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We analyze the global stability properties of birhythmicity in a self-sustained system with random
excitations. The model is a multi-limit-cycle variation in the van der Pol oscillator introduced to
analyze enzymatic substrate reactions in brain waves. We show that the two frequencies are
strongly influenced by the nonlinear coefficients � and �. With a random excitation, such as a
Gaussian white noise, the attractor’s global stability is measured by the mean escape time � from
one limit cycle. An effective activation energy barrier is obtained by the slope of the linear part of
the variation in the escape time � versus the inverse noise intensity 1 /D. We find that the trapping
barriers of the two frequencies can be very different, thus leaving the system on the same attractor
for an overwhelming time. However, we also find that the system is nearly symmetric in a narrow
range of the parameters. © 2010 American Institute of Physics. �doi:10.1063/1.3309014�

Some models employed to describe natural systems, such
as, for instance, glycolysis reactions and circadian protein
rhythmics, exhibit spontaneous oscillations at two distinct
frequencies. The phenomenon is known as birhythmicity,
and the underlying dynamical structure is characterized
by the coexistence of two stable attractors, each display-
ing a different frequency. Being the attractors locally
stable, the system would however stay at a single fre-
quency, the one selected by the choice of the initial con-
ditions, unless an external source disturbs the evolution
and causes a switch to the other attractor. To investigate
such process, we have focused on a particular system of
biological interest, a modified van der Pol oscillator (that
displays birhythmicity), to determine the global stability
properties of the attractors under the influence of noise.
More specifically, we have characterized the stability of
the attractors with the escape times, or the average time
that the system requires to switch from an attractor to
the other under the influence of random fluctuations.
Such analysis reveals that the two attractors can possess
very different properties with very different relative resi-
dence times. Even excluding the most asymmetric cases,
the system can spend something like ten years on one
attractor for each second spent on the other. We conclude
that although a system can be structurally biorhythmic
for the contemporary presence of two locally stable at-
tractors at two different frequencies, actual switch from
one frequency to the other could be very difficult to ob-
serve. A global stability analysis can therefore help to de-
termine the region of the parameter space in which bi-
rhythmic behavior will be genuinely observed.

I. INTRODUCTION

Self-oscillating systems exhibit limit cycles or periodic
sustained oscillations. Examples are abundant, with periods
ranging from cardiac rhythms of seconds, glycolysis over the
minutes, circadian oscillations over the 24 h, while epide-
miological oscillations extend even over the years.1–3 Bi-
rhythmicity refers to the coexistence of two attractors char-
acterized by two different amplitudes and two frequencies:
depending on the initial conditions, the system can produce
self-oscillations at two distinct periods. Such hysteretic be-
havior has been sometimes observed in biological systems.4

Many more theoretical studies have shown the possible oc-
currence of birhythmicity in models of glycolytic
oscillations,5 chemical kinetic equations,6 circadian protein
rhythmics,7–9 and biochemical reactions.10 Perhaps the sim-
plest model that exhibits birhythmicity is a variation in the
well-known van der Pol oscillator proposed by Kaiser11 to
model enzyme reactions. In such a model it has been shown
that two attractors can coexist for some values of the
parameters,11–13 and birhythmicity is robust enough to enable
two14 or more15 oscillators to synchronize. The aim of this
work is to adopt the Kaiser modification of the van der Pol
oscillator11,16,17 as a paradigm for birhythmicity to analyze
the global stability properties of the attractors under the in-
fluence of random excitations, i.e., the response to finite
perturbations.18–20 In fact while local stability properties that
refer to small perturbations of the steady state have been
analyzed in Ref. 15, global stability refers to the response to
large random fluctuations �large enough to drive the system
from one attractor to the other�. Such global stability prop-
erty has not been addressed for the model proposed in Refs.
11–13, and seldom investigated in birhythmic systems �see
Ref. 21 for an exception�. Global stability is well studied in
ac driven �and hence monorhythmical� systems,19,20,22,23 for
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instance, in connection with the phenomenon of stochastic
resonance24 or of switching between chaotic attractors.25,26

We want here to focus on the passage between two attractors
characterized by two different frequencies, and therefore we
will emphasize the consequences of noise driven switching
on the birhythmic properties, while in periodically driven
systems the frequency is preselected by the external drive.

When noise is added, the mean time � required to escape
from a basin of attraction is a useful measure of the attrac-
tor’s global stability also for nonequilibrium or oscillating
systems, such as ac-driven Josephson circuits with intrinsic
thermal fluctuations18 or with finite-spectral-linewidth ac
current.27 In the same spirit, we propose to measure the at-
tractor’s global stability with the mean escape time � from
one stable limit-cycle attractor to another stable limit-cycle
attractor. Escape occurs when under the influence of a deter-
ministic or random term, the system crosses the boundary of
the basin of attraction �i.e., it is driven across the unstable
limit cycle�.

Let us remark that even if we focus on switches due to
random perturbations, one could also drive the system from
an attractor to the other by means of a deterministic or struc-
tural change. This type of switch will be not considered in
the present work; however it is also possible from the deter-
ministic dynamics—considering all possible paths that lead
from one attractor to the other with the appropriate noise-
dependent weight—to retrieve the escape rate.18,20,28–30

We will show that the reason that might hamper the ac-
tual observation of birhythmicity in a noisy environment is
the asymmetry of the escape times. In such a case the system
is likely to stay for a much longer time on one attractor with
respect to the other, and therefore one would rarely observe
the spontaneous transition from an attractor to the
other.19,20,23 We conclude that although coexistence of two
stable attractors with different frequencies is a prerequisite
for birhythmicity, actual observation might be hindered by
very asymmetric stability properties of the two attractors. In
other words we will consider birhythmical systems as
bistable systems and the numerically evaluated escape times
will serve as a measure of the relative stability of the two
solutions. For a glycolytic model it has indeed been proven
by means of the Fokker–Planck equation associated with the
weak noise limit that the original system with two stable
attractors �and hence with birhythmical behavior� changes
structures and becomes monorhythmical.21 Our analysis ar-
rives at a similar conclusion: the escape time from one of the
attractors might be very large compared with the escape time
of the reverse process, even by many orders of magnitude. In
addition, we find that for some range of parameters the sys-
tem is �approximately� symmetric. In this �indeed narrow�
parameter space region the two attractors have comparable
properties, and birhythmicity is more likely to be observed.

The paper is organized as follows. In Sec. II, we describe
the self-sustained system with random excitation and the al-
gorithm of the numerical simulations. Section III deals with
the dynamical attractors of free-noise multi-limit-cycle self-
sustained system. We will show that birhythmicity features
are not uniform in the parameter region where it appears in
the modified van der Pol system. In Sec. IV, we focus on

numerical computed escape rates using the Box–Mueller ran-
dom Gaussian generator algorithm31 for numerical integra-
tion with the Euler method. The Arrhenius factor �i.e., the
relation between the escape time � and the noise intensity D�
allows us to determine an effective activation energy barrier
�Ui, or the slope of the linear part of the variation in the
escape time versus the inverse noise intensity, as a useful
method to summarize the results. Section V is devoted to
conclusions.

II. THE SELF-SUSTAINED SYSTEM WITH RANDOM
EXCITATION

A. The multi-limit-cycle van der Pol oscillator

The model considered is a van der Pol-like oscillator
with a nonlinear function of higher polynomial order de-
scribed by the nonlinear equation �overdots as usual stand for
the derivative with respect to time�

ẍ − ��1 − x2 + �x4 − �x6�ẋ + x = 0, �1�

where �, �, and � are positive parameters that tune the non-
linearity. Model �1� is therefore a prototype for self-sustained
systems and exhibits some interesting features of nonlinear
dynamical systems; for instance, Refs. 16 and 17 have ana-
lyzed the superharmonic resonance structure and have found
symmetry-breaking crisis and intermittence. The nonlinear
dynamics and the synchronization process of two such sys-
tems have been recently investigated in Refs. 13 and 14,
while the possibility that introducing an active control of
chaos can be tamed for an appropriate choice of the coupling
parameters has been considered in Ref. 32.

Equation �1� describes several dynamic systems, ranging
from physics to engineering and biochemistry.33 In particular
Eq. �1� seems to be more appropriate for some biological
processes than the classical van der Pol oscillator, as shown
by Kaiser in Ref. 34. When employed to model biochemical
systems, namely, the enzymatic-substrate reactions, x in Eq.
�1� is proportional to the population of enzyme molecules in
the excited polar state, the quantities � and � measure the
degree of tendency of the system to a ferroelectric instability,
while � is a positive parameter that tunes nonlinearity.13

The nonlinear self-sustained oscillator equation �1� pos-
sesses more than one stable limit-cycle solution,34 a condi-
tion for the occurrence of birhythmicity. Birhythmic systems
are of interest, for example, in biology to describe the coex-
istence of two stable oscillatory states, a situation that can be
found in some enzyme reactions.35 Another example is the
explanation of the existence of multiple frequency and inten-
sity windows in the reaction of biological systems when they
are irradiated with very weak electromagnetic fields.17,34,36–39

In this work we will focus on model �1� as a prototype for
the occurrence of birhythmicity.

B. The model with random excitation and algorithm
for numerical simulations

Let us consider the multi-limit-cycle van del Pol-like
oscillator equation �1� to model coherent oscillations in bio-
logical systems, such as an enzymatic substrate reaction with
ferroelectric behavior in brain waves models �see Refs.
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11–13 for more details�. In this case, one should include the
electrical field applied to the excited enzymes, which de-
pends, for example, on the external chemical influences �i.e.,
the flow of enzyme molecules through the transport phenom-
ena�. One can therefore assume that the external chemical
influence contains a random perturbation. Therefore, adding
both the chemical and the dielectric contribution, the acti-
vated enzymes are subject to a random excitation governed
by the Langevin version of Eq. �1�, namely,

ẍ − ��1 − x2 + �x4 − �x6�ẋ + x = ��t� , �2�

where ��t� is a Gaussian additive white noise40 whose statis-
tical features are completely determined by the additional
properties

���t�� = 0, ���t���t��� = 2D��t − t�� . �3�

The white-noise quality of � is contained in the Dirac
�-function correlation �3�. The parameter D is the intensity
of the Gaussian white noise.

In this work we will numerically integrate Eqs. �2� and
�3� using a Box–Mueller algorithm31 to generate the Gauss-
ian white noise from two random numbers a and b, which
are uniformly distributed on the unit interval �0,1�. By intro-
ducing the new variable ẋ=u, Eq. �2� can be written in the
form

ẋ = u , �4a�

u̇ = ��1 − x2 + �x4 − �x6�u − x + � . �4b�

The simple Euler algorithm version of the integration of Eq.
�4a� is given by

��t = �− 4D�t log�a�cos�2�b� , �5a�

x�t+�t = x + u�t , �5b�

u�t+�t = u + ���1 − x2 + �x4 − �x6�u − x��t + ��t. �5c�

The step size used for numerical integration is generally
equal to �t=0.0001, but in some cases we have used a
smaller step. We have also checked that averaging over as
many as 200 realizations the results converge within few
percents. We notice that there are more accurate methods to
estimate the escape from a basin of attraction, or, in general,
close to an absorbing barrier, to avoid the inaccuracy due to
a finite sampling of the random evolution.41 However, we
have carefully checked that the results we have obtained are
independent of the step size. This has been done in two
ways: halving the step size until stable results are reached
�and with much attention to low noise intensity D41� and
calibrating the numerical method with a potential with a
well-defined activation barrier to retrieve the Kramer escape
rate.42

So, although analytical treatments based on the Fokker–
Planck version of the Langevin equation �2�,43 the variational
approach,18,20,28–30 or faster numerical algorithms such as the
stochastic version of the Runge–Kutta methods are available,
we have preferred to use the simple procedure given by Eq.
�5a� that proved fast enough for the present project.

In the absence of noise ��=0�, Eq. �2� reduces to the
modified version of the van der Pol oscillator �see Eq. �1��,
which has steady-state solutions that correspond to attractors
in state space and depend on the parameters �, �, and �.
Before taking up the subject of noise-induced transitions be-
tween dynamical attractors, we focus on Sec. III on the state-
space structure of the attractors and basin boundaries in the
noise-free self-sustained system. We will show that the fea-
tures of birhythmicity in this modified van der Pol oscillator
strongly depend on � and �.

III. DYNAMICAL ATTRACTORS AND BIRHYTHMICITY
PROPERTIES

In this section we summarize the dynamical attractors of
the modified van der Pol model �1� without Gaussian noise.
The periodic solutions of Eq. �1� can be approximated by

x�t� = A cos 	t . �6�

We recall that approximated analytic estimates of the ampli-
tude A and the frequency 	 have been derived from Ref. 13,
and it has been found that the amplitude A is independent of
the coefficient �, which only enters in the frequency 	.

It appears that depending on the values of the parameters
� and �, the modified van der Pol equation �1� possesses one
or three limit cycles. When three limit cycles are obtained,
two of them are stable and one is unstable, a condition for
birhythmicity; the unstable limit cycle represents the separa-
trix between the basins of attraction of the two stable limit
cycles. We show in Fig. 1 the bifurcation lines that contour
the region of existence of birhythmicity in the two parameter
phase space ��-��.13,14 The bifurcation line on the left de-
notes the passage from a single limit cycle to three limit
cycles, while the right line denotes the reverse passage from
three limit cycles to a single solution. At the conjunction, a
codimension-two bifurcation, or cusp,43 appears. The first bi-
furcation encountered increasing � corresponds to the
saddle-node bifurcation of the outer or larger amplitude
cycle, while the second bifurcation occurs in correspondence
of a saddle-node bifurcation of the inner or smaller ampli-

FIG. 1. �Color online� Parameter domain for the existence of a single limit
cycle �white area� and three limit cycles �gray area� with �=0.1. The bifur-
cation line on the left denotes the saddle-node bifurcation of the outer or
large amplitude cycle �see Fig. 2�, while the right-hand side contour marks
the saddle-node bifurcation of the inner cycle. The rectangle denotes the
parameter region in Table II.
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tude cycle. The two frequencies associated with the limit
cycles are very similar close to the lowest � bifurcation and
clearly distinct at the highest � bifurcation line, as will be
discussed later in detail.

Table I provides for some selected sets Si of the param-
eters in the domain of existence of three limit cycles on
which we will focus our attention the comparison between
amplitudes and frequencies derived from the analytical esti-
mate of Ref. 13 and from numerical simulations of Eq. �1�.
From the table it is clear that birhythmicity is indeed
present—the two stable attractors are characterized by differ-
ent frequencies. However, the two frequencies are very simi-
lar, and in practice it might prove very difficult to resolve the
difference. To illustrate the dynamics of the self-sustained
oscillations, we report in Fig. 2 the limit cycles and in Figs.
3 and 4 the time dependent oscillations. In Fig. 3, the two
frequencies are very similar, while in Fig. 4 we report the
case of two clearly distinct frequencies. It is clear that for the
slow oscillations �the solid line in Fig. 4�, the behavior is not
well approximated by the sinusoidal approximation �6�. It
can also be noticed that the amplitude is still captured by the
theory, while the agreement between the predicted and the
observed frequency becomes poor at low frequencies. In fact,
for Fig. 4�i�, �=0.12, �=0.0014, the theoretical analysis13

predicts A1=2.49 and A3=10.89 with frequencies 	1=0.999
and 	3=0.532, respectively, in good agreement with the nu-
merical data 	1=1.00 and 	3=0.516. For the case of Fig.
4�ii�, �=0.13, �=0.001, the theoretical analysis13 gives
A1=2.828 and A3=13.84 with frequencies 	1=0.998 and
	3=0.521, while the numerical data read 	1=1.00 and
	3=0.195. It is evident that the observed frequency of the
large cycle, 0.195, is much less than the predicted value of
0.521.

In order to understand the effect of the parameters � and
� on the dynamical states, we have simulated Eq. �1� to
numerically derive the frequencies 	i; the results are shown

in Table II. For � and � in the white area of Fig. 1, there
exists only a single limit-cycle solution. In the gray area of
Fig. 1 there are multi-limit-cycle solutions with 	1�	3.
Figure 5 shows the dependence of the frequencies 	i versus
the coefficient � when the parameter � is fixed. In this pa-
rameter region for each value of �, the two limit-cycle fre-
quencies are different at low � values �see Fig. 4�, but con-
verge to the same frequency when � increases �see Fig. 3�.
This reveals that the saddle-node bifurcation at the upper
boundary of the multi-limit-cycle area in Fig. 1 occurs when
the two frequencies are very similar. Thus we conclude that
birhythmicity smoothly disappears increasing � because the
two frequencies become undistinguishable, while the attrac-
tors are clearly distinct at the saddle-node bifurcation.

Figure 6 shows the dependence of 	i versus � for dif-
ferent values of �. As � increases, we move from the bound-
aries of the multi-limit-cycle area where 	1=	3 to enter the
region of the map in which the two limit-cycle frequencies
are different �i.e., 	1�	3�.

So we conclude that the saddle-node bifurcation at the
right-hand side refers not only to the appearance of a new
limit cycle, but also to a cycle with a definitely different
frequency, and therefore in this region birhythmicity is more
easily observed. In contrast, it is evident that it will be ex-
tremely difficult to detect birhythmicity for low �.

IV. NUMERICAL ESTIMATE OF ESCAPE RATES
AND GLOBAL STABILITY ANALYSIS

A. Escape times from the periodic attractors

At nonzero noise intensity �D�0�, the random force
causes the system to occasionally jump from one limit cycle
to the other. The system initialized on a given limit-cycle
attractor �with amplitude A1 or A3� is forced by the random
fluctuations of the � term in Eq. �2� to leave the attractor and
to wander about in the neighboring state space. Escape oc-

TABLE I. Comparison between analytical and numerical characteristics of the limit cycles. All data refer to the
case �=0.1.

Si= �� ,�� Analytical amplitude Numerical amplitude Analytical frequency Numerical frequency

S1= �0.114;0.003� A1=2.377 20 A1=2.378 	1=1.002 12 	1=1.000 15
A2=5.026 38 Unstable 	2=1.001 13 Unstable
A3=5.466 65 A3=5.464 	3=1.0231 	3=1.019 575

S2= �0.1;0.002� A1=2.3069 A1=2.302 65 	1=0.987 	1=0.988
A2=4.8472 Unstable 	2=1.000 113 Unstable
A3=7.1541 A3=7.1345 	3=0.971 23 	3=0.978 31

S3= �0.12;0.003� A1=2.4269 A1=2.4259 	1=0.985 	1=0.988
A2=4.2556 Unstable 	2=0.999 Unstable
A3=6.3245 A3=6.339 18 	3=0.9865 	3=0.988

S4= �0.13;0.004� A1=2.4903 A1=2.489 71 	1=1.000 212 	1=1.000 507
A2=4.4721 Unstable 	2=1.000 113 Unstable
A3=5.0791 A3=5.077 39 	3=0.999 12 	3=0.9989

S5= �0.145;0.005� A1=2.6605 A1=2.659 63 	1=1.000 212 	1=1.000 507
A2=3.8305 Unstable 	2=1.000 113 Unstable
A3=4.964 A3=4.963 36 	3=1.000 499 03 	3=1.000 256

S6= �0.154;0.006� A1=2.7864 A1=2.785 32 	1=0.999 23 	1=0.9989
A2=3.8821 Unstable 	2=1.000 113 Unstable
A3=4.2698 A3=4.268 07 	3=1.000 231 	3=1.000 507
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curs when this random motion drives the system across the
boundary of the basin of attraction �i.e., across the unstable
limit cycle with amplitude A2�. The mean time � required for
escape from a basin of attraction is a useful measure of the
attractor’s global stability. This escape time is analogous to
the escape time of a system trapped in a minimum of the
effective potential, and the escape implies that the random
force drives the system to the other minimum of the effective

potential. The activation energies shown in Fig. 7 sketch the
escape process to be considered in Sec. IV B. In fact, there
are two metastable states.

�1� The system is trapped at the effective potential mini-
mum in the basin of attraction of the limit-cycle ampli-
tude A1. Then, escape to the basin of attraction with
limit-cycle amplitude A3 occurs when the system under
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FIG. 2. The two stable coexisting limit-cycle attractors obtained by numerical integration of Eq. �1� for �=0.1 and the sets of parameters Si �see Table I�. The
thin line refers to the attractor of smaller amplitude �A1� and the thick line to the larger amplitude �A3�. The dashed line denotes the unstable limit cycle and
separates the basin of attraction of the inner or smaller amplitude cycle from the basin of attraction of the outer or larger amplitude cycle.
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Gaussian white noise crosses the unstable limit-cycle
amplitude A2 �i.e., �x�
A2�. This can be numerically
computed by choosing the initial conditions close to the
origin. Thus, the corresponding effective energy barrier
to escape from the basin of attraction with limit-cycle
amplitude A1 to the one with amplitude A3 is called
�U1.

�2� In the reverse situation, the system is trapped at the ef-
fective potential minimum in the basin of attraction of
the limit-cycle amplitude A3. The initial conditions are
chosen outside the basin of attraction of the limit cycle

A1 and far of the unstable limit cycle A2. We will denote
with �U3 the effective energy barrier to escape from the
basin of attraction with limit-cycle amplitude A3 across
the unstable limit cycle with amplitude A2 �i.e., �x��A2�
toward the limit cycle with amplitude A1.

Figure 7 sketches our notation and the most relevant
cases.

• Case �i�: Fig. 7�i� corresponds to the case where �U1 is
larger than �U3. We shall see that �U1 can become very
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FIG. 3. The coexistence between two regimes of noise-free self-sustained oscillations corresponding to the larger �solid line, A3, and frequency 	3� and
smaller �dotted line, A1, and frequency 	1� limit cycles, the two frequencies are approximately the same, 	1		3. The set of parameters is the same as for
the attractors shown in Fig. 2, see Table I.
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large �depending on the coefficients � and ��; in such con-
ditions the attractor of the limit-cycle amplitude A1 is
much more stable than the limit-cycle amplitude A3. Thus,
the system is more likely to stay on the limit-cycle attrac-
tor A1.

• Case �ii�: Fig. 7�ii� depicts the symmetric case �U1

	�U3. Both attractors are equivalent and we are in a sym-
metric bistable double well. The system has approximately
the same probability to stay in one or the other basins.

• Case �iii�: Fig. 7�iii� shows the case where the energy bar-
rier �U1 is less than �U3. Here is the reverse situation of
the case �i�, and the first attractor is less stable. The system
is more likely to stay on the limit-cycle attractor A3.

Thus, while in principle, bistability occurs for all values of
the parameters � and � in the gray area of Fig. 1, noise
driven bistability is more likely to be observed in a narrower
region of the parameter space, see case �ii�.

B. Numerical estimate of the escape rates
and effective energy barriers

Although there exists a method for the calculation of
activation energies in nonequilibrium systems that do not
admit a bona fide potential using the principle of minimum
available noise energy,18–20,28–30 we adopt here the indirect
approach of computing the escape time and then we infer on
the values of the activation energies. The mean escape time �
is computed as the average over a series of trials of the time
�i required for the system to move from one attractor to the
other attractor under the influence of noise. For each trial,
integration is begun at t=0 with the system initialized on the
attractor and proceeds by numerically solving the system
equations with a finite difference integration method of step
size �t �see Eq. �5a��. The fact that the random motion of the
system is due to a Gaussian white noise ensures that escape
will occur with probability 1 within a finite time.18 Thus, the
main question is how long the system stays in the same basin
of attraction. We expect that the escape time is given by the
inverse Kramer escape rate or from the Arrhenius factor42

� 	 exp��Ui/D� , �7�

where �Ui�i=1,3� is the difference between maximum and
minimum values of an effective potential.

We remark that a function plays the role of a thermody-
namic potential for fluctuating dissipative systems that do
not possess a bona fide potential30 if it correctly describes the
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FIG. 4. Birhythmicity with oscillations at two clearly different frequencies,
	1=2	3. �i� �� ;��= �0.12;0.0014� and �ii� �� ;��= �0.13;0.001�. In both
figures we have set �=0.1.

TABLE II. Dependence of the energy barriers �Ui in the parameters plane �� ,�� with �=0.1.

�=0.07 �=0.08 �=0.09 �=0.1 �=0.12 �=0.13

�=0.004 �U1=0.074
�U3=0.0072

�=0.003 �U1=0.095 �U1=0.028
�U3=1.656 �U3=0.0075

�=0.0025 �U1=0.054 �U1=0.015
�U3=2.7 �U3=6.75

�=0.002 �U1=0.25 �U1=0.035 �U1=0.0097
�U3=0.75 �U3=10.5 �U3=28.8

�=0.0016 �U1=0.45 �U1=0.183 �U1=0.026 �U1=0.0035
�U3=0.93 �U3=7.78 �U3=68.2 �U3=224

�=0.0014 �U1=0.98 �U1=0.34 �U1=0.16 �U1=0.021 �U1=0.0017
�U3=0.014 �U3=3.78 �U3=16.14 �U3=152.3 �U3=233.5

�=0.0012 �U1=0.62 �U1=0.291 �U1=0.13 �U1=0.104 �U1=0.0015
�U3=2.15 �U3=11.6 �U3=17.5 �U3=308 �U3=791

�=0.0011 �U1=0.65 �U1=0.28 �U1=0.123 �U1=0.015 �U1=0.003
�U3=4.35 �U3=27.5 �U3=104.9 �U3=564 �U3
1000

�=0.001 �U1=1.3 �U1=0.52 �U1=0.25 �U1=0.11 �U1=0.014 �U1=0.0001
�U3=0.53 �U3=10.7 �U3=16.05 �U3=105.6 �U3
1000 �U3
1000
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FIG. 5. Frequency 	i vs the parameter � for different values of � for the noise-free self-sustained system. The nonlinear parameter reads �=0.1.
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013114-8 Yamapi, Filatrella, and Aziz-Alaoui Chaos 20, 013114 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp



asymptotic response to noise. In a sense, one reverses the
Kramer logic: it is called effective potential a function U that
gives the slope of the logarithm of the escape time versus the
inverse of the noise intensity for low noise strength �see Eq.
�7��: U� log�� /D� �for D→0�. In this framework, one could
regard the potential U as a way to summarize the behavior of
the escape times. In other words it is completely equivalent
either to say that the escape times are exponentially distrib-
uted versus the inverse of the noise �for low noise� with
slope U or that the effective potential reads U.

The relevant attractors and basins of attraction are those
shown in Fig. 2. The data show that the mean escape times �
obtained from simulations for both limit-cycle state A1 and
A3 state increase exponentially with the inverse noise inten-
sity. With the parameter sets Si, we find that the variation in
the average escape time �on a logarithm scale� as function of
the inverse noise intensity 1 /D strongly depends on the non-
linear coefficients � and �. For example, the sets S1, S4, and

S6 correspond to case �i� in which the attractor of the limit
cycle A3 is less stable than the attractor A1. The symmetric
bistable situation, case �ii�, is observed with the set S5. The
last case �iii� is found for the sets S2 and S5. It is important to
note that case �ii� only occurs in a very narrow range,
0.08���0.09 and 0.0012���0.0014.19,20 Outside this
narrow area the properties of the two attractors are very
different.

Fitting a straight line through the data points in the linear
part of Eq. �7� and measuring its slope, we obtain an estimate
of �U1 and �U3, the effective activation energies for the
escape from the limit-cycle attractors A1 and A3, respectively.
Since the effective activation energy is defined by the low-
noise intensity asymptote, the accuracy of numerical simula-
tion estimates can be affected if high-noise intensity points
�i.e., points where the relation is not linear� are included in
the fitting procedure. For this reason, data points for which
the resulting Arrhenius factor bends have been excluded
from the fitting procedure �we employ a 
2 test to check for
linearity�. Figure 8 shows the variation in the effective en-
ergy barriers versus the coefficient � with the set of param-
eters Si. The effective energy barriers increase when � in-
creases, and the behaviors strongly depend upon the set of
the parameters Si. The scenarios mentioned in Sec. IV B can
be found in the behaviors of �U1,3 �i.e., cases �i�, �ii�, and
�iii��. Case �i� appears in Fig. 8 for the sets S1 ,S4 ,S6, in
which the energy barrier �U1 quickly increases. Here, one
concludes that the limit-cycle attractor A1 of the modified
van der Pol oscillator is much more stable than the attractor
A3 �with respect to Gaussian white noise�. The system will
likely stay for a long time in the effective potential well of
the limit-cycle attractor A1, for the corresponding effective
barrier is higher. For instance when �=0.5 in S1, we observe
�U1 /�U3	80. The set S5 corresponds to the almost sym-
metric bistable situation, i.e., case �ii�. Both effective energy
barriers �U1 and �U3 increase when � increases and are
comparable: the system remains for approximately the same
time in the two effective potential wells. In the last scenario
S2 and S3, i.e., case �iii�, we have a phenomenon opposed to
that of case �i�: the limit-cycle attractor A3 is much more
stable than the attractor A1. The system remains for a much
longer time in the limit-cycle attractor A3 because the energy
barrier is too high, so if the noise level is large enough to
cause a switch from A3 to A1, the same noise will drive back
the system to A3 in a very short time interval with very high
probability.

Let us remark that “short” and “long” might be very
different.19,20,23 To measure the different properties, we com-
pute the average persistence or residence time P1,3 on the
attractor with limit-cycle amplitude A1,3 as

Pj =
� j

�1 + �3
, j = 1,3, �8�

where �1,3 is the escape time from the first attractor A1 or
third attractor A3, see Eq. �7�. For the parameters S1, for
noise intensity around D=1 /20, we get P3=0.018, and obvi-
ously P1=0.982, i.e., the system will spend 1.8% of the time
on the third attractor A3 and 98.2% on the first attractor A1.

FIG. 7. �Color online� Sketch of the effective activation energies �U1 and
�U3 for the free-noise self-sustained oscillator with multilimit cycles. We
underline that the barrier height has a clear meaning as the slope of the
escape time 7, while the effective potential U is qualitatively drawn only to
help the intuition.

013114-9 Birhythmicity Chaos 20, 013114 �2010�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp



Decreasing the noise down to D=1 /100, P3 decreases to
P3	3�10−9. In other words, for any second spent on the
less stable attractor A3 the system will stay for about ten
years on the most stable state A1. Such a dramatic change at
low noise occurs for �U1 /�U3	50. From Table II it is clear
that the ratio between energy barriers can easily be much
larger.

To analyze the dynamic structure in the various areas of
the chart drawn from Fig. 1, we present in Table II the ef-
fective energy barriers as a function of the coefficients � and

� selected in the dotted rectangle of Fig. 1. When � is fixed
and � increases, the effective energy barrier �U1 decreases,
whereas the energy barrier �U2 considerably increases. For
example, for �=0.0014, the effective energy barrier of the
limit-cycle attractor A1 decreases from �U1��=0.08�=0.98
to the value �U1��=0.13�=0.0017, while the barrier �U3

increases from �U3��=0.08�=0.014 to the value
�U3��=0.07�=233.5. Then, there is a high probability that
the system remains for a longer time in the limit-cycle attrac-
tor A3, see Eq. �7�. A similar behavior is reported when � is
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FIG. 8. Effective activation energies vs the coefficient � with the set of parameters Si. The thick line corresponds to escape from the outer cycle A3, while the
dashed line refers to escape from the inner cycle A1. The parameters � and � are the same as in Table I.
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fixed and that � increases. Let us note about Table II that for
low � value and high � values, case �iii� becomes predomi-
nant: �U3 increases and becomes so large that we have not
been able to compute such a barrier even with simulations as
long as tmax	1010 normalized units. We can only estimate
the barrier to be larger than 1000.

The behavior of the effective energy barriers can be also
interpreted in the following manner: the right side of the gray
area of the existence of bistable regime in Fig. 1, where the
two frequencies are clearly different, corresponds to the
physical case where one of the two limit-cycle attractors,
namely, A3, has a very high effective activation energy, while
the other, namely, A1, vanishes because the effective poten-
tial barrier becomes zero. This process explains the passage
from birhythmicity to a single limit-cycle attractor.

V. CONCLUSIONS

We have considered the characteristics of birhythmicity
and the global stability properties of the attractors in a self-
sustained system. We have found that birhythmicity in a
modified van der Pol oscillator is strongly influenced by the
nonlinear coefficients � and �: the two frequencies converge
or diverge when the nonlinear coefficients are varied, leading
to almost undistinguishable frequencies for low � and high
�. Adding a random excitation, we have found that the sys-
tem crosses the boundary between the basins of attraction
�i.e., moves across the unstable limit cycle with amplitude
A2�. The mean time � to escape from one limit-cycle attractor
to the other has been estimated in the low-noise limit, and it
is proposed as a measure of the attractor’s global stability.
By considering the variation in the mean escape time � ver-
sus the inverse noise intensity 1 /D, the slope of the linear
part has enabled us to summarize the results in the form of an
effective activation energy barrier, which is function of the
physical system parameters. We have found that as in other
systems that exhibit noise induced switches between two at-
tractors, the escape times can be very different,19,20,23 so it
could be difficult to observe birhythmicity for high � and
low �. We remark that systems19,20,23 are periodically driven,
and therefore monorhythmic.

We conclude that although birhythmicity per se refers
just to the occurrence of two frequencies, actual observation
is subject to much more restrictive conditions. Our purpose
is to go beyond the mere existence of birhythmicity to show
that there are limitations that restrict the likeliness that bi-
rhythmicity spontaneously occurs. We speculate that there
might be other models that do possess two attractors with
different frequencies, but noise driven birhythmicity is diffi-
cult to observe because of the different stability properties of
the attractors. This might be the reason why birhythmicity
has been predicted in many models, but rarely observed in
experiments—actually there is to our knowledge just one
case of clear observation of birhythmic behavior.4 Moreover,
the switch from an attractor to another in Ref. 4 is due to a
change in the parameters, not to spontaneous transition from
a frequency to the other. We suggest that an analysis similar
to that carried out in this work is therefore useful to ascertain
the birhythmic property in a real system.
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