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Abstract In this chapter we consider a model describing the dynamics of
predator-prey populations living in two patches. The two patches follow the Lotka-
Volterra type and are coupled through prey migration. Our purpose is to study the
effect of migration rate on the behavior of the coupled systems. We prove the posi-
tivity of solutions and find the upper and lower bounds with respect to the migration
rate of prey. Also, we show the stability/instability of the possible steady states and
we establish the global stability of the positive steady state by giving a candidate lya-
punov function. Some numerical simulations are provided to graphically demonstrate
the population dynamics of the system.

1 Introduction

Oneof the oldest andwell knownmathematicalmodelwhich describes the interaction
between two species predator and prey was introduced by Lotka [1] and Volterra [2],
known as Lotka-Volterra mathematical model. The model was given by a system of
two differential equations as follows:
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⎧
⎨

⎩

dx
dt = ax − byx

dy
dt = −cy + dxy

(1)

where x(t) and y(t) are the total numbers of prey and predator at time t , respectively,
the constants a, b, c and d are nonnegative and the rate c

d is related to the conversion
of prey biomass into predator biomass. One weakness of the above model is the
exponential growth of the prey in the absence of predator. This is not the case as
while the prey continues to grow, space and resources will run out eventually, thereby
limiting the growth of the prey population. To handle this case, the predator-prey
system (1) can be modified to:

⎧
⎨

⎩

dx
dt = ax − f x2 − byx

dy
dt = −cy + dxy

(2)

In the last years, this model have been studied in various forms by many authors (see,
[3–5]) by changing the functional response, by taking into account the effect of diffu-
sion terms or including the time delay in order to better understanding the dynamics
of population interaction or studying the model with different form of functional
response (see, [6–10]. Other authors consider some models which describe the inter-
action between two patches or more by taking into account the effect of the migration
of one or two species from one patch to another (see, [11–16] and references therein).
The analysis of these models focuses on the existence of possible steady states and
their qualitative behavior: local and global stability/instability, bifurcation and when
the dynamics of the two interacting patches are synchronous and asynchronous.

In [17], Kuang et al. introduce a model in which a single specie disperses between
two patches of a heterogenous environment with barriers between patches and a
predator for which the dispersal between patches involve a barrier. The model is
given by a system of three ordinary differential equations, and the authors studied
the existence of steady states with local and global stability. Also, the uniform per-
sistence is proved and an example of Lotka-Volterra is given in order to prove that
the dispersion stabilizes the system when the dispersal rate is small and destabilizes
the system when this rate is increased.

In [18], the author introduced a two diffusively coupled predator prey populations.
The coupled system is composed of four differential equations that is modelling the
interaction of two identical patches inwhich dynamics are coupled through themigra-
tion of individuals of predator population only. This interaction between the predator
and prey populations takes the form given by Rosenzweig and MacArthur [19] in
which the prey population grows logistically and the predator has a Holling type II
functional response. It was shown by numerical simulations that oscillations syn-
chronize for very small migration rate and instability of synchronous oscillations for
intermediate migration rate and periodicity, quasi-periodicity, and chaotic attractors
with asynchronous dynamics. The existence of attractors in the form of equilibria or
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limit cycles in which one of the patches contains no prey for large predator migra-
tion rates was also proved. The qualitative behavior (stability/instability, numerical
simulations) of the possible steady state of this model are studied by Feng et al. [20].
In [21], Feng et al. consider the same model by taking into account the migration of
both prey and predator population and studied the stability/instability of the possible
steady states.

Recently, Quaglia et al. [22] considered a model of two patches coupled by the
migration of both species. The model given by two identical patch with the same
reproduction rate and different carrying capacities in each patch. The authors studied
the existence and stability of the possible equilibrium points.

At nowall the presented coupled patches of predator preymodels take into account
the migration of one species in one direction (from one patch to another patch only)
or in the two directions (mutual migration) and the migration of both species in one
direction or in two directions without considering the effect of themigrated (refuged)
population on the refuge patch.

In the current chapterwe consider two symmetric (identical) patch given byLotka-
Volterra system as follows (before migration):

⎧
⎪⎪⎨

⎪⎪⎩

dxi
dt = axi (1 − xi ) − bxi yi

dyi
dt = cxi yi − dyi

i ∈ {1, 2}
(3)

In the next, we take into account the migration of the prey population from the first
patch to the second patch only (in one direction only) with a migration rate k and we
consider the contribution of the migrated (refuged) prey population in the growth of
the predator population of the refuge patch (second patch). The model is given by a
system of four ordinary differential equations as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1
dt = ax1(1 − x1) − bx1y1 − kx1

dy1
dt = cx1y1 − dy1

dx2
dt = ax2(1 − x2) − bx2y2 + kx1

dy2
dt = c(x2 + kx1)y2 − dy2

(4)

The chapter is organized as follows. In Sects. 2 and 3 we prove the positivity and
boundedness of solutions. In Sects. 4 and 5 we show the existence of possible steady
states and their local and global stability, while in Sect. 6, we present some numerical
simulations to illustrate the theoretical results.
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2 Positivity

Consider now the uncoupled systems (3) which correspond to the case when k = 0.
By integrating from 0 to t , from the (3)1 and for any initial data xi0 > 0, i = 1, 2
and yi0 > 0, i = 1, 2, we have

xi (t) = xi0e
∫ t
0 (a(1−xi (s))−byi (s))ds > 0, i = 1, 2 (5)

From the (3)2, we have

yi (t) = yi0e
∫ t
0 (cxi (s)−d)ds > 0, i = 1, 2 (6)

Then we deduce that for k = 0 the uncoupled systems has a positive solution for any
positive initial data.

Let us now consider the case when the migration rate is positive (k > 0) which
corresponds to the coupled system (4). From (4)1 and (4)2, we have

x1(t) = x10e
∫ t
0 (a(1−x1(s))−by1(s)−k)ds > 0 (7)

and

y1(t) = y10e
∫ t
0 (cx1(s)−d)ds > 0

From (4)3,

x2(t) = x20e
∫ t
0 (a(1−x2(s))−by2(s))ds + k

∫ t

0
e
∫ t
s (a(1−x2(u))−by2(u))dux1(s)ds (8)

and from (7), we have x1(t) > 0, ∀t > 0. Then, we deduce that x2(t) > 0, ∀t > 0.

3 Boundedness

In this section we focus on the finding of the upper and lower bounds of the predator
and prey populations, These bounds will give us information about the extinction,
co-existence and exponential behavior of both species. The following comparison
argument will be employed in the proofs associated to the upper and lower bounds
of species.
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Consider the following differential equations

{ dxi
dt (t) = fi (t, xi (t)), i = 1, 2

xi (0) = xi0, i = 1, 2
(9)

where fi , i = 1, 2 are continuous functions on [0, T ] × R.

Proposition 1 Let x1 and x2 the solution of equations (9) with initial conditions
x1(0) = x10 and x2(0) = x20, respectively. Assume that

∂ f1
dx and ∂ f2

dx are continuous
on [0, T ] × R.

If f1(t, x) ≤ f2(t, x) on [0, T ] × R and the initial conditions verify x10 ≤ x20,
then the solutions x1 and x2 satisfy x1(t) ≤ x2(t) on [0, T ].

Theorem 1 Let X (t) = x1(t)+ x2(t) the total number of the prey population of the
two patches and X0 = x10 + x20, X (t) satisfies the following inequality

0 ≤ X (t) ≤
((

1
X0

− 1
2

)
e−at + 1

2

)−1

and

lim sup
t−→+∞

X (t) ≤ 2,∀t ∈]0,+∞[

for X0 < 2.

Proof Let X (t) = x1(t)+ x2(t) the total number of the prey population of the two
patches. From (4)1 and (4)3 we have,

dX
dt

≤ a(x1 + x2) − a(x21 + x22 )

≤ a(x1 + x2) − a
2
(x1 + x2)2

≤ aX (1 − X
2
)

As the following logistic equation

{ du
dt = au(1 − u

2 )

u(0) = u0
(10)

with solution

u(t) =
((

1
u0

− 1
2

)
e−at + 1

2

)−1
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From Proposition 1 and from the positivity of x1(t) and x2(t), we have

0 ≤ X (t) ≤
((

1
X0

− 1
2

)
e−at + 1

2

)−1

Then, for any initial conditions x10 and x20 satisfy X (0) = X0 = x10 + x20 < 2, we
get

lim sup
t−→+∞

X (t) ≤ 2,∀t ∈]0,+∞[

The following result gives us the boundedness of the predator population.

Theorem 2 Let Y (t) = y1(t)+ y2(t) the total population of the predator specie of
the two patches. Then, we have

Y0e−dt ≤ Y (t) ≤
(
Y0 − 2ck

2c − d

)
e−(2c−d)t + 2ck

2c − d

and for 2c > d and for Y0 ≥ 2ck
2c−d we obtain

lim sup
t−→+∞

Y (t) ≤ 2ck
2c − d

where Y0 = y10 + y20.

Proof From the (4)2 and (4)4, we have

dY
dt

(t) = y1
dt

(t)+ y2
dt

(t)

= c(x1y1 + x2y2) − d(y1 + y2)+ ckx1
≥ −dY (t)

leading to
Y (t) ≥ Y0e−dt

As x1 ≤ X ≤ 2 and x2 ≤ X ≤ 2, we have

dY
dt

(t) ≤ (2c − d) Y (t)+ 2ck

Let us consider the following equation

{ du
dt (t) = (2c − d) u(t)+ 2ck

u(0) = u0
(11)
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By applying the variation of constant formula, we obtain

u(t) =
(
u0 − 2ck

2c − d

)
e−(2c−d)t + 2ck

2c − d

From Proposition 1, we have

Y (t) ≤
(
Y0 − 2ck

2c − d

)
e−(2c−d)t + 2ck

2c − d

As 2c > d and for Y0 ≥ 2ck
2c−d , we deduce that

lim sup
t−→+∞

Y (t) ≤ 2ck
2c − d

If k = 0, we have

lim sup
t−→+∞

Y (t) = 0

4 Steady States and Stability

4.1 Steady States

In this section we will determine the possible equilibrium points and we will study
their stability/instability with respect to the migration rate k (Table1).

The possible steady states are given by resolving the following equations

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dx1
dt = ax1(1 − x1) − bx1y1 − kx1 = 0

dy1
dt = cx1y1 − dy1 = 0
dx2
dt = ax2(1 − x2) − bx2y2 + kx1 = 0

dy2
dt = c(x2 + kx1)y2 − dy2 = 0

(12)

Proposition 2 Under some conditions, system (4) has seven equilibrium points.
The following table summarize the existence of the steady states:
where D = a2 + am, D1 = a2 + 4ak d

c and m = k(1 − k
a ).

Proof The first steady state is trivial E0 = (x10, y10, x20, y20) = (0, 0, 0, 0).
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Table 1 Existence of possible steady states of system (4)
Equilibrium point Conditions of existence

E0 = (x10, y10, x20, y20) = (0, 0, 0, 0) No conditions

E1 = (x11, y11, x21, y21) = (0, 0, 1, 0) No conditions

E2 = (x12, y12, x22, y22) =
(

0, 0, d
c ,

a
(
1− d

c

)

b

)

c > d

E3 = (x13, y13, x23, y23) =
(
1 − k

a , 0,
a+

√
a2+am
2a , 0

)
a > k

E4 = (x14, y14, x24, y24) =
(
1 − k

a , 0,
d−cm

c , ax24(1−x24)+m
bx24

)
cm < d <
cm + c

2a

(
a +

√
D

)
and

a > k where
m = k(1 − k

a ) > 0 and
D = a2 + am > 0

E5 = (x15, y15, x25, y25) =
(
d
c ,

a
b

(
1 − k

a − d
c

)
, a+√

D1
2a , 0

)
1 > k

a − d
c

E6 = (x16, y16, x26, y26) =(
d
c ,

a
b

(
1 − k

a − d
c

)
, d
c (1 − k),

ax26(1−x26)+k d
c

bx26

) k < 1 < c
d

(
a +

√
D1
2a

)
+ k

and 1 > k
a − d

c where
D1 = a2 + 4ak d

c > 0

If c > d, from (4)2 we obtain

y1 = 0 =⇒

⎧
⎨

⎩

x1 = 0
or

x1 = 1 − k
a

In the case when x1 = 0, system (4) have two steady states

E1 = (x11, y11, x21, y21) = (0, 0, 1, 0)

and

E2 = (x12, y12, x22, y22) =
(

0, 0,
d
c
,
a

(
1 − d

c

)

b

)

.

In the case when x1 = 1 − k
a and if c > d and a > k, we have

{
ax2(1 − x2) − bx2y2 + m = 0

c(x2 + m)y2 − dy2 = 0
(13)

where m = k(1 − k
a ) > 0.
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From (13)2, if y2 = 0 the forth component of the equilibrium point is given by
resolving the second order equation in x2

ax2 − ax22 + m = 0

If D = a2 + am > 0 then x2 = −a+
√
D

−2a < 0 or x2 = a+
√
D

2a > 0.
Therefore, the third equilibrium point is as follows

E3 = (x13, y13, x23, y23) =
(

1 − k
a
, 0,

a +
√
D

2a
, 0

)

.

From (13)2, if x24 = d−cm
c and d > cm, from the (13)1 the forth component of the

equilibrium point is given by

y24 =
ax24(1 − x24)+ m

bx24

To determine the region of nonnegativity of y24, let us consider the following second
order polynomial for x > 0:

− ax2 + ax + m = 0 (14)

which is nonnegative if 0 < x < a+
√
D

2a . Then, if 0 < x24 < a+
√
D

2a which is
satisfied if

cm < d < cm + c
2a

(
a +

√
D

)
.

Then the steady state is given by

E4 = (x14, y14, x24, y24) =
(
1 − k

a
, 0,

d − cm
c

,
ax24(1 − x24)+ m

bx24

)

From (3)2, we have x15 = d
c and from (3)1 we have y15 = a

b

(
1 − k

a − d
c

)
which is

positive if 1 > k
a − d

c .
From (3)3 and (3)4, we get

{
ax2(1 − x2) − bx2y2 + k d

c = 0
c(x2 + k d

c )y2 − dy2 = 0
(15)

from (15)2, we have y25 = 0 and from (15)1 and solving the following polynomial
for x > 0

− ax2 + ax + k
d
c
= 0 (16)
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we find

x25 =
a + √

D1

2A

where D1 = a2 + 4ak d
c > 0.

Then, the sixth steady state is given as follows

E5 = (x15, y15, x25, y25) =
(
d
c
,
a
b

(
1 − k

a
− d

c

)
,
a + √

D1

2a
, 0

)

From (15)2, we have:

x26 =
d
c
(1 − k)

which is positive if 1 > k and from (15)1 we have

y26 =
ax26(1 − x26)+ k d

c

bx26

As the last equilibrium point y26 is nonnegative if 0 < x26 < x25 which is equivalent
to

k < 1 <
c
d

(
a +

√
D1

2a

)
+ k

then the sixth steady state is:

E6 = (x16, y16, x26, y26) =
(
d
c
,
a
b

(
1 − k

a
− d

c

)
,
d
c
(1 − k),

ax26(1 − x26)+ k d
c

bx26

)

Remark 1 E0 = (0, 0, 0, 0): Extinction of both the predator and prey in each of the
two patches (i.e. if there is no prey there is no predator, in this case there is no
migration k = 0).

E1 = (0, 0, 1, 0): Extinction of both the predator and the prey in the first patch and
persistence of the prey and extinction of the predator in the second patch (i.e. if there
is no predation there is a persistence in prey and the prey will grow in the absence
of the predator population. As there is extinction of the prey in the first patch there
is no migration of prey population from the first patch to the second patch k = 0).

E2 =
(

0, 0, d
c ,

a
(
1− d

c

)

b

)

: Extinction of both the predator and prey in the first

patch and there is no migration to the second patch and persistence of both the
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predator and prey in the second patch for the value rate of numerical response bigger
than the mortality rate of the predator in the second patch.

E3 =
(
1 − k

a , 0,
a+

√
a2+am
2a , 0

)
: Extinction of the predator and persistence of the

prey of both the patches. In this case there is a migration of the prey population
from the first patch to the second patch when the migration rate is smaller than the
production rate of the prey a.

E4 =
(
1 − k

a , 0,
d−cm

c , ax24(1−x24)+m
bx24

)
: Persistence of the prey and extinction of

the predator in the first patch and persistence of both the predator and prey in the
second patch and there is a migration of the prey population from the first patch to
the second patch.

E5 =
(
d
c ,

a
b

(
1 − k

a − d
c

)
, a+√

D1
2a , 0

)
: Persistence of both the predator and prey

in the first patch and persistence of the prey and extinction of the predator in the
second patch and there is a migration of the prey population from the first patch to
the second patch.

E6 =
(

d
c ,

a
b

(
1 − k

a − d
c

)
, d
c (1 − k),

ax26(1−x26)+k d
c

bx26

)
: Persistence of both the

predator and prey in each of the two patches and there is a migration of the prey
population from the first patch to the second patch.

4.2 Local Stability

Definition 1 Let Pr1(x1, y1, x2, y2) = (x1, y1) the projection of the point (x1, y1,
x2, y2) on the (4)1-(4)2 describing the first patch (x1, y1) and Pr2(x1, y1, x2, y2) =
(x2, y2) the projection of the point (x1, y1, x2, y2) on the (4)3-(4)4 describing the
second patch (x2, y2).

To study the local stability of the possible equilibriumpoints, one needs to linearize
system (3) around the concerned steady state.

Theorem 3 Consider that E∗ =
(
x∗
1 , y

∗
1 , x

∗
2 , y

∗
2

)
is a steady state of system (4). The

stability of E∗ is deduced from the stability of Pr1E∗ =
(
x∗
1 , y

∗
1

)
and Pr2E∗ =(

x∗
2 , y

∗
2

)
.

(1) If Pr1E∗ and Pr2E∗ are asymptotically stable, then E∗ is also asymptotically
stable.

(2) If Pr1E∗ or Pr2E∗ is unstable, then E∗ is also unstable

Proof By linearizing around the steady state E∗ =
(
x∗
1 , y

∗
1 , x

∗
2 , y

∗
2

)
we obtain the

following linearized system:
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dx1
dt =

(
a(1 − x∗

1 ) − by∗
1 − ax∗

1 − k
)
x1 − bx∗

1 y1
dy1
dt = cy∗

1 x1 +
(
cx∗

1 − d
)
y1

dx2
dt =

(
a(1 − x∗

2 ) − by∗
2 − ax∗

2

)
x2 − bx∗

2 y2 + kx1
dy2
dt = cky∗

2 x1 + cky∗
2 x2 +

(
c(kx∗

1 + x∗
2 ) − d

)
y2

(17)

and the jacobian matrix is given by

J (E∗) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1 − k −bx∗
1 0 0

cy∗
1 cx∗

1 − d 0 0

k 0 A2 −bx∗
2

cky∗
2 0 cy∗

2 c(kx∗
1 + x∗

2 ) − d

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

where

Ai = a(1 − x∗
i ) − by∗

i − ax∗
i = a(1 − 2x∗

i ) − by∗
i , i = 1, 2

Then

det(λI4 − J (E∗)) = det

⎛

⎝
λI2 − M1 02

M λI2 − M2

⎞

⎠

where

M1 =

⎛

⎝
A1 − k −bx∗

1

cy∗
1 cx∗

1 − d

⎞

⎠ ,M2 =

⎛

⎝
A2 −bx∗

2

cy∗
2 c(kx∗

1 + x∗
2 ) − d

⎞

⎠ ,M =

⎛

⎝
k 0

cky∗
2 0

⎞

⎠

and I2 is the 2 × 2 unit matrix and 02 is the 2 × 2 vanishing matrix.
From the determinant property, we have

det(λI4 − J (E∗)) = det (λI2 − M1) × (λI2 − M2) (18)

Then, det (λI2 − M1) = 0 is the characteristic equation associated to Pr1E∗ and
det (λI2 − M2) = 0 is the characteristic equation associated to Pr2E∗.

Therefore, we deduce the result.

Theorem 4 (Stability of E0)
The equilibrium point E0 = (0, 0, 0, 0) is unstable.

Proof The value of A2 at E0 is A2 = 0 and Pr2(E0) = (0, 0). From Theorem 3,
the stability of Pr2(E0) is determined from the following associated characteristic
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equations

det (λI2 − M2) =

∣∣∣∣∣∣

λ − a 0

0 λ + d

∣∣∣∣∣∣

= (λ − a)(λ + d)

= 0

As λ1 = a > 0 and λ2 = −d < 0, then Pr1(E0) is unstable. Therefore, from
Theorem 3 E0 is unstable.

Remark 2 If we consider system (4) with vanishing migration (i.e. there is no migra-
tion of the prey population from the first patch to the second patch: k = 0), we obtain
system (3). Then Pr1(E0) = Pr2(E0) = (0, 0) is a equilibrium point of system (3)
and the stability of E0 can be deduced from the stability of the trivial equilibrium
solution (0, 0) of (3). Therefore, the migration rate does not have any effect on the
stability of the equilibrium solution E0.

Theorem 5 (Stability of E1)
The equilibrium point E1 = (0, 0, 1, 0) is asymptotically stable if a < k and

unstable if a > k.

Proof From the expression of A1 and A2 at E1, we have A1 = 0 and A2 = −a.
As det (λI2 − M1) = (λ − a + k)(λ + d) = 0. Therefore, λ1 = a − k and

λ2 = −d < 0 and we deduce that Pr1(E1) = (0, 0) is asymptotically stable if
a < k and unstable if a > k.

From det (λI2 − M2) = (λ + a)(λ + d) = 0, we get that Pr2(E1) = (1, 0) is
asymptotically stable.

FromTheorem 3, we deduce that E1 is asymptotically stable if a < k and unstable
if a > k.

Remark 3 Pr1(E1) = (0, 0) is a trivial equilibrium solution of the first patch when
k = 0 and Pr2(E1) = (1, 0) is an equilibrium solution of the second patch and the
stability of E1 depends on the migration rate k

Theorem 6 (Stability of E2)

Suppose c > d, the equilibrium point E2 =
(

0, 0, d
c ,

a
(
1− d

c

)

b

)

is asymptotically

stable if a < k and unstable if a > k.

Proof As Pr1(E2) = Pr1(E1) = (0, 0), A1 = 0 and from the proof of Theorem 5,
we have Pr1(E1) = (0, 0) is asymptotically stable if a < k and unstable if a > k.

From the expression of A2 at E2, we have A2 = − ad
c < 0 and the characteristic

equation associated to Pr1(E2) =
(

d
c ,

a
(
1− d

c

)

b

)

is given by
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det (λI2 − M1) = λ2 + λ
ad
c

+ ad
(
1 − d

c

)
= 0

As ∆ =
( ad

c

)2 − 4ad
(
1 − d

c

)
, if ∆ > 0 we get:

λ1 =
− ad

c +
√

∆

2
and λ2 =

− ad
c −

√
∆

2
< 0

From the expression of λ1 and as c > d (condition of the existence of E2), we have
λ1 < 0. Then, Pr2(E2) is stable asymptotically.

If ∆ ≤ 0 we get:

λ1 =
− ad

c + i
√−∆

2
and λ2 =

− ad
c − i

√−∆

2
< 0

and Re(λ1) = Re(λ2) = − ad
c < 0. Then, Pr2(E2) is stable asymptotically.

From Theorem 3, we deduce that E2 =
(

0, 0, d
c ,

a
(
1− d

c

)

b

)

is asymptotically

stable if a < k and unstable if a > k.

Remark 4 Pr1(E2) = (0, 0) is a trivial equilibrium solution of the first patch when

k = 0 and Pr2(E2) =
(

d
c ,

a
(
1− d

c

)

b

)

is not an equilibrium solution of system (3).

Then, the stability of E2 depends on the migration rate k and can be deduced from
the stability of Pr1(E2).

Let
(H1): a( dc − 1) < k
(H2): c(m + x23) < d, where m = k

(
1 − k

a

)
> 0

Theorem 7 (Stability of E3)
Suppose a > k.
If (H1) and (H2) are satisfied, then the equilibrium solution E3 =(

1 − k
a , 0,

a+
√
a2+am
2a , 0

)
is asymptotically stable.

If (H1) or (H2) are not satisfied, then the equilibrium solution E3 =(
1 − k

a , 0,
a+

√
a2+am
2a , 0

)
is unstable.

Proof From the expression of A1 at E3, the characteristic equation associated to
Pr1E3 =

(
1 − k

a , 0
)
is as follows:

det (λI2 − M1) = (λ − k + a)
(

λ − c
(
1 − k

a

)
+ d

)
= 0
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and the corresponding eigenvalues are given by λ1 = k −a and λ2 = c
(
1 − k

a

)
−d.

As a > k, we have λ1 < 0 and if (H1) is satisfied, then Pr1E3 is asymptotically
stable and if not satisfied, Pr1E3 is unstable.

From the expression of x23 and by computation at E3, we have

A2 = − k
x23

(
1 − k

a

)
− ax23 < 0

and the associated characteristic equation to Pr2E3 =
(
a+

√
a2+am
2a , 0

)
is:

det (λI2 − M2) = (λ − A2)(λ − c(m + x23)+ d) = 0

The corresponding eigenvalues are

λ1 = A2 < 0 and λ2 = c(m + x23) − d

If (H2) is satisfied, we obtain that λ2 < 0. Then, Pr2E3 is asymptotically stable and
if (H2) is not satisfied, Pr2E3 is unstable.

From Theorem 3, we deduce that, the equilibrium solution E3 is asymptotically
stable if (H1) and (H2) are satisfied and unstable if (H1) or (H2) is not satisfied.

Theorem 8 (Stability of E4)
Suppose a > k and cm < d < cm + c

2a

(
a +

√
D

)
, where D = a2 + am > 0.

If (H1) is satisfied, then the equilibrium solution E4 =
(
1 − k

a , 0,
d−cm

c ,
ax24(1−x24)+m

bx24

)

is asymptotically stable.
If (H1) is not satisfied, then the equilibrium solution E4 =

(
1 − k

a , 0,
d−cm

c , ax24(1−x24)+m
bx24

)

is unstable.

Proof As Pr1(E4) = Pr1(E3) =
(
1 − k

a , 0
)
and from the proof of Theorem 7, we

have, if (H1) is satisfied. Then Pr1E4 is asymptotically stable and if not satisfied,
Pr1E4 is unstable.

As Pr2(E4) =
(
d−cm

c , ax24(1−x24)+m
bx24

)
, then the associated characteristic equa-

tion is given by:

det (λI2 − M2) = λ2 − λA2 + cbx24y24 = 0

By calculations, we obtain the value of A2 at E4, that is

A2 =
−m − ax224

x24
< 0

If ∆1 = A2
2 − 4cbx24y24 > 0, the corresponding eigenvalues are

λ1 =
A2 +

√
∆1

2
< 0 and λ2 =

A2 − √
∆1

2
< 0.
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Then, Pr2(E4) is asymptotically stable.
If ∆ ≤ 0, the corresponding eigenvalues are

λ1 =
A2 + i

√−∆1

2
< 0 and λ2 =

A2 − i
√−∆1

2
< 0.

and Re(λ1) = Re(λ2) = A2
2 < 0.

Then, Pr2(E4) is asymptotically stable.
From Theorem 3, we deduce that the equilibrium solution E4 is asymptotically

stable if (H1) is satisfied and unstable if (H1) is not satisfied.

Let:
(H3): k < c

2a (a + √
D1)+ d, where D1 = a2 + 4ak d

c > 0.

Theorem 9 (Stability of E5)
Suppose that 1 > k

a − d
c .

E5 =
(
d
c ,

a
b

(
1 − k

a − d
c

)
, a+√

D1
2a , 0

)
is asymptotically stable if (H3) is satisfied

and unstable if (H3) is not satisfied.

Proof From the expression of E5, we have Pr1(E5) =
( d
c ,

a
b

(
1 − k

a − d
c

))
and the

value of A1 at E5 is A1 = k − ax15 and the associated characteristic equation is
given by:

det (λI2 − M1) = λ2 + λax15 + cbx15y15

By the same method as in the proof of Theorem 8, we find that the real part of the
corresponding eigenvalues is negative and Pr1(E5) is asymptotically stable.

From the expressions of E5 and A2 at E5, we have Pr2(E5) =
(
a+√

D1
2a , 0

)
and

A2 = − kd
cx26

− ax26 < 0.
The associated characteristic equation is

det (λI2 − M2) = (λ − A2)

(
λ − c

(
kd
c

− x25

)
+ d

)
= 0

and the corresponding eigenvalues are:

λ1 = A2 < 0 and λ2 = c
(
kd
c

− x25

)
− d.

Then, λ2 < 0 if (H3) is satisfied and Pr2(E5) is asymptotically stable and unstable
if (H3) is not satisfied.

Therefore, from Theorem 3 we deduce the result.

Theorem 10 (Stability of E6)
Suppose k < 1 < c

d

(
a +

√
D1
2a

)
+ k and 1 > k

a − d
c .
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Then, the equilibrium solution E6 =
(

d
c ,

a
b

(
1 − k

a − d
c

)
, d
c (1 − k),

ax26(1−x26)+k d
c

bx26

)
is

asymptotically stable.

Proof As Pr1E6 = Pr1E5 =
( d
c ,

a
b

(
1 − k

a − d
c

))
, from the proof of Theorem 9,

we get Pr1E6 is asymptotically stable.

From the expression of E6, we have Pr2E6 =
(

d
c (1 − k),

ax26(1−x26)+k d
c

bx26

)
and

A2 at E6 is

A2 =
kd
cx26

− ax26 < 0

det (λI2 − M2) = λ2 − λA2 + cbx26y26

By the same method as in the proof of Theorem 8, we find that the real part of the
corresponding eigenvalues is negative and Pr2(E6) is asymptotically stable.

From Theorem 3, we find that E6 is asymptotically stable.

5 Global Stability

In this section we try to study the global stability of the a possible steady state
E∗ =

(
x∗
1 , y

∗
1 , x

∗
2 , y

∗
2

)
of system (4).

Let Vi the Lyapunov function associated to the patch i with i = 1, 2 defined by:

Vi (xi , yi ) =
(
xi − x∗

i
)
− d

c
ln

(
xi
x∗
i

)
+ b

c

{(
yi − y∗

i
)
− y∗

i ln
(
yi
y∗
i

)}
, i = 1, 2

This functions are defined and continuous on I nt (R2
+).

We are interested in constructing Lyapunov function for the coupled system (4).

Theorem 11 Let

V (x1, y1, x2, y2) =
2∑

i=1

Vi (xi , yi )

For a > 0 and k sufficientlly small, the steady state E∗ =
(
x∗
1 , y

∗
1 , x

∗
2 , y

∗
2

)
is globally

asymptotically stable.

Proof The proof is based on a positive definite Lyapunov function. It can be easily
verified that the function is zero at the equilibrium point E∗ =

(
x∗
1 , y

∗
1 , x

∗
2 , y

∗
2

)
and is

positive for all other positive values x1, y1, x2 and y2 and thus, E∗ =
(
x∗
1 , y

∗
1 , x

∗
2 , y

∗
2

)

is the global minimum of V .
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Differentiating Vi , i = 1, 2 along (4) gives:

V̇1(x1, y1) =
ẋ1
x∗
1
(x1 − x∗

1 )+
b
c
ẏ1
y∗
1
(y1 − y∗

1 )

= −a(x1 − x∗
1 )

2

and

V̇2(x2, y2) =
ẋ2
x∗
2
(x2 − x∗

2 )+
b
c
ẏ2
y∗
2
(y2 − y∗

2 )

= −a(x2 − x∗
2 )

2 + k

(
x1
x2

− x∗
1
x∗
2

)

(x2 − x∗
2 )+ bk(x1 − x∗

1 )(y2 − y∗
2 )

= −a(x2 − x∗
2 )

2 + kx∗
1

(
x1
x∗
1

− x2
x∗
2
+ 1 − x1x∗

2
x∗
1 x2

)

+ bk(x1 − x∗
1 )(y2 − y∗

2 )

Let G(xi ) = − xi
x∗
i
+ ln

(
xi
x∗
i

)
, i = 1, 2. By using 1 − x + ln(x) ≤ 0 for x > 0 and

equality holding if x = 1 we have

G(x2) − G(x1)+ 1 − x1x∗
2

x∗
1 x2

+ ln
(
x1x∗

2

x∗
1 x2

)
≤ G(x2) − G(x1)

and

V̇ (x1, y1, x2, y2) = −a(x1 − x∗
1 )

2 − a(x2 − x∗
2 )

2 + kx∗
1

(
x1
x∗
1

− x2
x∗
2
+ 1 − x1x∗

2

x∗
1 x2

)

+bk(x1 − x∗
1 )(y2 − y∗

2 )

= −a(x1 − x∗
1 )

2 − a(x2 − x∗
2 )

2 + kx∗
1

(
G(x2) − G(x1)+ 1 − x1x∗

2

x∗
1 x2

+ ln
(
x1x∗

2

x∗
1 x2

))

+bk(x1 − x∗
1 )(y2 − y∗

2 )

≤ −a(x1 − x∗
1 )

2 − a(x2 − x∗
2 )

2 + kx∗
1 (G(x2) − G(x1))+ bk(x1 − x∗

1 )(y2 − y∗
2 )

As the solutions of system (4) are bounded and a > 0 and k > 0 is sufficiently small,
we deduce that V̇ ≤ 0 and V̇ = 0 if and only if xi = x∗

i and yi = y∗
i , i = 1, 2. By

the classical Lyapunov theory, E∗ is globally asymptotically stable.
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6 Numerical Simulations

In this section, via Matlab software and by using ode45 discretization we give some
numerical simulations in order to illustrate the theoretical results presented in the
previous sections (Figs. 1, 2, 3, 4, 5, 6, 7, 8).
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Fig. 1 Identification of solutions of the two patches with a vanishing migration rate k = 0
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Fig. 2 Stability of E1 with the following parameters values a = 2, b = 3, c = 2, d = 0.5 and
k = 0.5
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Fig. 3 Stability of E2 with the following parameters values a = 2, b = 3, c = 2, d = 0.5 and
k = 4
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Fig. 4 Stability of E3 with the following parameters values a = 2, b = 3, c = 2, d = 4 and
k = 1.5
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Fig. 5 Stability of E4 with the following parameters values a = 2, b = 3, c = 2, d = 4 and k = 5
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Fig. 6 Stability of E5 with the following parameters values a = 3, b = 5, c = 0.02, d = 0.01 and
k = 0.6

50 100 150 200
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

 time t

  x
1,

 y
1,

x 2
,y

2

x
1

y
1

x
2

y
2

(a)
(b)

0 0.1 0.2 0.3 0.4 0.5

0
0.05

0.1
0.15

0.2
0

0.2

0.4

0.6

0.8

 x1 x2

 y
2

Fig. 7 Stability of E5 in (t, x1y1x2y2) plane and in (x1, x2, y2) spacewith the following parameters
values a = 2, b = 3, c = 2, d = 0.5 and k = 0.25
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Fig. 8 Global stability of the positive steady state E6 with different initial conditions values which
vary from 0.5 to 20 where a = 2, b = 3, c = 2, d = 0.5 and k = 0.25; the figure in the right is the
zoom of one in the left
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