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Nash equilibrium is widely present in various social disputes. As of now, in structured static populations, such
as social networks, regular, and random graphs, the discussions on Nash equilibrium are quite limited. In a
relatively stable static gaming network, a rational individual has to comprehensively consider all his/her
opponents’ strategies before they adopt a unified strategy. In this scenario, a new strategy equilibrium emerges
in the system. We define this equilibrium as a local Nash equilibrium. In this paper, we present an explicit
definition of the local Nash equilibrium for the two-strategy games in structured populations. Based on the
definition, we investigate the condition that a system reaches the evolutionary stable state when the
individuals play the Prisoner’s dilemma and snow-drift game. The local Nash equilibrium provides a way to
judge whether a gaming structured population reaches the evolutionary stable state on one hand. On the other
hand, it can be used to predict whether cooperators can survive in a system long before the system reaches its
evolutionary stable state for the Prisoner’s dilemma game. Our work therefore provides a theoretical
framework for understanding the evolutionary stable state in the gaming populations with static structures.

I
n the past half century, the concept of Nash equilibrium is widely accepted and applied to analyze the possible
outcomes in game theory if several strategists are making decisions at the same time. Their applications on
arms races1, currency crises, environmental regulations2, auctions, even football matches3 are well known. In

the evolutionary game theory4–6, Nash equilibrium5–7 actually is a stable mixed strategy. The mixed strategy
represents a distribution of pure strategies in the evolutionary stable state. Indeed, this class of Nash equilibrium is
composed of all the individuals. Instead, in the classical two-person two-strategy games, Nash equilibrium is only
composed of two individuals. The Nash equilibrium is interpreted as that once two individuals are in this
equilibrium, they can not gain more payoff by adjusting their own pure strategy unilaterally.

In a structured population as social networks, individuals don’t normally interact with strangers. Their
opponents are relatively stable, which are called neighbors in complex networks8–11. In this scenario, a new
strategy equilibrium emerges in the system, which unevenly exists in two connected individuals with other
neighbors. We define this class of strategy equilibrium as a local Nash equilibrium. In this paper, we present
an explicit definition of the local Nash equilibrium in networks for the two-strategy games12–16. We investigate the
condition that a system reaches the evolutionary stable state. For the Prisoner’s dilemma game (PDG)17–23 and
snow-drift game (SG)4,5,24,25, we will show that the Local Nash equilibrium is a typical feature of the cooperative
structured populations.

In a structured population, the equilibrium between two strategies is actually composed of the two strategists
and all their other neighbors. The change on the strategy equilibrium leads to a completely different evolutionary
stable state4. This evolutionary stable state is composed of a set of strategies with different frequencies. The
frequencies of the strategies in this state must be statistically stable. In the evolutionary stable state of the games
with cooperators and defectors, the frequency of cooperators in the structured populations has attracted a lot of
attention12,13,24,26–28. Researchers are interested in how the cooperators can survive in a circumstance with a large
temptation to defect. To clarify this point, one has to understand the generation of the evolutionary stable state at
first.

In the evolutionary game theory, previous studies discussed the evolutionary stable state in the unstructured
populations from a replicator dynamics perspective6,29–31. In the structured populations, for example, spatial24,26

and social12,13,27,28 networks, because of the difficulty of formulating the replicator dynamics, the discussions are
relatively restricted. In the structured populations except the fully connected population, the folk theorem of
evolutionary game theory does not stand6, since the strategy equilibrium only exists locally. To get the evolu-
tionary stable state, there is no need to get all the connected individuals in the local Nash equilibrium. A certain
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number of the local Nash equilibrium suffice to lead the system into
the stable state, since balancing the gap of payoffs between different
strategies is not so difficult in the structured populations. In what
follows, we will discuss what the local Nash equilibrium in structured
populations is. We will present extensive numerical evidences that it
is a typical feature of cooperative populations.

Local Nash equilibrium
In a structured population, such as the spatial networks24,26, random
graphs (network)32, Watts and Strogatz small-world networks
(WS)32, and Barabási and Albert scale-free networks (BA)33, an indi-
vidual normally plays with its nearest neighbors in one round. The
links among them are relatively stable in the whole evolution process.
In one round, a game is played by every pair of individuals connected
by a link. For an individual i, it plays with ki neighbors, where ki 5 Sj

Aij denotes i’s degree or connectivity. Aij is an entry of the adjacency
matrix of the network, taking values Aij 5 1 (i 5 1, 2, …, N) whenever
node i and j are connected and Aij 5 0 otherwise.

In a two-strategy evolutionary game, we define i’s strategy as

Vi nð Þ~
Xi nð Þ

1{Xi nð Þ

� �
: ð1Þ

Xi(n) can only take 1 or 0 at the nth round. For Xi(n) 5 1, i is a
cooperator denoted by C. For Xi(n) 5 0, i is a defector denoted by D.

For i’s local gaming environment, we define i’s local frequency of C
at the nth round as

Wi nð Þ~

P
j AijV

T
j nð Þ

1

0

� �

ki
: ð2Þ

In this scenario, keeping i’s neighbors’ strategies unchanged is equi-
valent to keeping Wi(n) unchanged. For the global gaming envir-
onment, we define the global frequency of C at the nth round as

b nð Þ~

P
i V

T
i nð Þ

1

0

� �

N
: ð3Þ

where N denotes the size of network. We take the PDG4,5 for example.
As a heuristic framework, the PDG describes a commonly identified
paradigm in many real-world situations. It has been widely studied as
a standard model for the confrontation between cooperative and
selfish behaviors. The selfish behavior here is manifested by a defect-
ive strategy, aspiring to obtain the greatest benefit from the inter-
action with others. This PDG game model considers two prisoners
who are placed in separate cells. Each prisoner must decide to confess
(defect) or keep silence (cooperate). A prisoner may receive one of
the following four different payoffs depending on both its own strat-
egy and the other prisoner’s strategy. It gains T (temptation to defect)
for defecting a cooperator, R (reward for mutual cooperation) for
cooperating with a cooperator, P (punishment for mutual defection)
for defecting a defector, and S (sucker’s payoff) for cooperating with a
defector. Normally, the four payoff values follow the following
inequalities: T . R . P $ S and 2R . T 1 S. Here, 2R . T 1 S
makes mutual cooperation the best outcome from the prospective of
the interest of these two-person group.

In the PDG, the payoff table is a 2 3 2 matrix. Considering equa-
tion (1), i’s payoff at the nth round reads as

Gi nð Þ~VT
i nð Þ

R S

T P

� �X
j

AijVj nð Þ: ð4Þ

Given equation (2), Sj AijVj(n) can be rewritten as

X
j

AijVj nð Þ~ki
1

0

� �
Wi nð Þz

0

1

� �
1{Wi nð Þð Þ

� �
: ð5Þ

Insert equation (1) and equation (5) into equation (4), we have

Gi nð Þ~ki Di nð ÞXi nð ÞzTWi nð ÞzP 1{Wi nð Þð Þð Þ, ð6Þ

where ki denotes the individual i’s degree or connectivity. Di(n) 5 S
2 P 1 (R 2 T 1 P 2 S)Wi(n), where Wi(n) denotes i’s local fre-
quency of C at the nth round.

The maximum of Gi(n) can be obtained by the best strategy, which
is denoted by

Xi,max nð Þ~
1 for Di nð Þw0

1 or 0 for Di nð Þ~0

0 for Di nð Þv0

8><
>: : ð7Þ

If two connected individuals i and j choose Xi,max(n) and Xj,max(n) as
their strategies at the nth round, respectively, the individual i and j are
in a special situation, which is defined as the local Nash Equilibrium.
We call these two individuals ‘‘Nash pair’’. If all the individuals in the
system are in the local Nash Equilibrium, we define that these indi-
viduals are in a global Nash Equilibrium. If Di(n) 5 0 or Dj(n) 5 0,
this local equilibrium is classified as a weak local Nash equilibrium.
Otherwise, it is classified as a strict local Nash equilibrium. Note that
the local Nash equilibrium defined here is not a mixed strategy but a
pure strategy’s local combination. The mixed strategy, instead, repre-
sents the distribution of pure strategies in the population.

Notably, not only two D players can form a Nash pair, C and D or
two C can also form a Nash pair under a proper condition. Five
typical examples are shown in Fig. 1. In this scenario, we define

a~
Nv

E
, ð8Þ

where Nv denotes the number of the Nash pairs in a network and E
denotes the number of edges in the network. In another word, a
represents the fraction of Nash pairs in the connected individuals.
When ki 5 kj 5 1, the local Nash equilibrium is equal to Nash
equilibrium in the classical game theory. In the following, we will
show that a can be considered as a tool to judge whether the evolu-
tionary system is in an evolutionary stable state.

Results
In the well-mixed population, everybody interacts with everybody
else with an identical probability. The system reaches the evolution-
ary stable state when all the defectors are in Nash equilibrium, in
which no cooperators can survive5,31. But, real populations are not
well mixed. Some have an explicit social12,13,27,28 or spatial prop-
erties24,26. In these populations, a large number of previous stud-
ies12,13,24,26–28 concentrated on explaining why the cooperators can
survive in the evolutionary stable state. For a population with a fixed
topological structure and updating rule, various cooperative patterns
are generated by different initial conditions and randomness. When
the updating rule is deterministic, the system is rather sensitive to the
initial condition, which can thus be regarded as a topological chaos26

in a sense. In the evolution process, b, the frequency of cooperators in
the network, fluctuates dramatically. In terms of b, one can hardly
predict whether it will decay to 0 before the system is stable. The
evolutions of b in different systems exhibit different pictures.
However, these systems have one feature associated with a in
common.

Global and local Nash equilibrium. In the structured population, a
keeps evolving with time. If a grows with time, the system is
approaching the global Nash equilibrium. If a reaches 1, the
system reaches the global Nash equilibrium, where all the defectors
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are in Nash pairs. In this scenario, no cooperators can survive. If a
decays with time, the payoff of the individuals with Xmax(n) grows,
since the restriction from their neighbors with Xmax(n) decays. The
system reaches its evolutionary stable state until their payoffs are
close to their neighbors’ payoffs.

To further understand the evolution process of the gaming system,
we trace the evolution process of the Nash pairs in the PDG.
Interestingly, once a decays with time, the cooperators can always
survive in the evolutionary stable state. The system gets relatively
stable when a reaches its minimum. One can find that D (n) # 0
in equation (7), since T . R . P $ S. This ranking of the game
parameters indicates that the Nash pairs in the PDG is either
a defector-defector pair or a defector-cooperator pair. As
mentioned above, the formation of the defector-defector Nash pair
limits the payoff of these defectors. Thus these defector-defector

Nash pairs become a breakthrough of their cooperative neighbors.
This is why we can predict the existence of cooperators in the evolu-
tionary stable state by the fraction of Nash pairs, since the number of
defectors normally decays with time when the Nash pairs are
invaded.

Clearly, this way can hardly be generalized to other games. For
instance, there is no direct connection between the number of defec-
tors and a in the snow-drift game (also known as the hawk-dove or
chicken game)4,5,24,25, thus one can not predict the existence of coop-
erator by a any more. However, one can still identify the evolutionary
stable state by a.

Numerical experiments. To confirm our conclusion above, we test
two typical updating rules on two classes of typical social networks.
The first updating rule is proposed by Nowak and May26, while the

cooperator defector

PDG
(a-1) (a-2)

SG
(b-3)

SG
(b-2)

SG
(b-1)

i j i j

i j

i j i j

PDG

Figure 1 | Illustrations of Nash pairs for the PDG and SG. The two individuals in the yellow eclipses form a Nash pair. For the PDG, the sequence of

payoffs follows T . R . P $ S. (a-1) shows a defector-defector Nash pair, where Di(n) 5 Dj(n) , 0; (a-2) shows a defector-cooperator Nash pair, where

Di(n) , 0 and Dj(n) 5 0; For the SG, the sequence of payoff changes to T . R . S $ P. (b-1) shows a cooperator-cooperator Nash pair, where Di(n) 5

Dj(n) . 0 for S 2 P . 7(T 2 R). (b-2) shows a cooperator-defector Nash pair, where Di(n) $ 0 and Dj(n) , 0. (b-3) shows a defector-defector Nash pair,

where Di(n) 5 Dj(n) , 0 for S 2 P , 7(T 2 R).

Figure 2 | The evolution of �a and �b for the PDG in social networks. We measure the evolution of a and b for a series of the temptation to defect T 5 1.1,

1.2, …, 2.0. The other parameters of the PDG are set as P 5 S 5 0 and R 5 1. (a) and (c) show the simulation results obtained by the updating rule

proposed by Nowak and May26 on the WS small-world networks and BA scale-free networks, respectively. (b) and (d) show the simulation results

obtained by the updating rule proposed by Santos and Pacheco27 on both networks, respectively. Note that (a), (b), (c), and (d) are semilog graphs. For

(e), (f), (g), and (h), we show the average frequency of cooperators �b (dotted lines) and distribution of frequencies of cooperators for each value of T (the

squares with gray scale are used to describe the value of b distribution), corresponding to (a), (b), (c), and (d). These squares are the binned data of b. For

example, a decimal in (0.25, 0.34) is approximated with 0.3.
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second one is proposed by Karl H. Schlag34. Since Santos and Pacheco
find that the second updating rule can highly promote cooperation in
the networks with a power-law degree distribution27,35,36, the rule is
extensively employed in the following works28,35–39. In terms of topolo-
gical structures, we choose the well-known Watts and Strogatz (WS)
small-world networks32 and Barabási and Albert (BA) scale-free
networks33. The details about the updating rules, network models
and simulation settings are shown in section Methods.

In Fig. 2 and 3, we measure the average of a and b over extensive
simulations. All the networks are composed of 1, 024 identical indi-
viduals with average degree 6. We run ten simulations for each of the
parameter values for the game on each of the ten networks. Thus,
each plot in the figures corresponds to 100 simulations. For the PDG,
in Fig. 2, one can observe the decay of a for the temptation to defect
T , 1.5 in (a), T , 1.3 in (b), T # 2.0 in (c), and T # 2.0 in (d) (T is
an entry of the payoff matrix in equation 4). In these cases, our

simulation results show that cooperators can survive in the corres-
ponding evolutionary stable states. For the SG, in Fig. 3, for the
simulation parameter r , 1, the systems get their evolutionary stable
state when a decays to its minimum. Instead, for r 5 1, one can derive

T 5 1, R 5 0.5, S 5 P 5 0, since P 5 0, T~
1
2r

z
1
2

, R~
1
2r

, and

S~
1
2r

{
1
2

. Given Di(n) 5 S 2 P 1 (R 2 T 1 P 2 S)Wi(n), one can

derive Di(n) 5 20.5Wi(n) # 0. Thus, Xi,max(n) 5 0 is a solution of
equation 7 when Wi(n) 5 0. If and only if r 5 1 and Wi(n) 5 0, the
systems can reach the global Nash equilibrium, where the defectors
dominate the population.

Temporary and permanent evolutionary stable state. Naturally, we
come back to a key issue, ‘Why do we choose the Nash pairs to judge
the evolutionary stable state?’ In terms of the current

Figure 3 | The evolution of �a and �b for the snow-drift game in social networks. We keep the same simulation parameter r as that in the reference24. r is a

parameter controlling the level of the temptation to play D. We test the cases of r 5 0.1, 0.2, …, 1.0. The four payoff parameters are set as P 5 0,

T~
1
2r

z
1
2

, R~
1
2r

and, S~
1
2r

{
1
2

. The other the simulation settings are the same as Fig. 2.

Figure 4 | Comparison between the evolution processes of a and b in a single simulation for T 5 1.2 of the PDG and r 5 0.8 of the SG. In this figure, the

cyan and black solid lines denote the simulation results obtained by the updating rule proposed by Nowak and May26 on the WS small-world networks and

BA scale-free networks, respectively. The olive and red solid lines denote the simulation results obtained by the updating rule of Santos and Pacheco27 on

both networks, respectively. Note that a doesn’t reach 1 or decays with time before entering the black rectangles, while b is stabilized at a certain value. This

observation indicates the system doesn’t reach its evolutionary stable state. On the other hand, one can observe that the green solid line in (a) is still

decaying at the time step 51, 000, which indicates the cooperators is growing after the time step 51, 000. These conclusions can hardly be obtained by the

observations in (b). For SG, we can’t predict whether cooperators can survive in the systems by a, but we can still judge whether the systems reach their

evolutionary stable states by it. In (d), one can observe the cyan, black, and olive lines become rather stable when a reaches its minimum in (c). One can

also observe that the red line in (c) decays slowly at the end of our simulation, which indicates the system is still evolving. These ‘long temporary stable

states’ observed in (b) and (d) originate from the topological feature of scale-free networks. Once an individual with a large degree changes his/her

strategy, b will vary drastically36,40.
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criteria12,13,24,26–28, it seems to be, in a sense, ambiguous. We currently
rely on measuring the fraction of cooperators (or defectors) to check
whether it is stabilized at a particular value with minimum
fluctuation. This method may lead to a misleading conclusion in
some conditions. For instance, b may be stabilized at a particular
value with a small fluctuation before the system reaches the
evolutionary stable state.

In Fig. 4, one can observe two long temporary stable states in the
black rectangles. The previous definition in the literatures may take
them as a permanent evolutionary stable state. This drawback origi-
nates from that the definition can hardly tell the difference between
the temporary stable state and permanent stable state in few time
steps. From the prospective of the local Nash equilibrium, it is clear
that the system doesn’t reach its evolutionary stable state, since a

neither reaches its maximum 1 nor decays with time. This state
conflicts with the polarized feature of a. In another word, a can
only be stabilized at the maximum 1 or a certain minimum. If coop-
erators can survive in the system, one should observe that the Nash
pairs are invaded by the cooperators and a decays with time. After the
system reaches its evolutionary stable state, a would be stabilized at
its minimum with a slight fluctuation. If not, a is growing with time
to 1.

In addition, the evolution of a also provides a general way to mea-
sure the self-organizing ability of the system in another sense. The
ability is governed by the strategy updating rule. In the semilog graph
Fig. 2(a) and (c) (Nowak and May’s rule), one can observe that the
decay rate of a is much higher than that in Fig. 2(b) and (d) (Santos
and Pacheco’s rule). If one takes the evolutionary rate as the self-

Figure 5 | The evolution of c for the PDG. The first row shows the evolution process of c. The second row shows the roles of individuals at step 10, 001.

The third row highlights the defectors in Nash equilibrium, corresponding to the second row. Column (a) and (c) show the simulation results obtained by

a updating rule proposed by Nowak and May26 on the WS small-world networks and BA scale-free networks, respectively. Column (b) and (d) show the

simulation results obtained by the updating rule of Santos and Pacheco27 on both networks, respectively. In this figure, solid red circles denote the

cooperators, blue circles denote the defectors and yellow circles denote the defectors in the local Nash equilibrium. In column (a) and (b), T 5 1.2. In

column (c) and (d), T 5 1.9.
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organizing ability of system, this observation indicates that the
self-organizing ability of system governed by Nowak and May’s
updating rule is much higher than that governed by Santos and
Pacheco’s rule.

Briefly, the local Nash equilibrium is a typical feature of evolution-
ary games in the structured populations. In a unstructured popu-
lation, the system can reach its evolutionary stable state only if
everyone defects. In a structured population, the local Nash equilib-
rium can also lead the system to its evolutionary stable state. This
feature finally differs the evolutionary games in the structured popu-
lations from that in the unstructured populations. For the PDG, it has
an extra application, which can help to predict the tendency of
evolution before the system reaches its stable state.

To clarify the connection between the local Nash equilibrium and
the system stability, we discuss the function of the Nash pairs. For
convenience, we define

c~
DV

ND
, ð9Þ

where DV denotes the number of defectors in Nash pairs in a network
and ND denotes the number of defectors in the network. In another
word, c represents the fraction of defectors in the local Nash equi-
librium. Fig. 5 shows the evolution process of c in the PDG. For the
two classes of networks, (a) and (b) show the cases of T 5 1.2 for the
WS small-world networks, (c) and (d) show the cases of T 5 1.9 for
the BA scale-free networks, both of which are not dominated by

Figure 6 | The evolution of c for the SG. The first row shows the evolution process of c. The second row shows the roles of individuals at step 10, 001. The

third row highlights the defectors in Nash equilibrium, corresponding to the second row. Column (a) and (c) show the simulation results obtained by a

updating rule proposed by Nowak and May26 on the WS small-world networks and BA scale-free networks, respectively. Column (b) and (d) show the

simulation results obtained by the updating rule of Santos and Pacheco27 on both networks, respectively. In this figure, solid red circles denote the

cooperators, blue circles denote the defectors and yellow circles denote the defectors in the local Nash equilibrium. In this figure, the simulation parameter

r is uniformly set to 0.8.
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cooperators (red plots) or defectors (blue plots). One can observe
that almost all the defectors (blue plots in the second row) are in the
Nash pairs (yellow plots in the third row). This observation indicates
almost all the defectors are in the local Nash equilibrium, which
confirms the observations in the panels shown in the first row.

Fig. 6 shows the evolution process of c in the SG. One can observe
that c is neither close to 1 nor 0, which indicates that SG is a co-
existence dilemma41. Comparing the second row with the third row,
one can find that the two individuals in the local Nash equilibrium
can be two cooperators, two defectors, and one cooperator and one
defector. This feature of the local Nash equilibrium is clearly different
from the classical Nash equilibrium in the SG.

In addition to these two classes of networks and two updating rules
discussed above, we also test the influence of other topological struc-
tures on the function of Nash pairs for the PDG. We run extensive
simulations on random graphs32, regular graphs, and regular lattices.
All the observations are consistent with the results we show here (see
the supplementary information for details).

Discussion
Inspired by the Nash equilibrium in the classical game theory, we
have presented an explicit definition of local Nash equilibrium in
structured populations. Here, we add the word ‘local’ to emphasize
that the Nash equilibrium mentioned in this paper is in the struc-
tured populations. The local Nash equilibrium proposed in this
paper is an extension of the Nash equilibrium in the classical game
theory, shown in Fig. 7(a). Briefly, if both two connected individuals
can not gain more payoff by adjusting their pure strategies when their
neighbors’ strategies are fixed, they are in the local Nash equilibrium,
shown in Fig. 7(c). For convenience, we call these two individuals
‘‘Nash pair’’. Notably, the local Nash equilibrium is not directly
relevant to the updating rules, since it is based on the local pattern
of pure strategies.

Based on the definition of the local Nash equilibrium, we observe
that the local Nash equilibrium is a typical feature of the cooperative
structured populations. Unlike in the unstructured population, this
concept is not built on the replicator dynamics6, since the mixed
strategy7 is normally not allowed in the structured populations as
of now. Even if the mixed strategy is allowed, the present updating
rules can hardly be formulated as well. Although much efforts are

devoted to formulate the updating rules, while the corresponding
results are relatively limited42. On top of this, the Nash equilibrium
in the unstructured populations is composed of all the individuals,
shown in Fig. 7(b). This equilibrium is a global behavior, while it is a
local behavior in the structured populations.

For the PDG, we accidentally find that once the fraction of Nash
pairs in the connected individuals decays with time, cooperators can
survive in its evolutionary stable state. If cooperators can survive in
the system, the system reaches its evolutionary stable state when the
fraction of Nash pairs reaches its minimum. In this scenario, one can
find that the cooperative behavior is actually protected by these Nash
pairs. The fact that almost all the defectors are in Nash pairs cuts
these defectors’ payoffs and enables cooperation to survive in a cir-
cumstance with a large temptation to defect. If the fraction of Nash
pairs grows constantly, the system is approaching the global Nash
equilibrium. From the prospective of the local Nash equilibrium, the
emergence of the cooperative cluster actually originates from the self-
organization of the Nash pairs, which confirms the previous explana-
tion28 in a sense.

To check the influence of the network size, we also run extra
simulations on the networks with 256, 4 196, and 16 384 individuals
with respect to that the sizes must satisfy n2 (n [ N) in a regular
lattice. We observe that the size of networks have an apparent influ-
ence on the value of a and b, while it doesn’t change the evolution of
Nash pairs, namely, growing to 1 or decaying to the minimum. In
addition, we also test the influence of the payoff memory, defined in
the references39,42. Again, the influence is confined to the level of
cooperation. The Nash pairs can still be used to judge the system
stability and predict the existence of the cooperative cluster. Unlike
the smooth decay in Figs. 2 and 3, the number of Nash pairs decays
suddenly when the payoff memory is large. Respecting the details of
updating rules have a crucial influence on the result in structured
population12,13,41, we also test the function of Nash pairs in the popu-
lation governed by the ‘death-birth’ rule13 and Moran process12. For
the ‘death-birth’ rule with a weak selection (the intensity of selection
equals 0.01) and Moran process when all the link weights are ident-
ical, it is likewise valid. Acknowledgedly, there are many other inter-
esting updating rules41,42, while we can’t cover all of them in one
paper. Our coming work probably can provide more evidences.

In a nutshell, the self-organization of Nash pairs forms the final
dynamical complex patterns of evolutionary games in structured
populations. The concept of the local Nash equilibrium provides a
way to judge whether a gaming structured population reaches the
evolutionary stable state. For the PDG, the concept can also be used
to predict whether cooperation can exist in a system long before the
system reaches its evolutionary stable state. In the evolutionary stable
state, the minimal amount of local Nash equilibriums form the smal-
lest interface between the pure strategy clusters. This may be the
reason why the system exhibits a relatively stable state when the
number of local Nash equilibrium reaches the minimum. Our obser-
vations provide a different prospective for understanding the evolu-
tionary stable state in gaming structured populations. It may also
help to analytically model the evolutionary games in structured
populations.

Methods
Two-person two-strategy game. Two-person two-strategy game model is a heuristic
framework, which describes a basic paradigm in many real-world situations. The
well-known examples are the PDG17–21,42 and SG (also known as the hawk-dove or
chicken game)4,5,24,25. The two-strategy game has been widely studied as a standard
model for the confrontation between two different behaviors, for example, to
cooperate or to defect. For convenience, the two strategies are denoted by C and D.

In a round of two prisoners’ game, an individual i may receive one of the following
four different payoffs depending on both its own strategy and the other individual j’s
strategy. With D, it gains T and P in the cases that j plays C and D, respectively. With
C, it gains R and S in the cases that j plays C and D, respectively. For the PDG, C and D
denote staying silent and betraying, respectively. In this scenario, the following
condition must hold for the payoffs T . R . P $ S. For the snow-drift game, the
sequence of payoff changes to T . R . S $ P. No matter which game the population

Figure 7 | Illustrations of Nash equilibrium for the PDG in (a) two
persons, (b) unstructured population, and (c) structured population. The

individuals in the yellow eclipses are in the different types of Nash

equilibrium. Solid lines denote the real links in the structured populations,

while dotted lines denote the possible links in the unstructured

populations. The classical two-person game shown in (a) is the simplest

structured population, where ki 5 kj 5 1 and the size of network equals 2.
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plays, at the next round, all the individuals will know the strategy of their opponents in
the previous round. They can then adjust their strategies simultaneously according to
a certain updating rule of strategy.

Updating rules. The updating rules we adopt in this paper are Darwinian, but the
ways to select a strategy with higher payoff are quite different. The first updating rule
is proposed by Nowak and May26, which describes a local deterministic evolution. In
this process, each individual chooses the neighbor gaining the highest payoff in the
last round as its reference. If the payoff of the reference is higher than the individual,
they will play the reference’s strategy in the next round. Otherwise, it will keep its own
strategy. The second updating rule27 describes a local random evolution. In one
round, an individual i chooses a randomly picked neighbor j as its reference. If j’s
payoff is higher than that of i, i will play j’s strategy in the next round with a
probability directly proportional to the difference between their payoffs Gj 2 Gi and
inversely proportional to Max{ki, kj} ? T, where ki and kj denote the connectivity of i
and j, respectively. T denotes the temptation to defect. Based on the previous
definition12,13,24,26–28, an evolutionary game in structured populations continues until
the system reaches a dynamical equilibrium, where the fraction of cooperators (or
defectors) is stabilized at the particular value with minimum fluctuation.

Network models. We test two typical networks in this paper. One is the WS small
world network32, while the other is the BA scale-free network33. The WS small-world
networks are generated by randomly rewiring 10% of the links in the regular graph,
which are composed of 1, 024 identical individuals of degree 6. The BA scale-free
networks are generated by m0 5 m 5 333, where m0 denotes the size of the initial fully
connected network and m denotes the number of links among a new node and the
existing individuals in the network.

Simulation settings. The simulation results were obtained by ten random
assignments of 512 defectors and cooperators on ten different realizations of the same
type of network specified by the appropriate parameters. We run 11, 000 time steps
for each simulation (except Fig. 4), in which 10, 000 steps to guarantee that the system
is in a dynamical equilibrium in which the number of cooperators (or defectors) is
stabilized at the particular value with minimum fluctuation. Next, we measure b from
10, 000 to 11, 000 steps to derive �b.
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