
Chapter 3
Mathematical Analysis of a Delayed
Hematopoietic Stem Cell Model
with Wazewska–Lasota Functional
Production Type

Radouane Yafia, M.A. Aziz Alaoui, Abdessamad Tridane, and Ali Moussaoui

Abstract In this chapter, we consider a more general model describing the dynam-
ics of a hematopoietic stem cell (HSC) model with Wazewska–Lasota functional
production type describing the cycle of proliferating and quiescent phases. The
model is governed by a system of two ordinary differential equations with discrete
delay. Its dynamics are studied in terms of local stability and Hopf bifurcation. We
prove the existence of the possible steady state and their stability with respect to the
time delay and the apoptosis rate of proliferating cells. We show that a sequence
of Hopf bifurcations occurs at the positive steady state as the delay crosses some
critical values. We illustrate our results with some numerical simulations.
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3.1 Biological Background

Hematopoietic stem cells (HSCs) are found in adult bone marrow, which is found
in femurs, hips, ribs, sternum, and other bones. HSCs are precursor cells which give
rise to all types of both the myeloid and lymphoid lineages of blood cells. HSCs have
the ability to form multiple cell types (multipotency) and an ability to self-renew.

Multipotency: Individual HSCs can give rise to all of the end-stage blood cell
types.

During differentiation, daughter cells derived from HSCs undertake a series of
commitment decisions, retaining differentiation potential for some lineages while
losing others. Intermediate cells become progressively more restrictive in their
lineage potential until eventually, at the end stage, the cells are lineage-committed.

Self-Renewal: Some kinds of stem cells are thought to undertake asymmetric
cell division to generate one daughter cell that remains a stem cell and one daughter
cell that is differentiated. However, it is not known with certainty whether or not
asymmetric cell division occurs during self-renewal. An alternative possibility is
that hematopoiesis occurs via symmetric divisions that sometimes give rise to two
HSC daughter cells, and sometimes to two daughter cells that are committed to
differentiate. The balance between self-renewal and differentiation would then be
determined by the control of these two distinct kinds of symmetric cell divisions
(see Fig. 3.1).

HSCs are either proliferating or nonproliferating (quiescent or resting) cells. The
majority of HSCs are actually in a quiescent stage [14].

Quiescent HSCs represent a pool of stem cells that are used to produce new blood
cells.

Proliferating HSCs are actively involved in cell division (growth, DNA synthesis,
etc.).

After entering the proliferating phase, a cell is committed to undergo cell division
at a fixed time ! later. The generation time ! is assumed to consist of four phases:
G1, the presynthesis phase; S, the DNA synthesis phase;G2, the postsynthesis phase;
and M, the mitotic phase.

Just after the division, both daughter cells go into the resting (quiescent) phase
called the G0-phase. Once in this phase, they can either return to the proliferating
phase and complete the cycle or die before ending the cycle (see Fig. 3.3).

The first mathematical model was introduced by Mackey [19] and Burns and
Tannock [8]. Mackey’s model is governed by a system of delay differential
equations taking into account the proliferating and quiescent phases and the
necessary time delay of cell division. It was also proposed to describe some periodic
hematological diseases, such as periodic autoimmune hemolytic anemia [6, 22],
cyclical thrombocytopenia [26, 28], cyclical neutropenia [17, 18], and periodic
chronic myelogenous leukemia [14]. Periodic hematological disorders are classic
examples of dynamic diseases. Because of their dynamic properties, they offer an
almost unique opportunity to understand the nature of the regulatory processes
involved in hematopoiesis. Periodic hematological disorders are characterized by
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Fig. 3.1 (a) Stem cells (orange) must accomplish the dual task of self-renewal and generation
of differentiated cells (green). (b)–(d) Possible stem cell strategies that maintain a balance of
stem cells and differentiated progeny. (b) Asymmetric cell division: Each stem cell generates one
daughter stem cell and one daughter destined to differentiate. (c), (d) Population strategies. A pop-
ulation strategy provides dynamic control over the balance between stem cells and differentiated
cells—a capacity that is necessary for repair after injury or disease. In this scheme, stem cells are
defined by their "potential" to generate both stem cells and differentiated daughters, rather than
their actual production of a stem cell and a differentiated cell at each division. (c) Symmetric
cell division: Each stem cell can divide symmetrically to generate either two daughter stem cells
or two differentiated cells. (d) Combination of cell divisions: Each stem cell can divide either
symmetrically or asymmetrically (courtesy of www.nature.com)

oscillations in the number of one or more of the circulating blood cells with
periods on the order of days to months (see the figures in [17] for examples of
experimental data for four hematological diseases. AIHA: Reticulocyte numbers
(!104cells=!L) in an AIHA subject. Adapted from Orr et al. [23]. CT: Cyclical
fluctuations in platelet counts (!103cells=!L). From Yanabu et al. [30]. CN:
Circulating neutrophils (!103cells=!L), platelets (!105cells=!L), and reticulocytes
(!104cells=!L) in a cyclical neutropenic patient. From Guerry et al. [15]. PCML:
White blood cell (top) (!104cells=!L), platelet (middle) (!105cells=!L), and
reticulocyte (bottom) (!104cells=!L) counts in a PCML patient. From Chikkappa
et al. [9]. AIHA: Autoimmune hemolytic anemia. CT: cyclical thrombocytopenia.
CN: cyclical neutropenia. PCML: periodic chronic myelogenous leukemia).

Recently, many authors have tried to reintroduce Mackey’s model in the unstruc-
tured and structured versions. In the unstructured version with discrete and dis-
tributed time delays, the model was intensively studied by Adimy et al. [2]. They
studied the dynamics of the model with respect to the time delay and occurrence and
direction of Hopf bifurcation. It was also studied by Alaoui and Yafia [4] and Alaoui
et al. [5] in terms of local stability, occurrence, and direction of Hopf bifurcation by

www.nature.com
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proposing an approachable model. In recent years, Adimy et al. [1, 2] proposed the
structured model of HSC dynamics in which the cell cycle duration depends on the
cell maturity by reducing the model to a system of delay differential equations by the
characteristic method. This is a way of indicating that cell cycles can be shortened
for some types of cells, or in particular situations such as diseases or anemia.

In 2010, Adimy et al. [3] proposed the same Mackey model with a system of
differential equations with state-dependent delay; they proved the global stability
and the Hopf bifurcation occurrence.

Such stem cells are released by the marrow to help with the regeneration of
damaged bone and tissue. “Techniques already exist to increase the numbers of
blood cell producing stem cells from the bone marrow, but the study focuses on two
other types-endothelial, which produce the cells which make up our blood vessels,
and mesenchymal, which can become bone or cartilage cells.” The scientists hope
that the increased production rate could be used to greatly speed tissue repair and
to allow recovery from wounds that would otherwise be too severe. “There are
also hopes that the technique could help damp down autoimmune diseases such
as rheumatoid arthritis, where the body’s immune system attacks its own tissues.
Mesenchymal stem cells are known to have the ability to damp down the immune
system (see Pitchford et al. [25]).

It is generally agreed that the production rate is a decreasing function over a wide
range of cells levels. Indeed, we would expect the production rate to increase when
the number of cells decreases. There are many functions that fit this description, for
example the Hill function type ˇ.x/ D ˇ0

!n

!nCxn (see Mackey [19]) and the Lasota
function type l.x/ D e!"x [29].

In this work, we focus on the influence of the necessary time delay (duration) of
division and the apoptosis rate of the proliferating cells and the production rate of
HSCs.

3.2 Description of Hematopoietic Stem Cells

The classic model of HSCs is as follows (see [8, 21, 27]):

8
<

:

dN
dt D !ıN ! ˇ.N/N C 2e!"#ˇ.N# /N#

dP
dt D !"PC ˇ.N/N ! e!"#ˇ.N# /N# ;

(3.1)

where ˇ is a monotone decreasing function of N which has the explicit form of a
Hill function (see [7, 13, 19, 24]):

ˇ.N/ D ˇ0
!n

!n C Nn
: (3.2)
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The symbols in Eq. (3.1) have the following interpretation. N is the number
of cells in the nonproliferating phase, N! D N.t ! !/; P the number of cycling
proliferating cells, " the rate of cell loss from the proliferating phase (apoptosis
rate), ı the rate of cell loss from the nonproliferating phase, ! the time spent
in the proliferating phase, ˇ the feedback function, the rate of recruitment from
nonproliferating phase, ˇ0 > 0 the maximal rate of reentry in the proliferating
phase, and # " 0 the number of resting cells at which ˇ has its maximum rate of
change with respect to the resting phase population; n > 0 describes the sensitivity
of the reintroduction rate with changes in the population, and e!"! accounts for
the attenuation due to apoptosis (programmed cell death) at rate " (or the survival
function).

Low cell counts lead to quick reactions of the organism, in order to produce
enough cells to return to a normal state, and this can then induce shorter cell cycles
and a small rate of apoptosis (this is observed for red cells, where, following an
anemia, immature cells enter the bloodstream and replace mature cells very quickly)
[11]. To control this low cell count and increase the speed of production of HSCs, we
replace the quantity e!"! by the Wazewska–Lasota function e!"N! (Fig. 3.2). Let’s
denote the change in the levels of quiescent cells between t ! ! and t ! ! C$t as

$N.t ! !/ D N.tC$t ! !/ ! N.t ! !/:

The production stimulated of level of proliferating cells between t!! and t!!C$t
is given by

$P.t/ D P.tC$t/ ! P.t/:
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Fig. 3.2 From this figure, we observe that the new function e!"Nˇ.N/ is much more decreasing
than the old function e!"!ˇ.N/
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The number of quiescent cells is decreasing, and the production increases after the
time delay ! . Therefore we look for a nonnegative function l.t; !/ such that

"P.t/ D !l.t; !/"N.t ! !/:

We suppose there exists some kind of per capita increase. Therefore we choose
simply l.t; !/ D #P.t/:

P.tC"t/ ! P.t/ D !#P.t/N.tC"t ! !/ ! N.t ! !/;

where # characterizes the excitability of the HSCs. After dividing by "t and
choosing "t !! 0C, we have

d
dt
P.t/ D !#P.t/ d

dt
N.t ! !/:

The solution of this equation with some constant $ is

P.t/ D $e!#N.t!!/:

$ is a medical constant.
We consider the case when $ D % ; without loss of generality, we suppose that

the survival function of the active cells takes the form e!%N.t!!/ instead of e!%! .
The model that is under consideration is governed by the following schematic

representation (see Fig. 3.3):
The mathematical model is as follows:

8
<

:

dN
dt D !ıN ! ˇ.N/N C 2e!%N!ˇ.N! /N!

dP
dt D !%PC ˇ.N/N ! e!%N!ˇ.N! /N! :

(3.3)

Parameter estimation and their references appear in the following table.

Parameters Value used Unit Sources

ˇ0 3–3.5, day!1 Mackey et al. [20], Colijn et al. [10]
& 1:38" 108–0:5" 106 cells kg!1 Mackey et al. [20], Colijn et al. [10]
n 3–4 Mackey et al. [20], Colijn et al. [10]
ı 0:16 day!1 Mackey et al. [20]
% 0:1–0:36 day!1 Mackey et al. [20], Colijn et al. [10]
! 0:83–0:88 day!1 Mackey et al. [20], Colijn et al. [10]
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Fig. 3.3 A schematic representation of the G0 stem cell model. Proliferating phase cells P include
those cells in S (DNA synthesis), G2, and M (mitosis), while the resting phase N cells are in the
G0 phase. ı is the rate of differentiation into all of the committed stem cell populations, while !
represents a loss of proliferating phase cells due to apoptosis. G.!;N/ is the rate of cell reentry
from G0 into the proliferating phase, and " is the duration of the proliferating phase. See Mackey
[19] for further details

Remark by M. C. Mackey This term just tries to capture the fact that the
production of erythrocytes is a decreasing function of the number of erythrocytes
in the circulation. The delay " takes into account the fact that it requires a number
of days " between the time the signal to produce erythrocyte precursors is felt in the
bone marrow and when mature blood cells are ready for circulation.

This work is organized as follows. In Sect. 3.3, we prove the existence and
stability of the possible steady states both with and without delay. Section 3.4
is devoted to the occurrence of Hopf bifurcation by considering the delay as a
parameter bifurcation; we prove the occurrence of a sequence of Hopf bifurcation.
In Sect. 3.5, we give an algorithm determining the stability and instability of periodic
solutions bifurcating from the nontrivial steady state and the direction of bifurcation.
At the end we illustrate our result with numerical simulations.

3.3 Steady States and Stability

In this section, we establish the conditions of the existence of the possible steady
states. We prove their stability for the model without and with delay and show the
influence of the delay and the rate of the apoptosis of the proliferating cells on the
stability of the positive steady state.
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3.3.1 Existence of Possible Steady States

Consider the following system:

8
<

:

dN
dt D !ıN ! ˇ.N/N C 2e!!N"ˇ.N" /N"

dP
dt D !!PC ˇ.N/N ! e!!N"ˇ.N" /N" :

(3.4)

The equilibrium points are given by resolving the equations

8
<

:

dN
dt D 0

dP
dt D 0:

(3.5)

Let d D ln.2/
!

and define the function F.N/ D ˇ.N/.2e!!N ! 1/.
As F.0/ D ˇ0 and F.d/ D 0, we have that F is a positive decreasing function on

#0; dŒ (Fig. 3.4).
From Eq. (3.5)1, there exists N" 2#0; dŒ such that F.N"/ D ı if and only if (iff)

ı 2#0; ˇ0Œ, where N" D F!1.ı/ (see, Fig. 3.4), and from Eq. (3.5)2 we obtain

P" D 1

!
.1 ! e!!N!

/ˇ.N"/N":

Let

.H1/: ı > ˇ0,

.H2/: ı 2#0; ˇ0Œ,
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Fig. 3.4 The curve of the functional F showing the existence of N!
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.H3/: ˇ0 > 0,

.H4/: N! < inf
!
d D ln.2/

!
; . !
2
/

1
n!1
"
.

Proposition 1. (1) If .H1/ is satisfied, system (3.4) has a unique trivial equilibrium
point E0 D .0; 0/.

(2) If .H2/ is satisfied, system (3.4) has two equilibrium points: The first is trivial,
E0 D .0; 0/, and the second is nontrivial (positive), given by E! D .N!;P!/,
where N! D F"1.ı/ and P! D 1

!
.1 ! e"!N"

/ˇ.N!/N!.

The previous proposition gives a condition of the existence of two different
equilibria. In fact, by definition ı is the differentiation rate of cells and ˇ0 is the
maximal proliferation rate of reentry into the proliferating phase. Therefore, if the
proliferation rate is small, then in addition to the trivial equilibrium we get another
nontrivial equilibrium. The normal step is to investigate the condition of stability of
each equilibrium; for this we will first use the case without delay " D 0; second, we
will study the effect of increasing the delay " > 0 on the stability of our model.

3.3.2 Stability of Steady States for ! D 0

For " D 0, system (3.4) becomes a system of ordinary differential equations (ODEs)
given by the following system:

8
<

:

dN
dt D !ıN ! ˇ.N/N C 2e"!Nˇ.N/N

dP
dt D !!PC ˇ.N/N ! e"!Nˇ.N/N:

(3.6)

Proposition 2. (1) If .H1/ is satisfied, the trivial equilibrium point E0 D .0; 0/ is
asymptotically stable.

(2) If .H2/ is satisfied, the equilibrium point E0 D .0; 0/ is unstable and the
nontrivial (positive) E! D .N!;P!/ is asymptotically stable.

Proof. (1) The steady states are the same given in Proposition 1. To study the
stability of E0 D .0; 0/, we linearize system (3.6) around the concerned steady
state E0.

The linearized equation is given as follows:

8
<

:

dN
dt D !ıN C ˇ.0/N

dP
dt D !!P;

(3.7)

and the characteristic equation associated to E0 is

.#C ı ! ˇ.0//.#C !/ D 0: (3.8)

Then the characteristic roots are as follows: #1 D !! and #2 D !ı C ˇ0.
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(2) Suppose now that 0 < ı < ˇ0 and let N D xCN! and P D yCP!. We linearize
system (3.6) around the equilibrium point E! and the linearized system is given
as follows:
8
ˆ̂<

ˆ̂:

dx
dt D !ıxC

n
!ˇ0.N!/N! ! 2!e"!N!

ˇ.N!/N! C 2e"!N!
ˇ0.N!/N!

o
x

dy
dt D !!yC

n
! P!

N! C ! P!ˇ0.N!/
ˇ.N!/ C !e"!N!

ˇ.N!/N!
o
x:

(3.9)
The characteristic equation is given by

."C !/."Cˇ0.N!/N! C 2!e"!N!
ˇ.N!/N! ! 2e"!N!

ˇ0.N!/N!/ D 0 (3.10)

and the associated characteristic roots are "1 D .2e"!N! ! 1/ˇ0.N!/N! !
2!e"!N!

ˇ.N!/N! and "2 D !! . As ˇ is a decreasing positive function and
2e"!N! ! 1 > 0, we have "i < 0, i D 1; 2.

Then the steady states E! are asymptotically stable.
It is clear from the previous results for a nondelay model that when the trivial

equilibrium exists and is unique, then it is asymptotically stable; otherwise, the
nontrivial equilibrium exists and is asymptotically stable. Next, we will study the
stability of our delay model and the effect of the delay on the stability of these
equilibria.

3.3.3 Stability of Steady States for ! > 0

Proposition 3. (1) If .H1/ is satisfied, the trivial equilibrium point E0 D .0; 0/ is
asymptotically stable for all # > 0.

(2) If .H2/–.H4/ are satisfied, there exists #0 > 0 such that the nontrivial
(positive) steady state E! D .N!;P!/ is asymptotically stable for # < #0 and
unstable for # > #0 and the equilibrium point E0 D .0; 0/ is unstable for all # > 0.

Proof. (1) By linearizing system (3.3) around the steady state E0, we obtain the
following linearized equation:

8
<

:

dN
dt D !ıN ! ˇ0N C 2ˇ0N#

dP
dt D !!PC ˇ0N ! ˇ0N# :

(3.11)

The characteristic equation is

."C !/."C ı C ˇ0 ! 2ˇ0e""# / D 0: (3.12)
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For the stability of E0, one needs to study the position of the characteristic roots
of the following equation:

.!C ı C ˇ0 ! 2ˇ0e!!" / D 0: (3.13)

From Proposition 3, E0 is asymptotically stable. For a change of stability,
replacing ! D i! in (3.13) and separating the real and imaginary parts gives us

8
<

:

ı C ˇ0 ! 2ˇ0 cos.!"/ D 0

! C 2ˇ0 sin.!"/ D 0:

(3.14)

From (3.14), we have !2 D .ˇ0 ! ı/.3ˇ0 C ı/. As ˇ0 < ı, there exists
any value of " in which E0 changes the stability. Then we conclude that E0
is asymptotically stable for all " > 0.

(2) Suppose now that " > 0 and ı < ˇ0, and by linearizing system (3.3) around the
nontrivial steady state we have the following linearized system:

8
<

:

dx.t/
dt D !ıx.t/ ! h.N"/x.t/C 2g.N"/x.t ! "/

dy.t/
dt D !#y.t/C h.N"/x.t/ ! g.N"/x.t ! "/;

(3.15)

where

h.N"/ D ˇ.N"/C ˇ0.N"/N" D .ˇ.N/N/0NDN! D H
0
.N/=NDN! ;

g.N"/ D e!#N!
ˇ.N"/ ! #e!#N!

ˇ.N"/N" C e!#N!
ˇ0.N"/N"

D .e!#Nˇ.N/N/0NDN! DD G
0
.N/=NDN! ;

and

x D N ! N" y D P ! P":

The characteristic equation is

$.!; "/ D .!C #/.!C ı C h.N"/ ! g.N"/e!!" / D 0: (3.16)

To study the change of stability, replacing ! D i! and separating the real
and imaginary parts gives us ı C h.N"/ ! g.N"/ cos.!"/ D 0 and ! C
g.N"/ sin.!"/ D 0.
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Then

!2 D g.N!/2 ! .ı C h.N!//2 D .g.N!/ ! ı ! h.N!//:

From the expressions of h and g, we have

g.N!/ ! ı ! h.N!/ D .2e"!N! ! 1/ˇ0.N!/N! ! 2!e"!N!
ˇ.N!/N! < 0:

By calculations, we obtain

g.N!/C ı C h.N!/ D 2e"!N!
ˇ.N!/.2 ! !N!/C ˇ0.N!/N! C 2e"!N!

ˇ0.N!/N!:

From the expression of ˇ, we have

2e"!N!
ˇ.N!/.2 ! !N!/C 2e"!N!

ˇ0.N!/N!

D 2e"!N!
ˇ.N!/.2 ! !N! ! ˇ0"

n

"n C N!n /

D 2e"!N!
ˇ.N!/.2N!n ! !N! C .2 ! ˇ0/"n/:

As ˇ0 < 2 and N! < inf
!
ln.2/
2
; . !
2
/

1
n"1
"
, and from the expression of the function

ˇ, we have

g.N!/C ı C h.N!/ < 0

and the quantity of !2 is positive.
As

j ı C h.N!/
g.N!/

j< 1;

let

#k D
1

!0

#
arccos

$
ı C h.N!/
g.N!/

%
C 2k$

&
; k D 0; 1; 2; 3; : : :; (3.17)

and

!0 D
p
g.N!/2 ! .ı C h.N!//2: (3.18)

Then Eq. (3.16) has a pair of purely imaginary roots ˙i!0 at # D #k; k D 0; 1;
2; 3; : : ::

Let %.#/ D &.#/ C !.#/ denote a root of (3.16) near # D #k such that
&.#k/ D 0; !.#k/ D !0:

Then we deduce the result.
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Fig. 3.5 (a) Stability of E0 D .0; 0/ and the nonexistence of E! for ı > ˇ0. (b) Instability of
E0 D .0; 0/ and stability of E! for ! D 0 and ı < ˇ0
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Fig. 3.6 Stability of E! for n D 3, ! D 10 in (t,P) and (t,N) planes (a) and in (P,N) plane

From this result, we showed that the condition of stability of the trivial solution
is the same for the delay and nondelay models (see Fig. 3.5). On the other hand,
we have additional conditions for the stability of the nontrivial solution (see,
Figs. 3.6 and 3.8); there exists a threshold delay !0 under which the local asymptotic
stability holds if 0 < sup.ı; 2/ < ˇ0 (2 < ˇ0 means that the maximal rate of
proliferation is greater than the rate of division of one cell into two daughters)
and N! < inf

!
ln.2/
"
; . "
2
/

1
n"1
"
and beyond this threshold the system goes to Hopf

bifurcation and becomes unstable (see, Figs. 3.7, 3.9, and 3.10).
It is worth mentioning that inf

!
ln.2/
"
; . "
2
/

1
n"1
"
is determined by the order of "

n
n"1

and 2
1

n"1 ln.2/. This can be determined by knowing the range of possible values
of " .
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Fig. 3.7 Periodic solutions for n D 3, ! D 20 in (t,P) and (t,N) planes (a) and in (P,N) plane

200 400 600 800 1000 1200
0.7

0.8

0.9

1

1.1

1.2

time t

N
, P

N
P

1.11 1.12 1.13 1.14 1.15

0.754

0.756

0.758

0.76

0.762

0.764

0.766

a b

Fig. 3.8 Stability of E! for n D 4, ! D 7 in (t,P) and (t,N) planes (a) and in (P,N) plane
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Fig. 3.9 Periodic solutions for n D 4, ! D 10 in (t,P) and (t,N) planes (a) and in (P,N) plane

3.4 Branch of Bifurcating Periodic Solutions

We apply the Hopf bifurcation theorem to show the existence of a nontrivial periodic
solution of system (3.4), for suitable values of parameter delay, used as a bifurcation
parameter. Therefore, the periodicity is a result of changing the type of stability,
from a stable stationary solution to a limit cycle.



3 Mathematical Analysis of a Delayed Hematopoietic Stem Cell Model... 77

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.9 1 1.1 1.2 1.3 1.4

0.68

0.7

0.72

0.74

0.76

0.78

0.8

a b

Fig. 3.10 Chaotic solutions for n D 3, ! D 30 (a) and n D 4, ! D 16 (b)

In what follows, we recall the formulation of the Hopf bifurcation theorem for
delayed differential equations. Let

dx.t/
dt

D F.˛; xt/; (3.19)

with F W R ! C "! Rn, F of class C k, k # 2, F.˛; 0/ D 0 for all ˛ 2 R,
and C D C.Œ"r; 0";Rn/ the space of continuous functions from Œ"r; 0" into Rn. As
usual, xt is the function defined from Œ"r; 0" into Rn by xt.#/ D x.tC #/, r # 0, and
n 2 N!.

The following assumptions are stated:

.M0/ F of class C k, k # 2, F.˛; 0/ D 0 for all ˛ 2 R, and the map .˛; '/ "!
Dk
'F.˛; '/ sends bounded sets into bounded sets.

.M1/ The characteristic equation

$.˛;%/ D det.%Id " D'F.˛; 0/ exp.%.:/Id// (3.20)

of the linearized equation of (3.19) around the equilibrium v D 0,

dv.t/
dt

D D'F.˛; 0/vt; (3.21)

has in ˛ D ˛0 a simple imaginary root %0 D %.˛0/ D i. All others roots % satisfy
% ¤ m%0 for m 2 Z.
As [.M2/] %.˛/ is the branch of roots passing through %0, we have

@

@˛
Re%.˛/=˛D˛0 ¤ 0: (3.22)

Theorem 1 ([16]). Under the assumptions .M0/, .M1/, and .M2/, there exist
constants "0 > 0 and ı0 and functions ˛."/, T."/, and a T."/-periodic function
x!."/ such that
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(a) All of these functions are of class C k!1 with respect to ", for " 2 Œ0; "0Œ, ˛.0/ D
˛0, T.0/ D 2! , x".0/ D 0.

(b) x"."/ is a T."/-periodic solution of (3.19), for the parameter values equal ˛."/.
(c) For j ˛!˛0 j< ı0 and j T!2! j< ı0, any T-periodic solution p, with k p k< ı0,

of (3.19) for the parameter value ˛, there exists " 2 Œ0; "0Œ such that ˛ D ˛."/,
T D T."/, and p is up to a phase shift equal to x"."/.

Normalizing the delay " by the time scaling t ! t
"
, effecting the change of variables

u.t/ D N.t"/ and v.t/ D P.t"/; system (3.3) is transformed into

8
<

:

:
u .t/ D " Œ!ıu.t/ ! ˛.u.t//C 2e!#u.t!1/˛.u.t ! 1//$

:
v .t/ D " Œ!#v.t/C ˛.u.t// ! e!#u.t!1/˛.u.t ! 1//$;

(3.23)

where ˛.x/ D ˇ.x/x.
By the translation z.t/ D .u.t/; v.t// ! .N";P"/; system (3.23) is written as a

functional differential equation (FDE) in C WD C.Œ!1; 0$;R2/:
:
z .t/ D L."/zt C f0.zt; "/; (3.24)

where L."/ W C !! R2 is a linear operator and f0 W C " R !! R2 are respectively
given by

L."/' D "

0

@
!.ıC h.N!//'1.0/C 2g.N!/'1.!1/

!#'2.0/C h.N!/'1.0/! g.N!/'1.!1/

1

A

f0.'; "/D"
0

@
!H.'1.0/CN!/Ch.N!/'1.0/C2G.'1.!1/CN!/!ıN!!2g.N!/'1.!1/

H.'1.0/CN!/!h.N!/'1.0/!G.'1.!1/CN!/!#P!Cg.N!/'1.!1/:

1

A

for ' D .'1; '2/ 2 C:
The following theorem gives the existence of bifurcating periodic solutions.

Theorem 2. Suppose .H2/–.H4/. Then Eq. (3.23) has a family of periodic solutions
pl."/ with period Tl D Tl."/ for the parameter values " D "."/ such that pl.0/ D 0
(pl.0/ D .N";P"/ for system (3.3)), Tl.0/ D 2!

!0
, and ".0/ D "k, k D 0; 1; 2; : : :. In

this case "k, k D 0; 1; 2; : : :, and !0 are respectively given by Eqs. (3.17) and (3.18).
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Proof. We apply the Hopf bifurcation theorem. From the expression of f in (3.24);
we have

f .0; !/ D 0 and
@f .0; !/
@'

D 0; for all ! > 0:

From (3.16), we have

".i!; !/ D 0 ,

8
<

:

! D !0
and

! D !k; k D 0; 1; 2; : : ::

Thus, characteristic equation (3.16) has a pair of simple imaginary roots #0 D i!0
and #0 D !i!0 at ! D !k, k D 0; 1; 2; : : :.

Lastly, we need to verify the transversality condition.
From (3.16),".#0; !k/ D 0 and @

@#
".#0; !k/ D .#0C$/.1!!kg.N!/e"#!k/ ¤ 0:

According to the implicit function theorem, there exists a complex function # D
#.!/ defined in a neighborhood of !k such that #.!k/ D #0 and ".#.!/; !/ D 0 and

#
0
.!/ D !@".#; !/=@!

@".#; !/=@#
; for ! in a neighborhood of !k; k D 0; 1; 2; : : :: (3.25)

Let #.!/ D %.!/C !.!/: From (3.25) we have

%.!/
0
.!/=!D!k D ! !20

cos.!0!k/C !kg.N!//2 C sin2.!0!k/
for k D 0; 1; 2; : : ::

By the continuity property, we conclude that %
0
.!/=!D!k < 0, for k D 0; 1; 2; : : :.

3.5 Direction of Hopf Bifurcation

In this section we follow methods presented in [12], where the direction and
stability of the bifurcating branch are obtained by the Taylor expansion of the delay
function ! that describes the parameter of bifurcation near the critical value !0 (see
Theorem 2). Namely, this direction and stability are determined by the sign of the
first nonzero term of Taylor expansion, that is,

!."/ D !0 C !2"
2 C o."2/; (3.26)
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and the sign of !2 determines that either the bifurcation is supercritical (if !2 > 0)
and periodic orbits exist for ! > !0, or it is subcritical (if !2 < 0) and periodic orbits
exist for ! < !0. The term !2 may be calculated (see [12]) using the formula

!2 D
Re.c/

Re.qD2M0.i"0; !0/p/
; (3.27)

where M0 is the characteristic matrix of (3.24) given by

M0.#; !/ D

0

@
# ! !a.!/ ! !b.!/e!# 0

!!h.N"/C !g.N"/e!#/ #C $!

1

A ;

where a D a.!/ D !.ı C h.N"// and b D b.!/ D 2g.N"/.
D2M0.i"0; !0/ denotes the derivative of M0 with respect to ! at the critical point

.i"0; !0/; and the constant c is defined as follows:

c D 1

2
qD31f0.0; !0/.P

2.%/;P.%//

CqD21f0.0; !0/.e
0:M!1

0 .0; !0/D
2
1f0.0; !0/.P.%/;P.%//;P.%//

C1
2
qD21f0.0; !0/.e

2i"0:M!1
0 .2i"0; !0/D

2
1f0.0; !0/.P.%/;P.%//;P.%//;

where f0 is the nonlinear part of (3.24), Di
1f0; i D 2; 3, denotes the ith derivative of

f0 with respect to ', P.%/ denotes the eigenvector of A, P.%/ denotes the conjugate
eigenvector, and p and q are defined later.

Now, we will describe all the preceding operators and vectors precisely. Let L WD
L.!0/ W C.Œ!1; 0&;R2/ !! R2 denote the linear part of (3.24). Using the Riesz
representation theorem, one obtains (see [16])

L' D
Z 0

!1
d'.%/'.%/; (3.28)

where

d'.%/ D !0

0

@
!.ı C h.N"//ı.%/C 2g.N"/ı.% C 1/ 0

h.N"/ı.%/ ! g.N"/ı.% C 1/ !$ı.%/I

1

A (3.29)

ı denotes the Dirac function and u" D u".!0/.
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Let A denote the generator of a semigroup generated by the linear part of (3.24).
Then

A'.!/ D

8
<

:

d'
d! .!/ for ! 2 Œ!1; 0/

L' for ! D 0;

(3.30)

where ' 2 C.Œ!1; 0";R2/:
To study the direction of Hopf bifurcation, one needs to calculate the second and

third derivatives of the nonlinear part of (3.24):

D21f0.'; #/ $ D #

0

BBBBB@

!H
00
.N! C '1.0// 1.0/$1.0/

C2G00
.N! C '1.!1// 1.!1/$1.!1/

H
00
.N! C '1.0// 1.0/$1.0/

!G
00
.N! C '1.!1// 1.!1/$1.!1/

1

CCCCCA
(3.31)

and

D31f0.'; #/ $% D #

0

BBBBB@

!H
000
.N! C '1.0// 1.0/$1.0/%1.0/

C2G000
.N! C '1.!1// 1.!1/$1.!1/%1.!1/

H
000
.N! C '1.0// 1.0/$1.0/%1.0/

!G
000
.N! C '1.!1// 1.!1/$1.!1/%1.!1/:

1

CCCCCA
(3.32)

Then

D21f0.0; #0/ $ D #0H
00
.N!/ 1.0/$1.0/

!!1
1

"

C#0G
00
.N!/ 1.!1/$1.!1/

! 2

!1
" (3.33)

and

D31f0.0; #0/ $% D #0H
000
.N!/ 1.0/$1.0/%1.0/

!!1
1

"

C#0G
000
.N!/ 1.!1/$1.!1/%1.!1/

! 2

!1
"
I

(3.34)

 D . 1;  2/;$ D .$1;$2/;% D .%1; %2/ 2 C.Œ!1; 0";R2/.
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As .i!0; "0/ is a solution of (3.16), then i!0 is an eigenvalue of A and there is an
eigenvector of the form P.#/ D pei!0# and pi; i D 1; 2 are complex numbers which
satisfy the following system of equations:

Mp D 0

with

M D M0.i!0; "0/ D

0

@
0 0

!"0h.N!/C "0g.N!/e"i!0 i!0 C $"0:

1

A : (3.35)

Then one may assume

p1 D 1

and calculate

p2 D "0
h.N!/ ! g.N!/e"i!0

i!0 C $"0
:

Now, consider A!, namely, an operator conjugated to A, A! W C.Œ0; 1%;R2/ !! R2,
defined by

A! .s/ D

8
<

:

! d 
ds .s/ for s 2 .0; 1%

!
R 0

"1  .!s/d&.s/ for s D 0;

(3.36)

and  D . 1;  2/ 2 C.Œ0; 1%;R2/.
Let Q.s/ D qei!0s be the eigenvector for A! associated to eigenvalue i!0, q D

.q1; q2/T . One needs to choose q such that the inner product (see [16])

< Q;P >D Q.0/P.0/ !
Z 0

"1

Z #

0

Q.' ! #/d&.#/P.'/d'

is equal to 1. Therefore

q2 D 0

leads to

q1 D
1

1 ! 2"0aC i!0
:
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From (3.33) and (3.34) we have

D21f0.0; !0/.P."/;P."// D !0

!
H

00
.N!/

"
!1
1

#
C G

00
.N!/

"
2

!1

#$
(3.37)

D21f0.0; !0/.P."/;P."// D !0

!
H

00
.N!/

"
!1
1

#
C G

00
.N!/e"2i#0

"
2

!1

#$
(3.38)

and

D31f0.0; !0/.P
2."/;P."// D !0

!
H

000
.N!/

"
!1
1

#
C e"i#0G

000
.N!/

"
2

!1

#$
: (3.39)

and

1

2
qD31f0.0; !0/.P

2."/;P."// D !0q1
2

%
H

000
.N!/C 2e"i#0G

000
.N!/

&
: (3.40)

From the expression of M0, we have

M"1
0 .0; !0/ D ! 1

$!0.aC b/

0

@
$ 0

h.N!/ ! g.N!/ !.aC b/

1

A (3.41)

and

M"1
0 .2i#0; !0/ D

%"1.2i#0; !0/
% 2i#0 C $!0 0

!0h.N!/C !0g.N!/e"2i#0 2i#0 ! !0a ! !0be"2i#0

&
:

(3.42)

From (3.33), (3.37), (3.38), (3.41), and (3.42) we have

qD21f0.0; !0/.e
0M"1

0 .0; !0/D
2
1f0.0; !0/.P."/;P."//;P."// D

q1!0M1

%
!H

00
.N!/C 2G

00
.N!/e"i#0

&
;

(3.43)

where

M1 D ! 1

$!0.aC b/
$!0.!H

00
.N!/C 2G

00
.N!//

and

qD21f0.0; !0/.e
2i#0M"1

0 .2i#0; !0/D
2
1f0.0; !0/.P."/;P."//;P."// D

q1!0N1
%
!H

00
.N!/C 2G

00
.N!/e"i#0

&
;

(3.44)
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where

N1 D !0"
!1.2i#0; !0/.2i#0 C $!0/.!H

00
.N"/C 2G

00
.N"//:

Then

c D !0q1
2

!
!H

000
.N"/C 2e!i#0G

000
.N"/

"
C q1!0M1

!
!H

00
.N"/C 2G

00
.N"/e!i#0

"

q1!0N1
2

!
!H

00
.N"/C 2G

00
.N"/e!i#0

"

and

Re.c/ D !0

2

#
.1 ! !0a/

.1 ! 2!0a/2 C #20
X C !#0

.1 ! 2!0a/2 C #20
Y
$
; (3.45)

where

X D !H
000
.N"/C 2 cos.#0/G

000
.N"/ ! 2M1H

00
.N"/C 4 cos.#0/M1G

00
.N"/

C !0
4#20 C $2!20

k".2i#0; !0/k2
!
!.!0a ! !0b cos.#0//.!H

00
.N"/

C2 cos.#0/M1G
00
.N"// ! 2 sin.#0/G

00
.N"/.2#0 C !0b sin.#0//

"

Y D !2 sin.#0/G
000
.N"/ ! 4 sin.#0/M1G

00
.N"/

C !0
4#20 C $2!20

k".2i#0; !0/k2
!
.!0a ! !0b cos.#0// sin.#0/G

00
.N"/

!.2#0 C !0b sin.#0//.!H
00
.N"/C 2 cos.#0/M1G

00
.N"//:

"

Then we deduce the following result:

Theorem 3. Let Re.c/ be given in (3.45) and $ sufficiently small. Then

(a) The Hopf bifurcation occurs as ! crosses !0 to the right (supercritical Hopf
bifurcation) if Re.c/ > 0 and to the left (subcritical Hopf bifurcation) if
Re.c/ < 0.

(b) Also, the bifurcating periodic solutions are stable if Re.c/ > 0 and unstable if
Re.c/ < 0.

Note that Theorem 3 provides an explicit algorithm for detecting the direction and
stability of Hopf bifurcation (Figs. 3.7, 3.9, and 3.10).
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