t) > 0 or < 0.

To investigate the singular case, let us suppose σ(t) = 0 on some non-trivial interval. In this case, the optimal
harvesting policy is

E(t) =

⎧⎨⎩Emax if σ(t) > 0,
E∗ if σ(t) = 0,
0 if σ(t) < 0.

When σ(t) = 0, it follows that

λ1qx = e−δt (pqx − c) = e−δt ∂π

∂E
. (21)

This implies that the users cost of harvest per unit of effort equals the discounted value of the future marginal
profit of the effort at the steady-state level.

By the maximum principle [21], the adjoint variables satisfy

λ̇1 = −∂H

∂x

= −
[
e−δtpqE + λ1

{
a − 2ax

K
− by

y + D
− qE

}
+ λ2

{
eby

y + D

}]
.

λ̇2 = −∂H

∂y

= −
[
λ1

{
−bDx

(y + D)2

}
+ λ2

{
−d + ebDx

(y + D)2

}]
. (22)

We seek to find the optimal equilibrium solution of the problem, hence x, y and E are to be treated as
constants in the subsequent steps.

Considering the interior equilibrium P2 = (x∗, y∗), for singular control, we have ∂H
∂E = 0. This gives

λ1 = e−δt

(
p − c

qx∗

)
. (23)

The shadow price λ1eδt remains bounded as t → ∞, hence it satisfies the transversality condition at ∞.
Now, (23) can be written as λ1 = A1e−δt, where A1 = p − c

qx∗ .

Similarly, considering the interior equilibrium P2 = (x∗, y∗), from (22), we get

dλ2

dt
− A2λ2 = −A1A3e−δt, (24)

whose solution is given by

λ2(t) = A1A3

A2 + δ
e−δt, (25)

where A1 = p − c
qx∗ , A2 = ebDx∗

(y∗+D)2 − d and A3 = − bDx∗

(y∗+D)2 ,
which also satisfies the transversality condition.
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The singular path is given by (
p − c

qx∗

)
= A1, (26)

which can be written as G(x∗) =
(

p − c
qx∗

)
− A1 = 0.

There exists a unique positive root x∗ = xδ of G(x∗) = 0 in the interval 0 < xδ < K if the following
inequalities hold:

lim
x→0+

G(x) < 0, G(K) > 0, G′(x) > 0 for x > 0.

For x∗ = xδ, we get

yδ = eb

d
xδ − D,

where

yδ > 0 if xδ >
dD

eb

and

Eδ = 1
q

[
a

(
1 − xδ

K

)
− byδ

yδ + D

]
,

which verifies

Eδ > 0 if a
(

1 − xδ

K

)
>

byδ

yδ + D
.

6. Concluding remarks

In the present paper, we have considered and analyzed a predator–prey system with harvesting taking
into account the quantity of food received by the predator. This work can be looked upon as an extension
of the work in [5,7]. The main modification here is that the predation rate in the functional response is
chosen as the average of predation rate in one year and prey population is subjected to harvesting. The
objectives were the analysis of the dynamical properties of different equilibrium points of the system, and
studying the harvesting strategy that results in maximizing the profit without leading to extinction. Our
investigation indicates that fishing effort and predation rate play an important role to change different steady
state behaviors.

Firstly, we showed that if the fishing effort increases beyond a threshold value, that is, if E > a
q , then

both species will become extinct and the system will not be permanent. To avoid this situation, hypothesis
(H0) was assumed.

Also, in order to simplify our study, we have made few assumptions, assumed that the predation rate is
less than a critical value given by condition (H1) which depends on biological parameters.

Secondly, with use of the stability theory of ordinary differential equations, we proved that the interior
equilibrium of the reduced model exists under certain conditions, and it is globally asymptotically stable.
On the other hand, it is important to note that the presence of harvesting can impact the existence and
the behavior of the positive equilibrium, that is for 0 ≤ E ≤ a

q

(
1 − dD

ebK

)
, the two fish populations can

be maintained at an appropriate equilibrium level in the habitat. As harvesting becomes larger than the
level a

q

(
1 − dD

ebK

)
, overharvesting can lead to the extinction of the predators. Indeed, the density of the prey
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population decreases with increasing effort used to harvesting, which leads to a more difficult situation for
the predator to find a prey, and to possible extinction. The major contributions of this paper are as follows:
1. The persistence of the species depends on two factors. The first is biological and concerns the predation
rate b, indeed, we have shown that the threshold between persistence and extinction depends critically on
the predation rate b, if the predation rate is between two levels (i.e., (H1), (H2) hold), then both prey and
predator population coexist. However, when predation rate is less than a critical value given by Proposition 3,
then the predator goes to extinction. The second is linked to the exploitation and mechanisms that reduce
the fishing effort (i.e., (H3) holds). The last can be reduced by limiting the time for fishing, reducing the
capacity that a vessel can carry, or installing protected area.
2. The ecosystem is often altered by human activities. We analyzed the harvesting strategy that results
in maximizing the profit and does not lead to extinction. We obtained the optimal harvesting equation by
using Pontryagin’s maximum principle.

Finally, we can easily check the compatibility of all hypotheses used in this work. The results and
the methodological framework outlined here will provide a useful tool to investigate the consequences for
particular real systems in future work. It may also be pointed out that in this paper several important
parameters such as refuge, interaction with other species, etc. are disregarded. Hence, further research is
necessary to accomplish the needs in this field.
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