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Synchronization which relates to the system’s stability is important to many engineer-
ing and neural applications. In this paper, an attempt has been made to implement re-
sponse synchronization using coupling mechanism for a class of nonlinear neural systems.
We propose an OPCL (open-plus-closed-loop) coupling method to investigate the synchro-
nization state of driver-response neural systems, and to understand how the behavior of
these coupled systems depend on their inner dynamics. We have investigated a general
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method of coupling for generalized synchronization (GS) in 3D modified spiking and burst-
ing Morris-Lecar (M-L) neural models. We have also presented the synchronized behavior
of a network of four bursting Hindmarsh-Rose (H-R) neural oscillators using a bidirectional
coupling mechanism. We can extend the coupling scheme to a network of N neural oscil-
lators to reach the desired synchronous state. To make the investigations more promising,

we consider another coupling method to a network of H-R oscillators using bidirectional
ring type connections and present the effectiveness of the coupling scheme.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Synchronization is a natural phenomenon in the real world system and it is experimented in research laboratory. Like
different types of physical, chemical and biological systems; neural systems can synchronize and show collective behavior.
Partial synchronous behavior in cortical region of brain areas may generate different brain waves such as alpha, beta, gamma
and many more in EEG oscillations. Synchronization in neurons may cause the neurophysiological activity such as epilepsy.
The concept of synchronization [1,2] in dynamical systems describes behavior of oscillatory systems, artificial systems and
many spatial patterns of real world systems. We have also seen these types of phenomena in complex living system [3,4].
Control of synchronization in dynamical system particularly for the complex dynamics of brain control, both synchroniza-
tion and desynchronization [5-7] are important. Many people have worked on the theory of identical oscillators to reduce
the mathematical complexity for understanding the synchronization. For non-identical oscillators, synchronization has been
established with the help of a generalized method to explain the relationship between the driver and response system. An
alternative method is used to produce generalized synchronization (GS) state as a functional relationship between driver-
response system. In our work, we have applied an appropriate coupling scheme using OPCL [8,9] method to ensure the
generalized synchronization state.
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The theory of synchronization using linear coupling for various coupling strength shows and controls coherent behav-
iors like complete synchronization (CS) [1,10,11], antiphase synchronization (AS) [12,13], phase synchronization (PS) [14,15],
generalized synchronization (GS) [8,16-18], lag synchronization (LS) [19,20], time scale synchronization [21] and so on. To
realize CS, the goal dynamics is defined as the product of a constant factor with the driver system i.e., g(t) = Bx(t). However,
the constant, 8 is considered as the square matrix in the GS regime. To achieve the GS state, the functional relationship,
y(t) = f(x(t)), between the state variables of the driver (x € R") and the response system (y € R") was introduced. It can
be explained as a state when the response becomes a map of the driver dynamics and the system is y(t) = Ax(t), where
A is a transformation matrix. For realizing GS, it is difficult to identify the mathematical structure of the transformation
matrix. The GS mechanism ensures more flexibility. Therefore, it can be implemented to realize synchronization in neural
computation.

Now, we strive to realize GS between two non-identical coupled neural systems with a reverse engineering method.
Neurons are basic function units in nervous system. For signal transformation in neurons, the information is transmitted,
encoded and decoded through firing activity of neurons [22]. The electro-physiological research on the Barnacle muscle
fiber with applied current [23] show that neuron model could produce complex dynamical behavior [24,25]. Larter et al.
[26] proposed a coupled ODE lattice model for the CA3 region of the Hippocampus for the simulation of epileptic seizure.
We have considered a 3D modified M-L model system developed by Larter et al. [26]. The model was derived by considering
the interactions between the populations of excitatory neurons and inhibitory interneurons and described by the system of
nonlinear differential equations [26,27]. Another form of a fast-slow M-L system with bursting phenomenon was proposed
by Izhikevich [28]. We consider two non-identical 3D coupled bursting M-L model systems [28,29] to show the GS state for
different types of transformation matrices.

A bidirectional coupling function is often found in the neural system while neurons are connected through gap junctions
or inhibitory/excitatory synaptic coupling [30-32]. Now, we propose a controller based bidirectional coupling mechanism
to show the collective synchronous behavior in a network of four identical H-R neural oscillators [33-37]. We couple the
network system by the nonlinear open loop controller (NOLC) [38] coupling method to show the desired complete (CS) and
anti-synchronization (AS) behavior. Using the Lyapunov function (LF) stabilty condition, we show the stability of synchronous
behavior for this type of bidirectional coupling [38,39]. The difference between the construction of the error systems in the
OPCL and NOLC coupling scheme is defined as follows: In the OPCL coupling scheme, the goal dynamics g(t) is the product
of linear combination of the system variables of the driver with the transformation matrices whose elements are constants,
time dependent state variables of the driver system and the system variables of the H-R dynamical system. However, in the
NOLC coupling scheme, the error systems include the linear combinations of the system variables with non-zero constants
coefficients. The ratio of the constants are considered as scaling factor which predicts the nature of the synchronization
whether it is in CS or AS regimes and reflects the behavior of oscillators size with each other in the network system.

To make our investigations more promising, convincing and sufficient, comparable coupling schemes using bidirectional
ring type connections [40-42] have been considered. The desired synchronization has been achieved through Lyapunov
stability theory. Our bidirectional coupling scheme presents both CS and AS behavior at appropriate scaling factors. The
oscillators can be amplified or attenuated. The method can be extended for a network of N neurons to produce the desired
synchronous behavior.

The paper is organized as follows: Section 2 presents the formulation of an OPCL coupling scheme for driver-response
system. In Section 3, we introduce the two non-identical 3D modified version of coupled M-L model and coupled bursting
M-L model. Then, we describe the coupling method for various types of transformation matrices and produce the GS states
with the help of numerical simulations. In Section 4, we present a controller based bidirectional coupling mechanism for a
network of four coupled identical H-R neural system to show the collective synchronous behavior. Finally, conclusions are
presented in Section 5.

2. Coupling mechanism for generalized synchronization

We first describe the general OPCL [8,9,43] coupling method for a GS state using drive-response unidirectional coupling
method in a 3D neural system. We take a dynamical system as a driver

x(t) =Ux(t)); x(t) eR", (M
and the response system is

yO)=vy@): y()eR" (2)

In the response coupling method, the response oscillator is considered by a desired goal dynamics, g(t) = ax(t), where «o
is a multiplicative factor [44]. Here, we describe « as a transformation matrix of order (n x n) by taking the elements (c;;)
of the matrix arbitrarily. The elements may contain constants or a function of time or state variables of the driver system
and their combinations or state variables of a different dynamical system. We define goal state g(t) = ax(t) in general for a
3D model system as follows:
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g1 an o o3\ (X 2 O
L) =laan o axn]lx]=1>Xowx]. (3)
83 31 032 (33/ \X3 Do 03iX;

Therefore, the synchronization scheme is as follows:

X(£) = U(x(D)), )
y(©) =V () + D), &),
where D(y(t), g(t)) is the OPCL coupling term,
D(y(t). g(t)) = &(t) =V (g(t)) + (H - J(g(t)) (y(t) — &(t)). (5)

J(g(t)) is the Jacobian of the function V(g(t)) and H is a (n x n) constant matrix . The error function e(t) = y(t) — g(t) is
defined between the trajectories of response system and the goal dynamics. Expanding V(y) =V (g+ e) in a Taylor’s series
expansion we have,

V(g
g

and we approximate the series at the first order term. With the help of Egs. (1) and (4)-(6), the error dynamics is given
as é = He. If all the eigenvalues of the H matrix have negative real parts, the error dynamics follow asymptotically stable
synchronization (e — Oast — o), i.e., a targeted GS. To construct the H-matrix, we consider the following procedure: (i) if
the element of the jacobian matrix, Jj;, is a constant (i.e., the element does not contain any state variable) we refer it as the
ijth element of the H-matrix, (ii) otherwise, if J; contains a state variable, then it is replaced by a constant p; (r=1,2,3,...)
in the H matrix, (iii) the values of the parameters p; are considered as to satisfy the Routh-Hurwitz (R-H) stability criterion.
As a consequence, the choice of the o-matrix does not affect the stability of synchronization. We can change the elements
of the transformation matrix without disturbing the synchronization criterion.

In the next section, we describe how to design the coupling mechanism using different types of «-matrices and to
implement the desired GS through numerical examples of coupled non-identical neural systems.

Vy) =V + e+, (6)

3. Numerical examples to show synchronous behavior

In this section, we present various numerical examples to show synchronous behavior. We deal with non-identical cou-
pled modified M-L models, by proposing the coupling to realize the GS state. We considered it for different cases : firstly,
in the case for which the elements of transformation matrix as constants. Secondly, the case in which the system (8) plays
the role of response system to keep the Hurwitz matrix similar. Then, we use the case for which we take the same systems
(7)-(8) however, use the elements of o-matrix as the state variables of the driver system. Finally, we consider the case in
which the elements of o-matrix are the state variables of H-R oscillators. Then, we focus on the same question but for
two coupled non-identical 3D spiking bursting M-L neural model systems with fast-slow variables to produce synchronous
behavior.

3.1. Generalized synchronization for non-identical coupled modified M-L neural model

First, we consider a 3D modified M-L neural system [26,27] and select a transformation matrix that ensures a desired goal
dynamics and then propose the coupling to realize the GS state. The variables x; and x3 are mean membrane potentials for
excitatory and inhibitory neurons respectively. The variable x, represents fraction of open potassium channels at any point
of time. The detailed meanings of the parameter values and other details are described in [26,27]. We take several types of
transformation matrices for two non-identical coupled neural systems to show GS state. The driver system x = U(x) is

. [—0.5gcq{1 + tanh((x1 — V1)/V2)}(x1 = 1) — gixa (%1 = VF)
“ ~g1 (%1 = V') + 1 — ctip3{1 + tanh((x3 — V7)/V6) }] 7)
i (¢ cosh((x1 —V3)/2Va){0.5(1 + tanh((x; ~V3)/Va)) = x:}] |

[bCI + baexcxl{] + tanh(()q - VS)/VG)}]
the response system y =V (y) is

y [-0.58c.{1 + tanh((y1 —V1)/V2)}(y1 — 1) — gky2(y1 — VK)
yl g1 (1 = VY +1— ajppys{1 + tanh((y3 — V) /Ve)}] (8)
J'/i [¢ cosh((y1 —V5)/2V4){0.5(1 + tanh((y1 —V3)/Va)) —y2}] |

[b'C'T+ b atexcy1{1 + tanh((y1 — V5)/V6)}]

We consider the parameters of driver and response systems as [26] gcq=1.1,V; = —-0.01,V, =0.15,g¢ =2,VK =
~0.7,8, =05Vl =-051=03, 054 =1, Qexc = 1.V; =0.0,Vg = 0.6, = 0.7, V3 = 0.0, V4, = 0.3, b = 0.1, c = 0.165, Vs =
0.gf =1.0,¢' =0.4,b" =0.15, ¢’ = 0.238. The Jacobian of system (8) is
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apn G2 413
JO)=|an ax»n a3, (9)

aszy a3z  0ds3

an = —0.58c{(1 + tanh((y1 — V1)/V2)) + (1/V2) (y1 — 1) sech®((y1 — V1) /Va)} — &ky2 — &1
app = —gk (1 — V), a13 = —mn{(1 + tanh((ys — V7) /Ve)) + (1/Ve)ys sech?((y3 — V7)/Ve)}.
az1 = 0.5(1/V4)¢’ cosh((y1 — V3)/2Vs) sech?®((y1 — V3)/Va)

+¢'(1/2Vy) sinh((y1 — V3)/2V4){0.5(1 + tanh((y; — V3)/V4)) — y2},
ay = —¢' cosh((y1 — V3)/2V4), a3 =0,
az = botexc(1 +tanh((y; — V5)/V6)) +b/aexc(1/v6)y1 SeChz((.Vl - V5)/Ves),
as; = 0, asz3 = 0.

We present the H-matrix from the Jacobian as
b1 P2 P3
H=[|ps ps 0] (10)
Ds 0 0

For numerical simulations, we choose the parameter values as p; = -2,p, =0,p3 =—-1,p4 =0, ps = -1, pg = 1 so that the
H-matrix satisfies R-H criterion. To achieve stable synchronization, we construct the « transformation matrix with an arbi-
trary choice of elements.

3.1.1 Case I
First, we choose the elements of transformation matrix as constants,
2 0 -1
a=|-2 0 0]. (11)
2 -2 1

Now, the goal dynamics becomes

21 2 0 -1 X1 2X1 — X3
l=(-2 0 0])([x]= —2% , (12)
23 2 -2 1 X3 2X1 — 2Xy + X3

the expression for the coupling term becomes,

—2% —g1(g1 — V) + I — g3 {1 + tanh((g3 — V7)/Ve)}]
2% 4% [¢ cosh((g1 —V3)/2V4){0.5(1 + tanh((g; — V3)/V4)) — g2}
z 3 [bd"‘baexcgl{l +tanh((gl _VS)/VG)}]

pP1—an  p2—012 PpP3—0ap3 Y1 &1
+|Ppa—axn ps—axn 0 21-121] (13)
Pe — A31 0 0 3 3
where

an = —0.5gc{(1+tanh((g1 —V1)/V2)) + (1/V2) (g1 — 1) sech*((g1 — V1) /V2)} — 8k&2 — &1,
ary = —gk(g1 — V"), a13 = i {(1 + tanh((g3 — V7)/V6)) + (1/Vs)g3 sech?((gs — V7)/Ve)},
az1 = 0.5(1/V4)¢' cosh((g1 — V3)/2Vs) sech?((g1 — V3)/Va)
+¢'(1/2Vy) sinh((g1 — V3)/2V4){0.5(1 + tanh((g1 — V3)/V4)) — &2},
ay = —¢' cosh((g1 —V3)/2Vy), a3 =0,
a3y = b'texc (1 + tanh((gq — Vs)/Vs)) + b'texc (1/V) g1 sech® (g1 — V5) /Ve).
as; = 0,a33 =0. (14)

2t — % [—0.5gco{1 + tanh((g1 — V1)/V2) }(g1 — 1) — gk&2(g1 — V)
1 3
D =

2%

Thus, by adding the coupling term to the RHS of the response system Eq. (8) following the synchronization scheme
(4)-(5), it produces the needed response dynamics. It converges to the goal dynamics after the transients die out. The
results are graphically presented in Fig. 1. To show the desired GS state, the time series of response variable (y;) and (g;(t))
are presented in Fig. 1a. The functional relation between the driver and the response system are described in terms of goal
dynamics, g1 = ) "j_q 5.3 ®1;X; = 2X1 — X3. This shows 1:1 correlation to ensure the GS (Fig. 1b). The response variables (y;)
and (y3) follow similar type GS relations with goal dynamics which has been presented in Fig. 1c and d. The time series of



RK. Upadhyay et al./Applied Mathematical Modelling 44 (2017) 557-575 561

0.6 0.6 1
0.4 0.4 0.8
0.2 0.2 0.6
E 0 . 0 . 0.4
ob = =
~ 5 oh
> 0.2 -0.2] 0.2
-0.4, 0.4 0
-0/ -0 02!
0. -0. 0.4
250 300 350 400 450 500 08 06 04 02 0 02 04 06 04 02 0 02 04 06 08 1
t Y, Y,
-0.5, 0.6
-0/
0.4
-0.7]
02,
08!
0.9 — 0

g}(!)

-0.2]

0.4,

06!

Fig. 1. GS in non-identical coupled modified M-L neural system defined by a constant matrix: (a) time series of y; and g;; (b) g; against y;; (c) g, against
y2; (d) g3 against y3 confirm GS relation. (e) time series of x; and y.

the response (y;) with the driver (x;) show identical synchronization but it may have PS. In reality, to establish a GS state,
we follow a simple technique that satisfy 1:1 correlation between the response and the transformed driver states.

3.1.2. Case Il
Next, we consider system (8) as the response system and hence the Hurwitz matrix remains same. We use systems
(7) and (8) and change the elements of the «-transformation matrix as periodic functions

2sin(0.5t) 0 0
o= 0 0.5cos(-0.8t) 0. (15)
0 0 1

Now, the goal dynamics becomes

21 2sin(0.5t) 0 0\ /x1
2] = 0 0.5cos(-0.8t) 0] x»
g3 0 0 1/ \x3

2sin(0.5t)x;
= | 0.5cos(~0.8t)x; |, (16)
X3

and the expression of the coupler becomes

25in(0.5t)x; + cos(0.5t)x4
D = [ 0.5cos(—0.8t)x; + 0.4sin(—0.8t)x,
X3

[—0.5gca{1 + tanh((g1 —V1)/V2)} (g1 — 1) — gk&2 (g1 — V¥)

—g1(g1 — V) + 1 — atinpg3{1 + tanh((g3 — V7) V) }]

[¢ cosh((gy — V3)/2V4){0.5(1 + tanh((g; — V3)/V4)) — g2}]
[bd + baexcgl {1 + tanh((gl - VS)/VS)}]

D1—aun  p2—0i2 PpP3—0a13 Y1 g1
+|ps—a ps—axn 0 l1-181] (17)
Pe — 031 0 0 Y3 g3

where the expressions aq;, ajo, a3, dp1, dpp and as; are same as described in Eq. (14). Arbitrarily, we have taken periodic
functions in Eq. (15) without disturbing the stability of synchronization. Fig. 2a shows the time series of response vari-
able (yq) and the goal dynamics (g;). Figs. 2b-d indicates GS. The time series of system variables x; and y; are plotted in
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Fig. 2. GS in non-identical coupled modified M-L neural system defined by «-matrix with periodic functions: (a) time series of y; and g; (b) g; against
response variable y;; (c) g against y,; (d) g3 against y3 confirm GS relation. (e) time series of x; and y;.

Fig. 2e appears to be in PS state. However, the o-matrix has the time dependent functions, it does not affect the stability of
synchronization as mentioned in Section 2.

3.1.3. Case III
Next, we take the same systems (7) and (8) but use the elements of «-matrix as the state variables of the driver system,

X1 X2 0
d=1X2 X 0]. (18)
0o 0 1

Choosing this type of «-matrix which has the high degree of nonlinearity in goal state. Now, the goal dynamics be-
comes

g1 X1 X 0\ /x; X12 + x2°
SHl=1x%x X1 0 X2 | = 2X1X2 s (19)
23 0 0 1 X3 X3

and the coupling term becomes

[-0.58c.{1 +tanh((g1 —V1)/V2)} (g1 — 1) — gk&2(g1 — V¥)
—g(g1 — V) + 1 — ainpg3{1 + tanh((g3 — V7)/V)}]
[¢ cosh((gy — V3)/2V4){0.5(1 + tanh((g; — V5)/V4)) — g2}]

2X1X1 + 2X2)Z2
D= |2(x1x2 +x2%1) | —

s [bel + botexegr {1 + tanh((g1 — V) /Vi)}]
P1—0an  p2—012 PpP3—0ap3 1 81
+\pa—an ps—axn 0 nl-181]1 (20)
Pe — 031 0 0 Y3 g3

where the expressions ayq, @12, ai3, a1, 22 and az; are same as described in Eq. (14). Numerical simulation results are
plotted in Fig. 3. The time series of the response variable y; and g; is plotted in Fig. 3a. The time series plot of x; and y;
given in Fig. 3e apparently shows that there phases are same. This occurs for nonlinearity terms in the o-matrix. However,
the plots y; vs g1, ¥ vs g5 and y3 vs gz are presented in Fig. 3b-d and ensures GS between driver and response systems.

3.14. Case IV
Now, we consider the idea of GS process using the elements of «-matrix as the state variables of Hindmarsh-Rose (H-R)
neural oscillatory system [34,35,37], while the driver and response systems are non-identical as given in (7) and (8). We
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Fig. 3. GS in non-identical coupled modified M-L neural system defined by a-matrix with elements of driver variables: (a) time series of y; and g; (b) g;
against response variable y; (c) g, against y,; (d) g3 against y; show CS. (e) time series of x; and y;.

write the dynamics of the H-R model as

up =ty —ud +au? —us +1,
UZ=175U%7UZ, (21)
uz = cd(u; + 1.6) — cus,

where the value of the parameters are taken as a = 3,1 =4.1,c = 0.003,d = 5. The a-matrix is in the form

uq 15 0
o=1\U U 0], (22)
0 0 1
the goal dynamics is
&1 ur  uz 0\ /x UrXy + UaX2
Sl=|U uq 0 Xo | = | UxX1 +U1Xy2 . (23)
23 0 0 1 X3 X3

The coupler becomes

[—0.58cq{1 + tanh((gy — V4)/V2)}(g1 — 1) — gk&2(g1 — V¥)
—gu(g1 —VH) + 1 — atinpg3{1 + tanh((g3 — V7)/Vp)}]
[¢ cosh((gy — V3)/2V4){0.5(1 + tanh((g; — V3)/V4)) — g2}]

U1X1 + UrXq + UaXy + UsX)
D = | UyX1 + UpXy + U1Xy + U1Xy

X3 [bcl + botexcg1{1 + tanh((g1 — V5)/Vs)}]
DP1—0aun  Pp2—0i2 PpP3—0as3 Y1 81
+\pa—axn ps—axn 0 l-1811 (24)
Pe — A31 0 0 V3 83

where the expressions aqj, di2, d13, da1, Ay and as; are same as described in Eq. (14). The OPCL coupling method appro-
priately works to realize the GS between the driver and response systems as described in Fig. 4. It is not only restricted to
modified M-L system and H-R system but it also works for other combinations of driver-response systems under suitable
conditions to produce desired GS state without disturbing stability of synchronization. Similarly, as the previous cases the
GS relation is established shown in Fig. 4a-d.

3.2. Generalized synchronization for non-identical coupled spiking bursting M-L neural model

Now, we investigate two coupled non-identical 3D spiking bursting coupled M-L neural model systems with fast-slow
variables [28,29] to produce synchronous behavior. The first two variables x; and x, represent fast process associated with
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Fig. 4. GS in non-identical coupled modified M-L neural system defined by a-matrix with elements consisting of state variables of H-R system: (a) time
series of y; and g;; (b) g1 against response variable y;; (c) g, against y,; (d) g5 against y; show GS; (e) time series of x; and y; show no correlation.

spiking behavior and the third variable x5 describes relatively slow process that modulates fast spiking. The small parameter
0 < & « 1 represents the ratio of time scale between spiking and modulation. Different types of bursting are usually
exhibited by the activity of slow parameter x3. The value of equilibrium potentials of the ion channel V@ has been taken as
one [28,29,45]. The neural model system is said (m + k) dimensional, where the fast subsystem is m-dimensional and the
slow subsystem is k-dimensional i.e., it is a (2 + 1) dimensional neural system. The driver x = U(x) is

X [0.5gca{1 + tanh((x; — V1) /V2)}(1 — X1) + kX (VK — x1) + gL (VE — x1) +x3]
X )= [¢ cosh((x; — V3)/2V4){0.5(1 + tanh((x; — V3)/V4)) — X3}] . (25)
X3 —-e(Vo+x1)
the response system is y =V (y) is
2 [0.58c{1 + tanh((y1 — Vi) V2)}(1 = y1) + &y (VK = y1) + 8. (VE = y1) +y3]
V2| = [¢ cosh((y1 —V5)/2V4){0.5(1 + tanh((y1 — V3)/Va)) — y2}] : (26)
3 —&' Vo +y1)

We consider the parameters of driver and response system as [28] gcg = 1.2,V = —0.01,V;, =0.15,gx =2,VK = -0.7, g, =
0.5,V = -0.5,¢ =1/3,V3=0.1,V, = 0.05,Vp = 0.2, VK = —1.3, & = 0.005, ¢’ = 0.003. The Jacobian of the response system
(26) is

an 4z 4s3
J=\axn axn axs), (27)
where

an = 0.5gc.{—(1+tanh((g —V1)/V2)) + (1/V2)(1 — g1) sech*((g1 — V1)/V2)} — 8k&2 — &1
ap =g (VK —g). a3 =1,

az1 = 0.5(1/V4)¢ cosh((g1 — V3)/2Vs) sech?((g1 — V3)/Vy)

+ ¢ (1/2Vy)sinh((g1 — V3)/2V4){0.5(1 + tanh((g1 — V3)/Va)) — &2},

—@' cosh((g1 —V3)/2Vs), a3 =0,

az = —¢,
a3 = 0,033 = 0. (28)

flry

azo
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Fig. 5. GS in coupled non-identical spiking bursting M-L neural system with fast-slow variables defined by a constant matrix: (a) time series of y3 and g3;
(b) g1 against yq; (c) g, against y,; (d) g3 against y3 confirm GS relation. (e) time series of x; and y;.

We write the H-matrix from the Jacobian as described above in Eq. (27) as

pr p2 1
H = D3 Da 0]. (29)
- 0 0

For numerical calculation, we set the value of parameters as p; =0, p; =1, p3 = —1 and py = —1 which satisfy the R-H

criterion of the H-matrix.

3.2.1. Case I
First, we select an arbitrary choice of the elements of the a-transformation matrix as constants

1 0 0
a={0 1 o0} (30)
0 1 1

when the goal dynamics becomes

21 1 0 0\ /x; X1
&)= 0 1 0 X2 ) = X2 . (31)
23 0 1 1 X3 Xy + X3

Now, the coupling term becomes

X [0.5gcq{1 + tanh((g — V1) /V2)}(1 — g1) + 8k& (VK — g1) + g1 (V! — g1) + g3]
D=1 x |- [¢ cosh((gr —V3)/2V4){0.5(1 + tanh((g1 — V3)/Va)) — g2}]
Xy + X3 —&'Vo+g1)
pi—an p2—ap O Y1 &1
+|p3—a1 ps—axn O y21-1811: (32)
0 0 0 3 23

where the values of aq1, aq3, a1, axp are described in Eq. (28). Next, we add the coupling term (Eq. (32)) to the RHS of
Eqg. (26) to produce the response dynamics. It converges to the desired goal dynamics after the transients part. Numerical
results are shown in Fig. 5. Time series plot of y3 and g3 are shown in Fig. 5a. The GS relation is confirmed which is shown
in Fig. 5b-d and plotted between g;(t) vs y1(t), g2(t) vs y,(t) and gz(t) vs y3(t) respectively. The time series of driver x; and
response y; has been plotted in Fig. 5e.
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Fig. 6. GS in non-identical coupled spiking bursting M-L neural system defined by «-matrix with periodic functions: (a) time series of y, and g»; (b) g
against response variable y; (c) g, against y,; (d) g3 against y; confirm GS relation. (e) time series of x; and y; respectively.

3.2.2. Case Il
Next, we take the systems (25) and (26) as the driver-response system and the Hurwitz matrix remains unchanged. We
select the elements of the o-matrix as periodic functions

1 0 0
a=|0 cost 0 |, (33)
0 0 sint

while the goal dynamics becomes

&1 1 0 0 X1 X1
2| =0 cost 0 X2 | = [ x2cost ), (34)
23 0 0 sint/ \x3 X3 sint

and the coupling term is

) o [0.5gcq{1 + tanh((g — Vi) /V2)}(1 —g1) + 8k& (VK —g1) + g (V! — g1) + 831
D =|x;cost —x;sint | — [¢ cosh((g1 — V3)/2V4){0.5(1 + tanh((g; — V5)/Va)) — £2}]
X3sint + x3 cost —&' (Vo +&1)
pir—an p2—ap O 1 g1
+p3—ax ps—axp O nl-1%1) (35)
0 0 0 3 83

We arbitrarily select the elements of a-matrix as the periodic functions in Eq. (33). The values of ay;, ajp, az;, a; are
explained in Eq. (28). We can choose other functions without disturbing the stability of synchronization. The simulated
graphical results are shown in Fig. 6. The synchronization has been established though the «-matrix is chosen as periodic
functions.

3.2.3. Case 1l
In next example, we use the same systems (25) and (26) but the o-matrix contains the state variable of driver system,

X1 X2 0
od=1X2 X 0]. (36)
0o o0 1
This type of matrix upraises the degree of nonlinearity in the goal dynamics. Now, the goal dynamics is
g1 X1 X3 0\ /x; X3 +x2
&) =1X2 X1 0 X | = ZX]XZ , (37)

23 0 0 1 X3 X3
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Fig. 7. GS in non-identical coupled spiking bursting M-L neural system defined by «-matrix with periodic functions: (a) time series of y; and g;; (b) g1
against yq; (c) g, against y,; (d) g3 against y; confirm GS relation. (e) time series of x; and y;.

and the coupling term is

L
2(x1% + K1) +g1 (V" —g1) + g3l

2(X1%1 + Xo%o) [8ca0.5{1 + tanh((g1 — V1) /V2)}(1 - g1) + &k (VK — g1)
b= ( ) | [¢cosh((gr —V5)/2Va){0.5(1 + tanh((gs — V5)/Va)) — &2}]

" &' (Vo +g) (38)
pr—an p2—ap O V1 g1 Y1 g1
+|{P3—0Gn ps—axn O y2]-18& 1-181)
0 0 0 3 23 3 23

The values of ayy, ajp, ayq, ay; are described in Eq. (28). The numerical results are shown in Fig. 7 which shows that the
targeted GS relation is obtained using the proposed OPCL coupling scheme. The time series of x; and y; apparently shows
that it may follow anti synchronous behavior. In reality, the GS relation is confirmed by the 1:1 correlation between the

driver and the response variables.
3.2.4. Case IV

Finally, we present the same systems (25) and (26) as driver and response systems but we change the elements of o-
matrix as the state variable of H-R system Eq. (21) and the o-matrix is taken as

0.0lu; 0.01u, O
o ={0.01u; 0.0lu; O0}. (39)
0 0 1

The goal dynamics becomes

21 0.0IU] 0.01 [75) 0 X1
g ) =10.01u, 0.01u, 0 X2
g3 0 0 1/ \x3
<O.01u1x1 + 0.01u2x2> (40)

0.01upx7 + 0.01u1x;
X3

and the coupler is

0.01 (l.l]X] + ul)él) +0.01 (l:lzXz + UZXZ)
D = | 0.01(tipxq + uX1) + 0.01 (t11x5 + U1X3)
X3
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Fig. 8. GS in non-identical coupled spiking bursting M-L neural system defined by o-matrix with elements consisting of state variables of Hindmarsh-Rose
system: (a) time series of y; and g; (b) g; against response variable y;; (c) g against y,; (d) gs against y; confirm GS relation and (a) time series of x;
and yq.

[8c40.5{1 + tanh((g1 — Vi)/V2)}(1 — g1) + gk (VK —g1) + gL (VE — g1) + &3]
- [¢ cosh((gy —V3)/2V4){0.5(1 + tanh((g; — V3)/V4)) — g2}]

—&'Vo+g1)
pi—an p2—ap 0O Y1 g1
+|{p3s—ax ps—ap O 2]1-181]) (41)
0 0 0 3 83

The numerical results are presented in Fig. 8. The simulated time series of the driver and response variables demonstrates
no correlation. However, due to the higher nonlinearity of the « transformation matrix, the targeted GS is properly working
using the OPCL method. The simulated time series of y; and g; is presented in Fig. 8a. The time series between driver
(x1) and the response (y;) states does not indicate any correlation. However, the OPCL coupling method establishes a GS
relation in driver-response neural systems followed from 1:1 correlation presented in Fig 8b-d. It works properly in realizing
functional relation when the elements of o-matrix are chosen from other dynamical system. We have a freedom in applying
this method for choosing positive as well as negative values for the elements of constant « transformation (n x n) matrix
and we can choose the proper coupling term to control response oscillating neural system without affecting the stability of
synchronization.

4. Synchronization of coupled network of Hindmarsh-Rose neural oscillators

In this section, we construct and apply a NOLC based bidirectional coupling mechanism to a network of four H-R oscil-
lators to show CS and AS states in different cases. We also consider a comparable method to a network of H-R oscillators
using a bidirectional ring type connection. Finally, a Lyapunov direct method has been applied to establish the desired syn-
chronization state.

The spiking bursting dynamical behavior of the well known Hindmarsh-Rose (H-R) [33,34,36,37] neural model is well
studied in neural computation and the nature of generation of action potential depends on some control parameters. The
model is the modified version of the Fitzhugh-Nagumo neural model [46]. It was originally constructed to model the syn-
chronous behavior of firing of two snail neurons. By fixing some parameters, the model reads as follows:

x(0) =y(t) —x3(t) +3x2(t) — z(t) + 1,
y(t) =1-=5x*(t) —y(t), (42)
z(t) = rs(x(t) + 1.6) —rz(t),

where x(t) represents the membrane potential of the neuronal cell, the recovery variables y(t) and z(t) which take into
account transport of ions through ion channels across the membrane. The spiking variable y(t) measures the rate of sodium
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and potassium ion transport through fast ion channels. The bursting variable z(t) measures the rate of other ions transport
through slow ion channels. The parameter value r represents difference scale between fast and slow recovery variables. I is
the applied current enter into the neuron. z(t) is the slow dynamical variable and depends on the parameter value (0 <
r < 1) which is very small and performs the bursting behavior and s performs the adaptation behavior of the H-R model
[35,37]. Bursting behavior is a multi-scale type phenomenon where spiking or bursting or both can occur. To show the
examples of real world applications in biological oscillating systems, we take various parameter sets such as (i) [ =3.3,r =
0.001,s =4, (ii) I =1.345,r = 0.001,s = 4 and (iii) I = 3.05,r = 0.005, s = 4 for computation at which the system exhibits
spiking, periodic bursting and chaotic bursting behavior respectively which is often found in neural system [31,35,37,40].

We apply a NOLC based bidirectional coupling mechanism [38,39] to a network of 4-oscillators to show CS and AS states.
We present the formulation of coupling method for N oscillating systems as follows:

Wi=fW) + W,  i=1,2.3,....N, (43)
where w; = (x;, y;. z;)T is the state variables vector and flw;) € R" represents the flow of the ith system for uncoupled
condition. Wy, is the controller that confirms the coupling between the ith and the remaining oscillators in the network

system. The bidirectional coupling procedure is calculated for the network of N H-R oscillators using the LF stability and
various non-zero values of scaling factors. The error function for a network of N oscillators is defined as [39]

N-1
= (N—])XN—OlNZX,'/(X,‘, (44)

i=1
similarly, ey; and ez; are defined as above. The error function e = (exj, ey;. e;.)T is described between the ith and the Nth
oscillators, j=1, 2,..., N—1; «;, i=1, 2,..., Nrepresents the scaling factor of the ith system. The stable synchronization
of mutually coupled N-oscillators for one of the state variables of the network system is defined by x;/01 =xy/0p = --- =

Xy/oy or it can be represented as x, = (op/a1)Xq1, X3 = (003/0¢1)X1, - .., Xy = (on/01)X.

The signs of the non-zero constants «;, (i=1,2,...,N) ensure the synchronization states whether it follows CS or AS.
The ratios of the constants are said scaling factors which are used in the bidirectional coupling schemes for the network
of oscillatory systems. The bidirectional coupling term has been considered as symmetric while oy = @y = --- = ay. We can

reach only CS state when it is symmetric. The amplification and reduction in oscillators size are not occurred at this stage.
The coupling term is considered as asymmetric while the constants are not equal. We can realize the CS and AS states at
this stage. We can also observe the effect of asymmetric coupling terms in the oscillators behavior with amplification or
reduction in size. The NOLC mechanism is shown by taking an example of N = 4 mutually coupled H-R neural oscillators at
the parameter set I = 3.3,r = 0.001, s = 4. We design the four coupled identical H-R as follows:

Xi=Yi— X +3x2 —z; + 1+ Wy,

yi=1—5xi2—y,-+Wyi, (45)

zi=1s(x; +1.6) —rz; + Wy,
where i =1, 2, 3, 4. The design of the oscillatory network system can be developed as follows. We first consider two H-R
oscillators and create the NOLC based coupling to show that V(e) < 0. Then, we add the third H-R oscillators and include
the bidirectional coupling controller between the oscillators one and three, oscillators two and three to establish the LF
stability criterion between the oscillators. Finally, we add one new oscillator to the network and consider the coupling
technique between the oscillators one and four, oscillators two and four, oscillators three and four respectively. Now, we
mathematically prove the synchronization for all the four coupled H-R oscillators.

Theorem. Consider the coupled network of H-R oscillators given by Eq. (45) which attains the desired synchronized state
under the following controllers.

p %\ % (ai)z o ( ai)
Wy = ——(—ex_, —ey, _ -t 14+ (=2 -1+=2
x, 1(1—1)( [ ey,,1+ez,4)+3( Oﬁ)(x] ]+< & a1x1+ + 2

—€y, — ey, €.
_aiz( X; yi + z,)

15N i+ Doy
W, = (—1 + ﬁ) + 5(—1 + ﬁ) %x%,
(rsex.)
W, = 1 1+ — —_— 4
s = T 1)(rsexl D)+ 6rs( + )+a, > T Dary” (46)

1<i<N
wherei=1,2,3,4and p=0fori=1but p=1fori> 1.
Proof. First, we couple the two oscillators for i = 1,2 and N = 2 while the error system is defined as
ex, =Xz — (2/1)X1, ey, =Yz — (02/01)Y1, €z =2 — (a2/0t1)Z1. (47)
Consider the Lyapunov function as
= (1/2)(e} + €3 +e2). (48)
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V = (ex,éx, +€y,6y, +€2,67,). (49)
We assume that the synchronization is established. Therefore, substituting the values of x, = (/1) and y; = (@2/01)y1
in Eq. (49), we have V(e) < 0 to achieve the desired synchronous state. The mathematical formulation of the appropriate
choice of coupling terms Wy,, Wy,, and W, (i =1, 2) gives
€x, = Xz — (2/01)%y
==X 43X — 2 + [+ Wy,) — (0p/a) (1 — X3 +3%2 — 21 + 1+ Wy,)
={y2 =X +3%5 —zp+ 1+ (1/2)(—ex, — ey, +€2,) +3(1 = (crz/1)) (ct2/1)X] + (=1 + (02/21)*) (2 /01)3
+I(=1+ (a2/a1))} — (a2/a1){y1 — x5 +3x] — 74
+1—(a1/20) (—ex, — €y, +ez)}
= ey, —e; + (1/2)(—ex, —ey, +e5) + (1/2)(—ex, — ey, + ;) = —ex,,
similarly,
ey, = Y2 — (ca/a1)y1
= (1-5x -y, + W,,) — (az/a1)(1 = 5% —y1 + W)
={1-5x5 —ys + (=1 + (a2/21)) + 5(=1 + (a2 /0t1)) (o2 /at1)x7} — (2/01) (1 — 5% — y1) = —ey,,
and
ér, =2 — (/@1)Z
= (rsxy + 1.6rs —rz5 + Wy,) — (a2/aq) (rsxq + 1.6rs —rzy + W)
{rsx; +1.6rs —rz; — (1/2)rsex, + 1.6rs(—=1 + (az/01))}
— (otz/oep){rsxy + 1.6rs —rz1 + 1.6r5(—1 + (0ta /1)) + (€1 /2003) 1Sy, }
= TSey, —T€; —ISex, = —T€,.

Now,\?:—(ef1 +el +re2)<0as0<r<l

Next, we add third oscillating system to the two coupled oscillators. The error system becomes

ey, = 2x3 — a3 ((x1/a1) + (X2/02)),
ey, = 2y3 — a3((y1/01) + (V2/a2)), (50)
ez, = 223 —az((z1/01) + (z2/a3)).

for i=1,2,3 and N = 3. The Lyapunov function is considered as V = (1/2)(e}, + €3, +€2).

Assume the synchronization is achieved. We replace the values of x3 = (a3/c1)x; and y3 = (3/®q)y; in the expres-
sion V(e) to attain stable synchronization for three oscillating system. The appropriate choice of coupling controllers
Wy, Wy,, and W,, (i=1,2,3) becomes

€x, = 2X3 — (a3/aq)X1 — (a3/Q2)X;

=2(y3 —X§+3X%—Z3 +I+WX3)— (Ol3/0l1)(yl —X?+3X% —2Z1 +I+Wx])
—(a3/2) (V2 = X5 +3x3 — 2o + 1+ Wy,)

=2{y3 —x3+3x2 —z3+ 1+ (1/6)(—ex, — €y, + €5,) + 3(1 — (a3/a1)) (0r3/¢1)x3
+ (=14 (as/ar)?) (az/ar)x} + 1(=1+ (a3/a1))} = (os/ar){yr — X3 +3x5 — 2z +1
—(1/202) (—ex, — ey, +€z,) — (0t1/3a3) (—ex, — ey, +€;,)} — (az/o){ys — X3 + 3% — 2, + 1
+(1/2) (—ex, — ey, +€7,) +3(1 — (a/a1)) (02 /01)x3 + (=1 + (o2 /1)) (2 /0t1)X3
+H(=1+ (o2/0t1)) — (2/303) (—ex, — €y, +€2,)}

=€y, — €, + (—ey, — €y, + ;) + (03/202) (—ex, — ey, +€z) — (a3/202) (—€x, — €y, +€z)

= _exz?

similarly,
€y, = 2y3 — (a3/aq)y1 — (@3/02)y>
=2(1-5x% —y3 + Wy,) — (a3/a1) (1 —5x2 — y1 +Wy,) — (3/02) (1 — 5%3 — yo + Wy,)
=2{1-5x%5 —y3+ (=1 + (a3/0r1)) + 5(=1 + (a3 /a1)) (a3 /01)x3} — (er3/at1) (1 — 5%% — y4)
—(a3/0){1 = 5%3 — y5 + (=1 + (az2/a1)) +5(=1 + (02 /01)) (er2 o1 )X3} = —ey,,
€z, =223 — (a3/001)21 — (@3/@3)2
= 2(rsx3 + 1.6rs — rz3 + Wy, ) — (a3 /o) (rsxq + 1.6rs —1zq + W) — (a3/ap) (rsxp + 1.61s — 1z, + Wy,)
= 2{rsx3 + 1.6rs —rzz — (1/6)rsex, + 1.6rs(—1 + (3/a1))} — (a3/0q1){rsxq + 1.6rs — rz;
+ (01 /2ap)rsex, + (a1/3a3)rsex, } — (a3/0){rsxy + 1.6rs —rzy — (1/2)rsex, + 1.6rs(—1+ (arp/ct1))
+(ap/3a3)rsex, } = —rez,.
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2
cillator is added to the network of three oscillating system and the error functions for i = 1, 2, 3,4 and N = 4 are represented

as

Now, the condition of synchronization is attained by using V = —(ef2 + 332/2 +re2) <0and 0 < r < 1. Finally, a fourth os-

ex, = 3Xs — aa((X1/01) + (x2/0t2) + (X3/0t3)),
ey, = 34 — aa((y1/o1) + (V2/at2) + (y3/03)). (51)
ez, = 3z4 —as((z1/01) + (22/02) + (z3/0t3)).

Consider the Lyapunov function as V = (1/2) (e, + ez, +e2).

Assuming synchronization is established, we replace the values of the state variables x4 = (4/01)x7 and y4 = (04/0¢1)y1
in the LF derivative V(e) to achieve the stable synchronization state in the network. The appropriate choice of coupling
controllers Wy,, Wy,, and Wy, (i=1, 2, 3,4) becomes

€x; = 3X4 — (@g/a1)X1 — (g/02)X) — (atg/3)X3

=3 — X3 +3x2 — 24+ 1+ Wy,) — (ata/a1) (1 — X3 +3x2 —z¢ + 1+ Wy,)

—(ag/ar) (y2 —X% +3X% -2 +I+sz) — (ag/03) (y3 —Xg +3X§ —2Z3 +I+WX3)

=3{ya —x3+3x2 —z4 + 1+ (1/12) (—ex; — ey, +€z,) +3(1 — (ag/at1)) (0tg/0t1)x3

+(=1+ (@a/01)?) (@a/o))x3 +1(=1 + (aa/a1))} = (oa/a){y1 —x3 +3x2 — 21 +1
—(a1/20) (—ex, —ey, +ez,) — (a1/303) (—ex, — ey, +€z,) — (a1/404) (—ex; — ey, +923)}
—(otg/a){y2 — X3 +3%3 — 2 + 1+ (1/2) (—ex, — ey, +€z,) +3(1 — (a2 /at1)) (2 /0x1)X3
+(=14 (aa/1)?) (aa /X3 +1(=1 + (az/a1)) — (2/3a3) (—ex, — ey, +€z,)
—(0tp/40t) (—ex; — ey, +ez)} — (afas){ys — X3 +3x2 —z3 + 1+ (1/6)(—ex, — &y, +€2,)
+3(1 = (a3/aq)) (o3 /01)x3 + (=1 + (a3/a1)?) (a3/a1)x3 +1(=1 + (o3/01))
—(a3/40ty) (—ex; — ey, + 323)}

=ey, —ez — (1/44+1/4+1/4+1/4)(—ex; — ey, +€z) + (s/203)(—ex, — €y, +€z,)
+(aa/200) (—ex, — €y, +€z) — (0ta/203) (—ex, — ey, +€z,)

= —€x;,

€y, = 3ya — (aq/a1)y1 — (0tg/02)y2 — (0t4/003)Y3

=3(1-5x2 —ya + Wy,) — (aa/a1)(1 —5x2 — y1 + Wy,) — (a/erz) (1 —5%3 — yo + Wy,)
—(0tg/a3) (1 =53 —y3 + Wy,)

=3{1-5x3 —y4+ (-1 + (aa/1)) + 5(=1 + (cta/01)) (@a/a1)x3} — (ctg/0t1) (1 — 5% — yy)
—(aafo){1 = 5x3 —y, + (=1 + (0z/01)) +5(=1 + (a2/al))(a2/al)xi}
—(ag/a3){1 = 5x5 —y3 + (=1 + (a3/a1)) + 5(=1 + (a3/0r1)) (@3 /01)x7}

= —ey, +3(ag/01) — 3(a/or) (5x2) — (ota/or1) + 5(aa/a1)x3 — (aa/oz) (0t /0tq)

‘ +(og/an) (aa /0y ) (5X3) — (ag/a3) (a3 /ay) + (ag/a3) (a3 /ay ) (5X3) = —ey,.

an
€z, = 324 — (ag/a1)21 — (as/02)25 — (a4/@3)Z3
=3(rsxg + 1.6rs — 124 + Wy,) — (a0g/0t1) (rsxq 4 1.6rs — 121 + Wy, ) — (a4/02) (rsx + 1.61s — 125 +W,)
—(oa/a3) (rsx3 + 1.6rs — 123 + Wy,)
=3{rsx4 + 1.6rs —rz4 — (1/12)rsex, + 1.6rs(=1 + (0ota/0t1))} — (ota/oe1){rsxq + 1.61s —rz3
+(0t1/20ap)rsex, + (aq/3a3)rsex, + (ot1/4oz4)rsex3} — (ag/0){rsxy +1.6rs — 125 — (172)rsex,
+1.6rs(=1 + (0a/001)) + (@2 /33)1sex, + (0ta/40tg)rsex, ) — (0tg/03){rsxs + 1.6rs — rz3
—(1/6)rsex, + 1.6rs(—1 + (a3/a1)) + (0or3/4014)T5€x, }
=TSex, —Tez; — (1/4+1/4+1/4+ 1/4)rsex, — (aa/20p)18€x, + (0t4/207)TSex; — (504/6007)TSEx,
= —Tre,,.
We replace tﬁe values of the system variables x3 = (a3/a1)x; and y3 = («3/a1)y; and z3 = (a3/aq)z; for the network of
three H-R oscillators to establish the synchronization. Therefore, tlirrolo |lell = 0. Thus, we can derive the error systems of

bidirectionally coupled N oscillatory systems in the above mentioned procedure to check the stability of desired synchronous
state.0]

First, we assume that the network contains two identical coupled oscillator systems and the remaining oscillators are
uncoupled. We choose oy =1, oy = 1 for the synchronous behavior of identical coupled H-R oscillator systems. Now, we
add the third oscillating system to the network and take oy =1, @y = 1, a3 = —1. The third identical oscillating system is
inverted to both the first and second oscillating systems. The first and second oscillating systems remain in CS state but the
third oscillating system shows AS with both the first and second oscillating system. Finally, we consider the fourth identical
H-R oscillating system and choose oy =1, @y =1, a3 = —1, a4 = 1. The fourth oscillating system shows CS with first and
second oscillating systems and AS with the third oscillating system and it has been presented in Fig. 9a and b.

The design of the above proposed coupling technique ensures the required synchronization states. In this method, the
oscillators can be amplified or it can reduce the size for appropriately chosen scaling factors o1, oo, @3 and «4. The scal-
ing factors take suitable negative and positive values to reach both CS and AS regimes. Now, we consider the four H-
R oscillators with the same NOLC based bidirectional coupling at the parameter values (i) I = 3.05,r = 0.005,s = 4 with
suitable scaling factors oy =1, oy =3, a3 =1, oy =4 and (ii) I = 1.345,r = 0.001,s = 4 with appropriate scaling factors
o1 =4, 0, =1, a3 =-1, oy = 2 to achieve the desired synchronous states (Figs. 10b and d) and it also presents the am-
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Fig. 9. Two dimensional phase diagrams of a network of four bidirectionally coupled identical H-R neural oscillators and the CS-AS states after synchro-
nization.

plification and reduction in size of the coupled oscillators (Fig. 10a and c). Thus, the coupling mechanism is constructed and
the desired synchronization is shown in a network of four coupled identical H-R oscillating system. In the similar manner,
we can extend the coupling technique for a network of N-oscillating systems to achieve the desired synchronous state.

The desired synchronization is achieved by the LF stability condition and we only show the results for the synchroniza-
tion state at a particular set of parameter values for the coupling scheme and other results follow the same type behavior
for suitable parameters and coupling coefficients. The illustrated results verify the coupling technique and effectiveness of
the proposed method. Consider the ring type bidirectionally coupled network of N oscillators as follows:

U = AU + f(Uy) + dy (U + Uy — 2Us),
Uy = AU; + f(Up) + da (Uy +Us = 2U,),
: (52)
L:]N—l = AUn_1 + f(Un-1) + dn_1(Uy—2 + Uy — 2Un_1),

Un = AUy + f(Un) +dn(Un-1 4+ Us — 2Uy),
where the system state vectors are represented as (U, U,,..., Uy) € R" and N > 2. The coupling coefficients are repre-

sented as the diagonal matrix d; = diag(dyy, dy., ..., dyg) for dy > 0. The error functions are defined as e; = U; — Uj,¢, (i=
1, 2,..., N—1). The network systems reach the synchronous state for suitable values of d; > 0 as [lim lleill =0, (i=
—00

1, 2,..., N—1). Consider U; = (x;, y;, z;) for i=1,2,3,4. The network of N =4, H-R oscillators with the ring type net-
work connection can be described as follows:

Xi 0 1 =1\ /x —x3 +3x2 d;, 0 0
vij={o -1 o {n])+[ 1-5¢ |+[0 do 0 )EU. 0. . Un))s,, (53)
Zi rs 0 -—r/\z 1.6rs 0 0 djs

To reach the desired synchronous state, we consider the set of parameters as [ =3.3,r=0.001,s =4, N =4 for periodic
spiking and all the coupling coefficients equal to one. By using the above parameter values and coupling coefficients, the
network of oscillators reach the targeted synchronized state (see Fig. 11a and b) . We have derived the result for one set of
parameters. However, it can also be presented for other set of parameters and for appropriate coupling coefficients.

The complex behavior of network connections and coupling functions for synchronization present significant results and
have importance in clinical research. The spiking and different types of bursting measure the characteristics and nonlinear
phenomena of the neurons [28,35,37]. The synchronized firing of the network of biological oscillators are relevant in infor-
mation transmission and coding. Some different types of neural network structures and its synchronization were studied in
the references [40-42]. However, it is not completely known the types of coupling connections and the appropriate param-
eters for a neural network of oscillators. The synchronous behavior of a bursting neural network depends on the network
structure [40], coupling controllers and coupling coefficients.

5. Conclusions

In this paper, we produce the generalized synchronization (GS) state between a driver-response neural systems. The
coupling technique is expressed as various types of transformation matrices which map a driver system into a response
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Fig. 10. CS and AS states of a network of four bidirectionally coupled identical H-R oscillators after synchronization at parameter sets I = 3.05,r = 0.005,s =
4 and I = 1.345,r = 0.001, s = 4 respectively.

system. The method is also applicable when the transformation matrix is completely different and explained as variables of
other dynamical systems. We explained the applications of the coupling scheme for several types of transformation matrices
such as constants, periodic functions, state variables of the driver system.

Two numerical examples of modified Morris-Lecar (M-L) model and bursting M-L model are presented to illustrate
the open-plus-closed-loop (OPCL) coupling scheme for two non-identical neural oscillators. We observe that the trans-
formation of the target (i.e., driven system) is necessary to have complete correlation between both driver and response
systems.

We also investigate a nonlinear open loop controller (NOLC) based bidirectional coupling mechanism through Lyapunov
function stability criterion and able to show the complete (CS) and anti-synchronization (AS) in a network of H-R neural
model systems. We remark that a multiplicative factor (scaling factor « in our case) is responsible for amplification or
attenuation of one neural oscillating system to other. We present the theory of bidirectional coupling to the network of four
H-R neural oscillating systems, and consider comparable coupling technique using bidirectional ring type connections. The
illustrated results verify our coupling scheme and effectiveness of the proposed method.

The method can be extended for N network of model neurons to produce the desired synchronous behavior. As
a real world application of this work, we consider some situation in some diseases, we need to control the oscilla-
tions of neurons in some area of the brain. Then, by injecting the drug or current to make those oscillations going to-
wards desired target (like g(t) in our case) which will be constrained in such a way that it will perform the required
dynamics.
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Fig. 11. CS states of a network of four bidirectionally coupled (ring type connection) identical H-R neural oscillators after synchronization at the parameter
set [=3.3,r=0.001,s =4.
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