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SIGNALS AND SYSTEMS IN LEARNING AND MEMORY

Ranjit Kumar Upadhyay, M. A. Aziz-Alaoui and Argha Mondal ∗†‡

Abstract. An oscillation in the brain is characterized by four phys-

ical quantities; amplitude, frequency, phase and entropy. While the

first three quantities correspond to its activity in environment where

the background noise is at low levels, the last quantity reveals its

state in noisy real world conditions. We explored models pertaining

to the first case. As far as functionality of healthy brain is con-

cerned, phase information is most crucial. We report existence of

nonlinear oscillations which preserve phase in single neuron systems;

modified Morris Lecar (M-L) and Hindmarsh Rose (H-R) models.

The bifurcation analysis of both single neural systems is presented.

The bifurcation scenarios suggest that these systems support inter-

esting dynamical transitions in parameter ranges which are disjoint.

Phase-coupled oscillations represented by limit cycles in the phase

space of the system and synchronization analysis of the complex

network of neuron models are believed to play a crucial role in

information transport. The phase-coupled oscillations also plays

important role in learning and memory processes. Time trajecto-

ries originating for different initial conditions lag behind each other

while expected behavior is that these would overlap. The complex

connections of network and coupling strength present significant re-

sults and which are very efficient to clinical medical research. .

Keywords. Spiking bursting. Morris-Lecar model. Hindmarsh-

Rose model. Bifurcation. Phase-coupled oscillations. Network con-

nections. Synchronization.

1 Introduction

Oscillatory brain activity shapes the functional architec-
ture of the working brain. Neuronal networks displaying
oscillations in different bands are selectively distributed
in the brain. This activity is explored in neuronal models.
A memory process involves perception of a sensory input
which is similar in information content to already stored
in neuronal cells. Basar et al. [1] have argued that sensory
perception is the result of interplay between cognition and
memory. Rai et al. [2] studied a model based on new
kind of oscillations (phase coupled) in brain which carry
amplitude, phase and time information. These phase-

∗Ranjit Kumar Upadhyay and Argha Mondal are with Depart-
ment of Applied Mathematics, Indian School of Mines, Dhanbad-
826004, Jharkhand, India. E-mails: ranjit ism@yahoo.com, argha-
mondalb1@gmail.com
†M. A. Aziz-Alaoui is with Applied Mathematics Laboratory,

University of Le Havre, 25 rue ph. Lebon, B.P. 540, Le Havre,
Cedex, France. E-mail: david@uwaterloo.ca
‡Manuscript received April 19, 2009; revised January 11, 2010.

coupled oscillations were discovered in an extended ver-
sion of a Morris-Lecar model [3] which is derived from the
Hodgkin-Huxley model [4].

There are three stages of memory: sensory, short-term
and long-term [5]. Sensory memory is classified into three
categories: visual, auditory and olfactory. Short-term
memory stores single or chunked items for 30 seconds
without repetition. The reasoning process is an essential
component of short-term memory. The learning process
[6, 7] involves transfer of information from short to long
term memory. Encoding happens while information is
repeatedly processed in the hippocampus. In rapid eye
movement (REM) [8, 9], memories are replayed and rein-
forced in the hippocampus. Permanent memory traces
are stored where sensory inputs first occurred. They
are connected through neuronal networks. Memories are
stored in complex neuronal networks spread over the en-
tire brain surface.

Hodgkin and Huxley [4] developed a model for genera-
tion of action potential in the axon of the squid in terms of
time and voltage-dependent sodium and potassium con-
ductance GNa. is decided by three activation particles m
and one inactivating particle h. The potassium conduc-
tance is governed by four activating particles, n. It was
observed by Fitzhugh and Nagumo [10] independently
that the membrane potential, v(t) and sodium activa-
tion, m(t) evolves on similar time-scales during action-
potentials. On the other hand, sodium inactivation, h(t)
and potassium activation, n(t) change on slower time-
scales. Fitzhugh-Nagumo model does not serve as a de-
scription of dynamic behavior of realistic neurons; e. g.,
rapid firing of the neuron. Hindmarsh and Rose [11] mod-
ified the Fitzhugh-Nagumo model by replacing the linear
function, g(x) with a quadratic function. The model pro-
duces spikes when being stimulated by a positive current.
It is possible to switch between the stable resting state
and stable limit cycle by changing the applied current.

A biological neuron does not fire with a constant fre-
quency, but the firing slows down in due course of time
and eventually terminates. This is called firing frequency
adaptation [12, 13]. This is achieved by adding an extra
variable to the two dimensional system of Hindmarsh-
Rose dynamical equations. This extra variable represents
a slowly varying hyperpolarizing current. Suitable choices
of model parameters lead to biological phenomenon of
bursting and chaotic bursting. While the activity of neu-
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rons alternates between a quiescent state and repetitive
spiking, the activity is called bursting. Generally it is
caused by a slow voltage or calcium dependent process
that can modulate fast spiking activity. The two impor-
tant bifurcations associated with bursting are: bifurca-
tion of a quiescent state that leads to repetitive spiking
and bifurcation of a spiking attractor that leads to quies-
cence [14].

The synchronization analysis of neural networks has
been very important problem in computational neuro-
science. The complex behavior of connections of network
and the coupling mechanism synchronization present sig-
nificant results and very efficient to clinical research such
as epilepsy and Parkinsons disease. The spiking and dif-
ferent types bursting behavior are the characteristics and
nonlinear phenomena of the neurons [15]. Neurons in-
formation coding is generated by firing action potentials
[16]. The bursting behavior of neurons exhibits two types
of states between repetitive firing behavior and short rest-
ing behavior. The inter spike interval (ISI) plays signifi-
cant role in information processing [17]. There are some
papers [18, 19, 20, 21] in which synchronization of neu-
ron network were studied. However, it is not completely
known the types of connections of neurons in a network
and the parameters of the network whether they are iden-
tical or nonidentical in the brain. There are mainly two
types of coupling chemical and electrical synapses. The
chemical synapses can excitatory or inhibitory or both
and electrical synapses are bidirectional coupling [20, 22].
Belykh et al. [22] has presented the chemically coupled
neuron network that affects the state of the networks.
Some types of neural networks, the complete synchronous
behavior of a bursting neuron network depends on the
coupling strength, network structure and number of neu-
rons [22]. There are other types of neuron networks whose
synchronous behavior depends only on coupling strength
and network structure [18, 19, 20]. However, we are only
interested the bursting neuron networks of identical M-L
neurons and H-R neurons in which the coupling strength
is the key feature. An algorithm is proposed [19, 20]
for numerical simulation of synchronization analysis to
present the burst synchronization of network of neurons.
In our work, we have observed that the value of minimal
coupling strength which is needed to obtain the synchro-
nized behavior depends on the network structure and the
number of neurons for a particular set of parameters. We
have also reported the bifurcation analysis of two neu-
ral systems, demonstrating the phase-coupled oscillations
with and without bursting and synchronization of net-
work of M-L and H-R neurons for two types of network
structures.

The paper is organized as follows. In section 2, mod-
ified Morris-Lecar and 3D Hindmarsh-Rose models are
presented. Section 3 is devoted to methodology used
to investigate the rich dynamical repertoire of these two
models. Section 4 gives an account of the simulations per-
formed. Section 5 discusses about both the neural mod-

els why the models are selected for computation. The
last section summarizes salient results obtained during
the course of the study and concludes with a few direc-
tions for future research.

2 Single neuron models

2.1 Spiking bursting M-L model

Morris-Lecar model is a two dimensional representation
of a four dimensional Hodgkin- Huxley system. This re-
duced order description of a single neuron dynamics is
based on the fact that Na+ conductivity is exceptionally
high in comparison to Ca+2 and K+ conductance in the
pyramidal cells. Wang et al. [23] proposed and stud-
ied bursting and synchronization in an extended Morris-
Lecar model which was obtained by adding an extra vari-
able to the two dimensional Morris-Lecar system. This
system is described by the set of coupled nonlinear ordi-
nary differential equations [14, 23].

dV

dt
= 0.5gCa

{
1 + tanh

(
V − V1
V2

)}
(1− V ) +

gKW
(
V K − V

)
+ gL

(
V L − V

)
+ I, (1a),

dW

dt
= ϕ cosh

(
V − V3

2V4

) {
0.5

(
1 + tanh

(
V − V3
V4

))
−W

}
,

(1b),
dI

dt
= −ε (V0 + V ) , (1c),

where V is the membrane potential, W is the fraction of
open potassium channel at any point of time (i.e., W is
the recovery variable: the probability that the potassium
channel is conducting). I is the external current being
input to the neuronal cell. gCa, gK and gL are conductiv-
ities for the population of Calcium, Potassium and Leak
channels. V1 sets the threshold value for the tangent hy-
perbolic function which measures the rate of change of
mean membrane potential due to transport of Calcium
ions and V2 is the steepness parameter for the same func-
tion. V3 and V4 are midpoint potentials at which the
Calcium and Potassium currents are half-activated. ϕ is
a temperature scaling factor. The rate of decay of exter-
nal current I is assumed to be linearly proportional to the
membrane potential. The current I represents relatively
slow subsystem that controls fast spiking behavior. The
small parameter value ε (0 < ε << 1) represents time
scale relation between spiking and modulation behavior.
There are different types of bursting for different param-
eter regimes shown by the above neural system. Different
bursting behavior occurs by the current parameter I, for
different values of ε and the equilibrium potential V K .

2.2 Hindmarsh-Rose model

The three dimensional model proposed by Hindmarsh and
Rose [11, 12] is famous for its bursting behavior. It is
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represented by following set of nonlinear ordinary coupled
differential equations.

du1
dt

= u2 − u31 + au21 − u3 + I, (2a)

du2
dt

= 1− 5u21 − u2, (2b)

du3
dt

= c {d (u1 + 1.6)− u3} , (2c)

where u1 is the membrane potential, u2 represents the
rate of transport of sodium and potassium ions and the
variable u3 measures the rate of transport of other ions.
Sodium and Potassium ions are transported through fast
ion channels and other ions are transported through slow
ion channels. The parameter a governs bursting and spik-
ing behavior. I is the external current which is a control
parameter of the system. c is the parameter which con-
trols the speed of variation of the slow variable u3 i.e., the
efficiency of slow channels in exchanging ions. This pa-
rameter also controls the number of spikes per burst. The
parameter d governs adaptation. It is a fast-slow system.
The first two equations represent the fast subsystem and
the last equation corresponds the slow system.

3 Methodology

Values of system parameters are set in such a way that the
unmodified Morris-Lecar system performs self-sustained
tonic spiking. Since I is a slow variable, parameter
ε (0 < ε << 1) taken to be 0.001. At the following set
of values of the model parameters, the modified Morris-
Lecar system performs busting activity with two bursts
per spike.
gCa = 1.2, V1 = −0.01, V2 = 0.15, gK = 2, V K = −0.7,
gL = 0.5, V L = −0.5, V0 = 0.2, ϕ = 1/3, V3 = 0.1, V4 =
0.05 and ε = 0.001.
At this value of the parameter ε, the time series start-
ing from two nearby initial conditions overlap each other.
The value of this parameter is varied to investigate single
neuron dynamics of the modified Morris-Lecar system.
We show phase plane analysis and synchronization anal-
ysis of network of neurons for the above parameter val-
ues at ε = 0.005. For Hindmarsh-Rose system, the same
methodology is followed. At the following set of values
of the parameters a = 3, c = 0.003, d = 5, I = 2.0, the
single neuron system exhibits bursting activity with two
bursts per spike. The value of the applied current is varied
on both sides of the base value in a specified range. We
also present the phase plane analysis and synchronization
analysis for network of neurons for the above parameter
values with I = 3.25.

We now present the stability analysis and bifurca-
tion analysis [24, 25, 26, 27] of both the neural systems
through the control parameters. The M-L system has
no zero equilibrium point. At the value ε = 0.005, the
nonzero equilibrium point is derived. The equilibrium

point is (V ∗, W ∗, I∗) = (−0.2, 0.0000061, 0.0441). Cor-
responding variational matrix is given by

J1 =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 ,

where a11 = 0.5gCa{−(1 + tanh((V − V1)/V2)) +
(1/V2)(1 − V ) sech2((V − V1)/V2)} − gKW − gL,
a12 = gK(V K−V ), a13 = 1, a21 = 0.5(1/V4)ϕ cosh((V −
V3)/2V4) sech2((V − V3)/V4) + ϕ(1/2V4) sinh((V −
V3)/2V4) {0.5(1 + tanh((V − V3)/V4)) − W},
a22 = −ϕ cosh((V −V3)/2V4), a23 = 0, a31 = −µ, a32 =
0, a33 = 0. The value of the above variational matrix
at the equilibrium point (V ∗, W ∗, I∗) is derived to
find the eigen values of the matrix. The eigen values
are λ1 = 0.7129, λ2 = 0.0070, λ3 = −3.3557. Now,
the stability condition of the nonzero equilibrium point
of the system is derived. The equilibrium point is a
saddle point as λ1, λ2 are positive. For the modified
Morris-Lecar model system (1a) − (1c), we take the
control parameters as V K and ε. For the Hindmarsh-
Rose model system (2a) − (2c), we take the control
parameters as I, d and c [28]. Now, we show the Hopf-
bifurcation analysis of neural system (2a) − (2c) against
the parameter c which controls the speed of variation
of the slow variable u3 at the non zero equilibrium
point (x∗, y∗, z∗) = (−0.9366, −3.3861, 3.3170) for the
following set of parameter values a = 3, d = 5, I = 3.25.
We use the Liu [29] technique to show the bifurcation
analysis for the nonlinear neural system (2a)− (2c). The
variational matrix about the nonzero equilibrium point
is described as follows:

J2 =

 a11 a12 a13
a21 a22 a23
a31 a32 a33


where a11 = −3x∗2 + 6x∗, a12 = 1, a13 = −1, a21 =
−10x∗, a22 = −1, a23 = 0, a31 = 5c, a32 = 0, a33 =
−c.

The characteristic equation of the matrix J2 is given
by

p(λ; c) = λ3 + p2(c)λ2 + p1(c)λ+ p0(c) = 0

where p0(c) = −(a11a22a33 − a12a21a33 − a13a31a22),
p1(c) = −(−a11a33 − a11a22 − a22a33 + a12a21 + a13a31),
p2(c) = −(a11 + a22 + a33).
Now, the above expressions are of the form
p0(c) = −{c((−3x∗2 + 6x∗)− 10x∗ − 5)},
p1(c) = −((−3x∗2 + 6x∗)(c+ 1)− 10x∗ − 6c),
p2(c) = −((−3x∗2 + 6x∗)− c− 1).
Hopf-bifurcation occurs at c = c0 about the non-zero
equilibrium point if the following conditions are satisfied.
The conditions are p0(c = c0) > 0, p1(c = c0) > 0,

A(c = c0) = p1(c = c0)p2(c = c0)− p0(c = c0) = 0,
dA(c = c0)/dc 6= 0.

(3)
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The non-zero equilibrium point is locally asymptotically
stable if p0 > 0, p1 > 0, p2 > 0 and p1p2 − p0 > 0 by
Routh-Hurwitz condition. The control parameter c ap-
pears in the terms a31, a33. We derived the value of c
from the condition A(c = c0) = p1p2 − p0 = 0 (Eq. (3)).
The critical value is c = c0 = 0.08157. At this value,
all conditions of Eq. (3) are satisfied for the bifurcation
analysis which is presented in Fig. 4((i), (ii)). The con-
trol parameter c controls the speed of variation of the
slow variable u3. This parameter controls the difference
between fast and slow subsystem of the H-R model i.e.,
the efficiency of slow channels in exchanging ions. The
bifurcation scenario (Fig. 4(i)) presents the behavior of
solution of evolution of the parameter c from 0 to 0.09
and for fixed value of I = 3.25. It represents reverse pe-
riod double bifurcations as c takes larger values in the
range. The parameter I which controls the dynamics of
the model system has been shown in simulation results.
Now, a network of coupled n neurons is considered for the
structure [19, 20]. The network is supposed for the j-th
M-L neuron as

dxj
dt

= 0.5gCa

{
1 + tanh

(
xj − V1
V2

)}
(1− xj) +

gKyj
(
V K − xi

)
+gL

(
V L − xj

)
+zi+gs

∑
k

pjk(xk − xj),

(4a)
dyj
dt

= ϕcosh

(
xj − V3

2V4

)
{

0.5

(
1 + tanh

(
xj − V3
V4

))
− yj

}
, (4b)

dzj
dt

= −ε (V0 + xj) . (4b)

The above system can be written as

Ẏj = G(Yj) + gs
∑
k

pjk(Yk − Yj)J, (5)

where Yj = (xj , yj , zj) represents the state variables
of the j-th neuron of the network system. G(Yj) =
(g1(Yj), g2(Yj), g3(Yj)) are the right hand side nonlin-
ear functions of the above system (4a) − (4c). gs is the
coupling strength. J is the 3 × 3 matrix represents that
the neurons in the network are connected with the first
state variable. The neurons in the network are coupled
through the membrane potential of the neural system,

where J =

 1 0 0
0 0 0
0 0 0

 .

The n × n matrix pjk represents that the j-th neuron
is connected with the k-th neuron when j 6= k. The
connection is represented by the elements of pjk. The
condition is pjk = pkj = 1, if the two neurons are con-
nected, pjk = pkj = 0, if not connected. The diagonals of
the matrix pjk are represented by the following condition

pjj = −
n∑

j=1, j 6=k

pjk, j = 1, 2, ..., n.

The most important condition of the synchronized behav-
ior is when state variables of the network system follows
the relationship Y1(t) = Y2(t) = ... = Yn(t) = Y (t) as
time tends to infinity. Then the neuron network reaches
the synchronization state. The synchronization error sys-
tem is defined as ej = Yj+1 − Yj , for j = 1, 2, ..., n,
where ej = (ej1, ej2, ej3). If all the neurons in the net-
work are synchronized, it is shown that the error ej tends
to zero as time goes to infinity. There are many types
of symmetrical network structure such as chain network,
ring type network, global network and star network struc-
ture etc. In this paper, we are interested in the chain
and global type network structure [19, 20, 22]. For an
example, it is provided that three neurons are connected
through chain and global network. The coupling matrices
pjk for different networks are different. Now, the coupling
matrices pjk for the connection in the network of n = 3

neurons are written as pchain =

 −1 1 0
1 −2 1
0 1 −1


and pglobal =

 −n+ 1 1 1
1 −n+ 1 1
1 1 −n+ 1

 .

The coupling strengths gs are changed to show the syn-
chronization states for the minimal coupling strength for
a particular parameter set of both the neural models. The
network of model neurons is chosen as identical. The syn-
chronized behavior depends on the coupling strengths and
the network structure. The simulation results of the syn-
chronized behavior of the network system are presented
in Section 4.

4 Simulations

Phase space analysis (cf. Figs. 1 and 3) is supplemented
with bifurcation diagrams to figure out possibilities of dy-
namical transitions in the neural system as a system pa-
rameter is varied. The complexity of the system presents
a challenging suit of new possibilities which are presented
in Figs. 2 and 4. Disjoint branches of bifurcation phe-
nomena reveal that the parameter values supporting dif-
ferent dynamical transitions are also disjoint.
Two model systems were extensively simulated to scan
for phase-coupled oscillations [2] in these single neuron
systems. A distinguishing feature of these nonlinear os-
cillations is that phase information is preserved while the
memories are created and stored. The membrane po-
tential is the relevant variable which is plotted against
time. As ε is increased to 0.002, number of bursts per
unit spike is reduced and two signals still overlap. Phase-
coupled oscillations appear at ε = 0.003. When the value
of the parameter ε is increased further, some of the spikes
belonging to different signals overlap. At ε = 0.006, two
signals overlap each other. At ε = 0.007, number of spikes
per burst is reduced while the two signals completely over-
lap each other. As ε is increased further, phase-coupled
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(a)

(b)

(c)

Figure 1: Phase plane analysis of the spiking-bursting
neural model system (1a) − (1c). (a) 3D phase plot, (b)
phase plot of V vs W and (c) V vs I.

oscillations reappear with less number of bursts per unit
spike. Phase-coupled oscillations in the modified Morris-
Lecar system are shown in Fig. 5.
As the applied current is decreased to the Hindmarsh-
Rose neuron, signals for two nearby initial conditions
separate each other. At I = 1.7, true phase-coupled os-
cillations show up. When the value of the applied cur-
rent is increased, number of bursts per spike is increased
with disappearance of phase-coupled oscillations. Phase-
coupled oscillations reappear at I = 2.8. As the value of
the applied current is increased further, number of bursts
per unit spike increases for I = 3.1. Phase-differences be-
tween bursts belonging to two signals are not maintained,
thus, the phase-coupling is lost. At I = 3.7, chaotic burst-
ing manifests itself. Phase-coupled oscillations reappear
at I = 4.1 with increased number of bursts per spike. The

(a)

(b)

Figure 2: Bifurcation analysis of the spiking-bursting neu-
ral model system (1a)− (1c). (a) Bifurcation plot of V K

vs maxV and (b) ε vs maxV .

bursting behavior is altogether lost as the applied current
is increased further. At I = 4.3, tonic spiking is observed.
Phase-coupled oscillations without busting are observed
in the interval (4.4, 4.6). Phase-coupled oscillations are
shown in Fig. 6.
We are interested in synchronization behavior of network
of identical neurons. For the chain network of M-L neu-
rons, the coupling strengths for complete synchronous be-
havior is gs = 2.2 (Fig. 7) and for global networks the
minimal coupling strength is gs = 2.3 (Fig. 9) which are
close to each other. The phases of synchronization states
are presented in Figs. 8 and 10 which show the targeted
synchronization from transition state desynchronization
to complete synchronization. The coupling strengths gs
are changed to show the synchronization states for the
minimal coupling strength for a particular parameter set
of both the identical neural models. For the H-R model
only global network scheme is presented to show the syn-
chronous states. As both the network types (chain and
global) the complete synchronous states obtain at synap-
tic coupling strengths close to 0.9 for network of three
neurons. The transition states for complete synchronous
behavior for different coupling strengths are presented in
Fig. 11. The phase plane behavior (Fig. 12) confirms the
existence of complete synchronous behavior.
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(a)

(b)

(c)

Figure 3: Phase plane analysis of the spiking-bursting
neural model system (2a) − (2c). (a) 3D phase plot, (b)
phase plot of u1 vs u2 and (c) u1 vs u3.

5 Discussion

Bursting is indispensable for information processing and
signal transduction. It is also important for intercellular
ionic signaling. It consists of periodic clustering of elec-
trical impulses. It occurs in several nerve and endocrine
cells; e. g., thalamic neurons, hypothalamic neurons, cor-
tical neurons and the spinal cord. It encodes two time
scales. It can amplify neurotransmitter secretion and be
helpful in relieving presynaptic inhibition. A neuron is
said to be fast-slow burster if the bursting behavior can
be expressed as a singularly perturbed model system of
the form ẋ = f(x, µ) (for Fast Spiking) and ẏ = µg(x, y)
(for Slow Modulation), where µ(<< 1) represents the ra-
tio of time scale between the two behaviors spiking and
modulation. The vector x ∈ Rm represents relatively fast
processes associated with the action potential generation

(a)

(b)

(c)

(d)

Figure 4: Bifurcation analysis of the spiking-bursting neu-
ral model system (2a) − (2c). (a) Bifurcation diagrams
of c vs max u1, (b) parameter c vs p0, p1, p2, p1p2 − p0,
(c) I vs max u1 with d = 4 and (d) d vs max u1 with
I = 3.32.

and y ∈ Rk means slow processes that modulate x. Both
the fast and slow systems constitute the method of dis-
section of neuronal bursting [30]. While it is a common
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(a)

(b)

Figure 5: Phase-coupled oscillations in Modified Morris-
Lecar Single Neuron system at ε = 0.003 and 0.01 respec-
tively. Red and blue signals are generated for two nearby
initial conditions.

neuronal activity, two dimensional models cannot support
such a behavior. This is the reason why we consider two
three dimensional models with different neurological at-
tributes. In the first, the applied current was taken to
be a slow dynamical variable with linear feedback. The
other model explored was a Hindmarsh-Rose neuron with
an extra variable, which represents bursting. We have re-
ported phase-coupled oscillations with tonic bursting in
both modified Morris-Lecar and Hindmarsh-Rose single
neurons [31].

These phase-coupled oscillations provide an energy effi-
cient way of information processing in the central nervous
system (CNS) [2]. Authors proposed a working memory
(WM) model which propounded that PCOs are carriers
of information to the Central Executive. These nonlinear
oscillations represent stimulus triggered response of dif-
ferent neurotransmitters. The genesis of phase-coupled
oscillations can be understood in terms of a single neuro-
transmitter as well. The functioning of central executive
results from interactions of neural networks in different re-
gions of the brain. Populations of Hillar cells encode the
identity of the stimulus. The cellular basis of hippocam-
pus dependent memory is represented by stimulus-evoked
up-states in the dentate gyrus. The working memory for-
mation in the dentate gyrus is regulated by semilunar
granule cells (SCGs) [32].

(a)

(b)

(c)

(d)

Figure 6: Phase-coupled oscillations in Hindmarsh-Rose
Single Neuron system at I = 1.7, 2.8, 4.4 and 4.6 respec-
tively. Red and blue signals are generated for two nearby
initial conditions.

Now, the biophysical features and mathematical com-
putational efficiencies of the two above mentioned spiking
and bursting neural models i.e., M-L and H-R models are
discussed for synchronized behavior. The applications of
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Figure 7: Time series analysis for synchronization behav-
ior of chain network of three M-L neuron system at the
coupling strengths gs = 0.1, 0.3, 2.1 and 2.2 respectively.
Greeen, Red and blue signals are generated for three cou-
pled identical neurons.

the two models are investigated and compared by using
mathematical simulation results and graphical represen-
tations. Many research papers discovered that spike tim-
ing pulse-coupled neural networks is an important com-
ponent for information processing system in the neurons
[31].

In the neural network system, there are mainly two
important questions. One is what type of neural model
is considered for the spiking behavior of the neuron
and another is how they are connected with each other.
The mathematical neural models (M-L and H-R model)

present neuro-computational behavior of real neurons and
have significant contribution in information processing
and temporal coding. Two models have many same type
features which are efficient in real computational field.
The neurons are excitable in nature. When they are
stimulated by using dc current they can exhibit differ-
ent spiking and bursting behavior. M-L and H-R neuron
models present tonic spiking and tonic bursting behav-
ior. They are both class I and class II excitable. They
have spike latency and sub threshold oscillations for dif-
ferent external stimulus values. They are also integrators.
The different spiking behavior is observed in M-L neu-
rons. However, it exhibits tonic bursting behavior when
the extra equation is added i.e., the applied stimulus is
considered as variable. In real neurons, the tonic spiking
behavior is observed in low threshold spiking neurons,
regular spiking excitatory neurons [31, 33, 34, 35] etc.
For example cat neocortex chattering neurons [36] shows
tonic bursting patterns. Some types of neurons such as
the neocortical regular spiking excitatory neurons can ex-
hibit low frequency spiking behavior (range 2-200 Hz) for
weak stimulus which is called class I excitable neurons
[14, 15, 31]. When the neurons present regular spiking
behavior only for large frequency input stimulus, they
are called class II excitable neurons. Depending on the
appropriate choices of the functions and parameters the
two above mentioned neural models produce above neuro
computational features which are happened in real neu-
rons and since we are concerned with the simulations of
the behavior of action potentials. In spite of these above
properties of the two neurons both the models have other
similar and non similar properties [14, 31] which are not
included here.
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6 Conclusion

Unlike bi-stability (two different types of dynamical be-
haviors exist at the same set of parameter values for
two different sets of initial conditions), the phase-coupled
oscillations are manifested by maintenance of a phase-
difference between two signals representing same kind of
dynamical behavior. These phase-coupled oscillations [2]
were first detected in a Morris-Lecar Neural system which
described the interaction of excitatory neuronal cells with
local interneurons. The existence of phase-coupled oscil-
lations with bursting behavior of single neurons suggests
that these oscillations play a fundamental role in how in-
formation is transported and processed in the brain. As
bursts are crucial to rectify the synaptic transmission fail-
ure and reduction of neuronal noise, they are used in selec-
tive communication between neurons [31]. The existence
of phase- coupled oscillations in single neuron systems
studied in this paper indicates that the busting neurons
play a vital role in communication between networks of
cortical neurons. A further research activity would be to
study synchronization phenomena between phase-coupled
oscillations generated in response to a stimulus in neural
networks in different brain regions at the same time. This
will help to unearth functional coupling of different brain
regions. Many poorly understood aspects of brain dy-
namics needs to be explored in terms of these new kinds
of nonlinear oscillations. The networks of the computa-
tionally efficient spiking neurons interconnected through
different network structure which are biologically relevant
and exposed to how the information is processed in the
brain. According to the different characteristics of the
computational neuro physiology of brain, the complete
patterns and total types of network structures are not
explored. Therefore, a realistic and biologically efficient
network of spiking neurons can be explored for the infor-
mation processing system.
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Figure 8: Phase-plane analysis of the chain network of
three identical M-L neural system. First three diagrams
are the phase plane scenarios for gs = 0.1 and last three
for gs = 2.2 respectively.
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Figure 9: Time series analysis for synchronization be-
havior of global network of three M-L neuron system at
the coupling strengths gs = 0.1, 0.7 and 2.3 respectively.
Greeen, Red and blue signals are generated for three cou-
pled identical neurons.
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Figure 10: Phase-plane analysis of the global network of
three identical M-L neural system. First three diagrams
are the phase plane scenarios for gs = 0.1 and last three
for gs = 2.3 respectively.
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Figure 11: Time series analysis for synchronization be-
havior of global network of three H-R neuron system at
the coupling strengths gs = 0.1, 0.6 and 0.9 respectively.
Greeen, Red and blue signals are generated for three cou-
pled identical neurons.
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Figure 12: Phase-plane analysis of the global network of
three identical H-R neural system. First three diagrams
are the phase plane scenarios for gs = 0.1 and last three
for gs = 0.9 respectively.


