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Abstract Topology identification of complex networks is an important problem. Existing research shows that

the synchronization of network nodes is an obstacle in the identification of network topology. Identification of

the structure of the network presents an interesting challenge during the synchronization of complex networks.

We developed a new method using the sinusoidal disturbance to identify the topology when the complex network

achieves synchronization. Compared with the disturbance of all the nodes, the disturbance of the key nodes

alone can achieve a very good effect. Finally, numerical simulation data are provided to validate our hypothesis.
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1 Introduction

Complex networks, such as transportation and phone networks, the Internet, wireless networks, and the

World Wide Web, play an important role in our life. Significant progress has been made in understanding

complex networks since the discovery of their small-world [1] and scale-free [2] characteristics. Recently,

synchronization of complex networks has evoked broad interest. Two basic tools are used to analyze

various synchronization problems encountered in complex networks. The first is the master stability

function, proposed by Pecora and Carroll [3], and the other is the connection graph stability method,

proposed by Belykh et al. [4, 5].

However, the above conclusion is based on the condition that the topology of a complex network is

known. When the topology is unknown, it is important to estimate it in the study of complex networks.

Topology identification, as an inverse problem, has received widespread attention from the systems science

community. Many effective methods such as adaptive synchronization, Granger causality test, compres-

sive sensing sourced from different fields of research are used to study the identification problem [6–13].
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In this study, we focused on topology identification using outer synchronization between networks. Using

a complex dynamic network with unknown topology as a drive system, researchers have constructed a

response system and adaptive controllers to estimate the unknown topology. Note that one condition is

very important during the process of topology identification, which is the linearly independent condition

on synchronization manifold. In our previous study, we used the persistently excite (PE) condition to re-

place the above condition. Topology identification of a complex network is successful when PE condition

is satisfied, otherwise it would be failed. We also analyzed the relationship between the two conditions.

However, it is difficult for some complex networks to satisfy these conditions when the coupling strength

exceeds a certain threshold. For example, the synchronization threshold is very small for fully connected

networks or star-shaped networks.

Hindmarsh-Rose (HR) model, is a popular neuron model, which has received wide attention in the

past years. The model is a Hodgkin-Huxley-type physiologically realistic model describing the signal

transmission across axons in neurons. Recently, the dynamic behavior of the HR system in complex

networks has been investigated in detail [14–18]. By formulating a master stability equation for the time-

delayed networks of HR neurons, Mukeshwar et al. [14] showed that there is always an extended region

of stable synchronous activity corresponding to low coupling strengths. Wang et al. [15] investigated

the lag synchronization of multiple identical HR neuron systems coupled in a ring structure. Jia et

al. [16] reported several significant results using a bridging network and employing the adaptive law to

estimate the topology of the system. However, their results are debatable, because they ignored the PE

condition. Using the popular HR neuronal model, Ehrich et al. [17] demonstrated that the dynamics

could be complicated even for identical neurons and simple coupling. Li et al. [18] investigated the effects

of network structure on the synchronizability of a nonlinearly coupled dynamic network of HR neurons

with a sigmoidal coupling function. As complex networks usually contain a large number of nodes, the

choice of nodes to be controlled is critical. In recent years, several researchers have proposed the pinning

strategy to control complex networks [19–24].

In this paper, considering HR neural as a network node with nonlinear coupling, we investigated the

structure identification problem of the complex network. Our results show that when the nodes of the

network achieve inner synchronization, it is difficult to identify the structure of the network. This is

because when the network nodes reach synchronization, the PE condition cannot be satisfied, and the

topology identification fails. Therefore, we focused on how to identification of the network structure when

the PE condition is not satisfied. We propose a new method for identifying network structure by adding

sinusoidal signals to the network nodes. Considering the heterogeneity of node degrees, we investigated the

structural identification of a star-shaped network. Our results indicate that the sinusoidal disturbance

introduced into the network nodes can induce topology identification successfully. In particular, as

opposed to the disturbance of all nodes, the disturbance of key nodes is a very effective method.

The remainder of this paper is organized as follows. Section 2 introduces HR models and provides

the mathematical background for this work. The main results on topology identification are presented in

Section 3. In Section 4, topology identification of a complex network, using a sinusoidal disturbance, is

discussed. Finally, our concluding remarks are presented in Section 5.

2 Preliminaries

In this section, the HR model and the mathematical background of this study are introduced.

2.1 HR model

In 1952, a mathematical model that describes neuron activity was proposed by two neurophysiologists,

Hodgkin and Huxley [25]. Based on their model, several neuron models have been developed over the last

few decade [26–29]. We primarily consider one of the well-known HR models, which can be described by
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Figure 1 Time evolution of the fast (a) and slow (b) variables in the HR system showing a bursting phase (1) (Parameters

used are a = 2.8, α = 1.6, ρ = 0.001, b = 9, and c = 5).

⎧
⎪⎪⎨

⎪⎪⎩

ẋ = ax2 − x3 − y − z,

ẏ = (a+ α)x2 − y,

ż = ρ(bx+ c− z),

(1)

where x represents the membrane potential, and y and z are associated with fast and slow currents,

respectively. With appropriate parameter settings, the HR neuron model can exhibit most of biological

neuron behavior, such as spiking or bursting, as shown in Figure 1. The HR system can be denoted as

Ẋ = f(X), where X = (x, y, z) and f(X) represents the right functions.

2.2 Mathematical background

In order to derive the main results, the following mathematical expressions are required.

Definition 1 ([30, 31]). A function ϕ : R+ → Rn×m is PE if there exist T0, δ1, δ2 > 0 such that

δ1In �
∫ t+T0

t

ϕ(τ)ϕT(τ)dτ � δ2In (2)

holds for all t � 0.

Remark 1. The PE condition is a key factor in the topology identification of complex networks. Some

researchers also propose the linearly independent condition on synchronization manifold. The first con-

dition can imply the second one (refer to the proof in [8]).

Assumption 1 ([32]). There exists a positive definite matrix P and a constant L, such that

(X̃ −X)TP (f(t, X̃)− f(t,X)) � L(X̃ −X)T(X̃ −X) (3)

for any X, X̃ ∈ Rm and t � t0.

Lemma 1 ([33]). Given a system of the following form:

{
ė1 = g(t)e2 + f1(t); e1 ∈ Rp, e2 ∈ Rq,

ė2 = f2(t),
(4)

such that
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(i) limt→∞ ‖e1(t)‖ = 0, limt→∞ ‖f1(t)‖ = 0, limt→∞ ‖f2(t)‖ = 0;

(ii) g(t), ġ(t) are bounded, and gT(t) is PE;

then limt→∞ ‖e2(t)‖ = 0.

3 Topology identification of a complex network using a nonlinear coupling
function

Let us consider a network comprising HR systems with nonlinear coupling, which is described by

⎧
⎪⎪⎨

⎪⎪⎩

ẋi = ax2
i − x3

i + yi − zi +
∑N

j=1 Aijh(xi, xj) + r1(Xi),

ẏi = (a+ α)x2
i − yi + r2(Xi),

żi = ρ(bxi + c− zi) + r3(Xi),

(5)

where Xi = (xi, yi, zi) and the coupling function h is given by

h(xi, xj) = ε
xi − V

1 + exp(−λ(xj −Θ))
, (6)

where ε is the coupling strength, Θ = −0.25 is the threshold reached by every action potential for a

neuron, V = 2 is the reversal potential and λ = 10. R(Xi) = (r1(Xi), r2(Xi), r3(Xi)) is a disturbance

function. Suppose the system is bounded, we can easily derive the following assumption using the mean

value theorem for the function h.

Assumption 2. There exist positive constants L1 and L2 such that

|h(x̃i, x̃j)− h(xi, xj)| � L1|x̃i − xi|+ L2|x̃j − xj |, (7)

for all xi and xj .

We design the response network as

⎧
⎪⎪⎨

⎪⎪⎩

˙̃xi = ax̃2
i − x3

i + ỹi − z̃i +
∑N

j=1 dijh(x̃i, x̃j)− ki(x̃i − xi) + r1(X̃i),

˙̃yi = (a+ α)x̃2
i − ỹi − ki(ỹi − yi)− ki(ỹi − yi) + r2(X̃i),

˙̃zi = ρ(bx̃i + c− z̃i)− ki(z̃i − zi)− ki(z̃i − zi) + r3(X̃i),

(8)

where X̃i = (x̃i, ỹi, z̃i), with the adaptive laws

{
ḋij = −δij(x̃i − xi)h(x̃i, x̃j),

k̇i = sie
T
i ei, i = 1, . . . , N,

(9)

where ei = (x̃i − xi, ỹi − yi, z̃i − zi)
T.

Theorem 1. Suppose that the HR system functions f(X) and the disturbance functions R(X) satisfy

Assumption 1, and the coupling function satisfies Assumption 2. If for any i, gTi (t) = [h(xi, x1), . . . ,

h(xi, xN )]T is PE, and ġi(t) is bounded, then limt→∞(dij(t)−Aij) = 0.

Proof . Choose a Lyapunov candidate as

V =
1

2

N∑

i=1

eTi ei +
1

2

N∑

i=1

N∑

j=1

1

δij
(dij(t)−Aij)

2 +
1

2

N∑

i=1

1

si
(ki(t)− k∗)2,

where k∗ is a positive constant to be determined. Moreover, the derivative of V along trajectories of the

dynamical network (5) and (8) is given by

V̇ =

N∑

i=1

eTi (f(X̃i)− f(Xi)) +

N∑

i=1

N∑

j=1

dijeixh(x̃i, x̃j)−
N∑

i=1

N∑

j=1

Aijeixh(xi, xj)
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−
N∑

i=1

N∑

j=1

eix((dij −Aij)h(x̃i, x̃j) +

N∑

i=1

eTi (R(X̃i)−R(Xi))−
N∑

i=1

k∗eTi ei

�
N∑

i=1

(L + L̃)eTi ei +
N∑

i=1

N∑

j=1

Aijeix(h(x̃i, x̃j)− h(xi, xj))− k∗
l∑

i=1

eTi ei

�
N∑

i=1

(L + L̃)eTi ei +

N∑

i=1

N∑

j=1

Aijeix(L1|eix|+ L2|ejx|)− k∗
N∑

i=1

eTi ei

�
N∑

i=1

(L + L̃)eTi ei +
N∑

i=1

N∑

j=1

Aij [(L1 +
L2

2
)e2ix +

L2

2
e2jx]− k∗

N∑

i=1

eTi ei.

As elements of the matrix A are constant, we denote AM = maxi,j=1,...,N{|Aij |}, and obtain

V̇ �
N∑

i=1

(
NAM (L1 + L2) + L+ L̃− k∗

)
eTi ei. (10)

Thus, letting NAM (L1 + L2) + L+ L̃+ 1 = k∗, we obtain

V̇ � −
N∑

i=1

eTi ei, (11)

which means that ‖E‖ and |dij(t)−Aij | are bounded, where ET(t) = (e1, e2, . . . , eN ). From Eq. (11), if

for any t,
∫ t

0

ET(τ)E(τ)dτ � −
∫ t

0

V̇ (τ)dτ = (V (0)− V (t)) � V (0),

then E(t) ∈ L2 and thus ei(t) ∈ L2.

From Assumptions 1 and 2, it is seen that ėi (i = 1, . . . , N) are bounded, it follows from Barbalat’s

lemma [30] that limt→∞ ‖ei(t)‖ = 0 for i = 1, . . . , N .

Note that

ėi = f(X̃i)− f(Xi) +R(X̃i)−R(Xi) +
N∑

j=1

Aij(h(x̃i, x̃j)− h(xi, xj))

−kiei + [h(x̃i, x̃1), . . . , h(x̃i, x̃N )]ζi,

ζ̇i = −[δi1e1xh(x̃i, x̃1), . . . , δiNeixh(x̃i, x̃N )]T,

where ζi = [di1(t)−Ai1, . . . , diN (t)−AiN ]T. Let ηi(t) = f(X̃i)−f(Xi)+R(X̃i)−R(Xi)+
∑N

j=1 Aij(h(x̃i, x̃j)

−h(xi, xj))− kiei. It is obvious that limt→∞ ηi(t) = 0 as limt→∞[X̃i(t)−Xi(t)] = limt→∞ ei(t) = 0.

Because gTi (t) = [h(x̃i, x̃1), . . . , h(x̃i, x̃N )]T is PE, and ġi(t) is bounded. From Lemma 1, we can

conclude that limt→∞(dij(t)−Aij) = 0 for all i, j = 1, 2, . . . , N .

Remark 2. From (11), we only obtain that V̇ is semi-definition. Therefore, it does not imply that

|dij(t) − Aij | → 0. In order to show that the identification error tends to zero, we used Lemma 1 to

complete the proof.

Remark 3. As the coupling strength increases, the drive network (5) can achieve inner synchronization.

Therefore, the PE condition is not satisfied and the identification fails.

4 Topology identification of a complex network using disturbance

From Theorem 1, we know that the PE condition plays an important role in topology identification.

However, estimating the unknown topology of complex networks when the condition is not satisfied is a

problem that requires a solution.
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Figure 3 (Color online) Network size is N = 10 without disturbance, and we use the parameters of HR models which

are given by Eq. (12). (a) The trajectory of the first variable in the response network, where ε = 0.5 in (5); (b) the

synchronization error between the drive network and the response network; (c) the minimum eigenvalue of the matrix

Wi(t); (d) parameters identification errors.

In order to test the application of sinusoidal disturbances in topology identification, we simulated

a network of N = 10 bidirectionally coupled HR systems. The structure of the network is shown in

Figure 2. There are two important nodes in this network and we call it a star-shaped network. To

illustrate the necessity of pinning control, we discuss three perturbation styles that induce topology

identification: pinning disturbance on the smallest nodes, pinning disturbance on the largest nodes, and

pinning disturbance on all the nodes. The parameters of HR models used throughout the numerical

simulations are as follows:

a = 2.8, α = 1.6, c = 5, b = 9, (12)

V = 2, λ = 10, Θ = 0.25. (13)

First, consider the complex network comprising 10 HR models without disturbance. The initial

condition of the drive and response networks are randomly assigned in the interval [−2, 2] and let

ki(0) = 0, dij(0) = 0. By the adaptive control, Eqs. (5) and (8) can achieve inner synchronization

with time, as shown in Figure 3(a). Figure 3(b) shows that the HR models reach synchronization at a

very small coupling strength (ε = 0.1) in the drive complex network (5). Similar to previous studies [7,8],

we observed that the inner synchronization of the drive network is an obstacle faced during the topology
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Figure 4 (Color online) Identification rate under the different values of the parameters α, β. (a) Disturb two smallest

nodes; (b) disturb two largest nodes.

identification of complex networks. Define Wi(t) =
∫ t+T0

t
gi(τ)g

T
i (τ)dτ . Figure 3(c) shows that the

minimum value of matrix Wi(t) is very close to zero; thus the PE condition is not satisfied. Therfore,

the identification procedure is unsuccessful, as shown in Figure 3(d).

Then, using the nonlinear disturbance, R(Xi) = (αsin(xi/β), 0, 0), only the first variable is disturbed

for each node. We now demonstrate how the disturbance leads to a successful identification of the

topology. To analyze the influence of the parameters α, β, we calculated the identification success ratio

for different values. The different colors represent different the identification rates. Compared with the

standard values on the right side of Figure 4, we can easily get the identification success rate. From

Figure 4(a), it is seen that identification cannot be achieved by disturbing the two smallest nodes alone.

However, when the two largest nodes are disturbed, the topology can be successfully identified, see the

result in Figure 4(b). With an increase in the value of α, the amplitude of the sine function increases. The

difference among the variables becomes large, which makes it difficult to achieve inner synchronization in

the drive network. Therefore, the PE condition is satisfied, and identification is successful. However, if

the value of parameter α is very large, the disturbance term will have a major role in the HR system, and

will change the nature of the system. Moreover, when the value of the parameter β increases, x/β remains

between 0 and π/2, and the sine function is an increasing function. Further, the difference between the

variables increases, and make it easy to satisfy the PE condition, thus making the identification is more

successful. However when the value of parameter β becomes very large, the function sin(x/β) approaches

zero and the disturbance vanishes. Therefore, the topology identification fails.

In order to demonstrate the effect of pinning disturbance, we disturbed all nodes in the network, and

the resultant identification success ratio is shown in Figure 5(a). Compared with complete disturbance,

we observed that only pinning two key nodes could result in a 70% identification success ratio. This

shows that the target disturbance is an effective method. Furthermore, the adaptive law dij is robust.

If the network is attacked at some point in time, some links are broken. However, the topology is still

identified successfully, as shown in Figure 5(b).

5 Conclusion

In this work, we investigated topology identification of complex networks with HR systems. Topology

identification of the complex networks with nonlinear coupling is shown. Especially, induced topology

identification using sine disturbance when the PE condition is not satisfied is discussed. Note that the
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Figure 5 (Color online) (a) Identification rate under the different values of the parameters α, β by disturbing the total

nodes; (b) one link of the network is broken at t = 1200 s.

disturbance of key nodes is an effective method to achieve identification.

Acknowledgements This work was jointly supported by National Natural Science Foundation of China (Grant

Nos. 61203159, 61573011, 61273232, 61472136), Haute-Normandie region France, and Project ERDF (European

Regional Development Fund) on Complex Networks and Applications.

Conflict of interest The authors declare that they have no conflict of interest.

References

1 Watts D J, Strogatz S H. Collective dynamics of ‘small-world’ networks. Nature, 1998, 391: 440–442

2 Barabasi A L, Albert R. Emergence of scaling in random networks. Science, 1999, 286: 509–512

3 Pecora L M, Carroll T L. Master stability function for synchronized coupled systems. Phys Rev Lett, 1998, 80:

2109–2112

4 Belykh V N, Belykh I V, Hasler M. Connection graph stability method for synchronized coupled chaotic systems. Phys

D, 2004, 195: 159–187

5 Belykh I V, Belykh V N, Hasler M. Generalized connection graph method for synchronization in asymmetrical networks.

Phys D, 2006, 224: 42–51

6 Lu J, Cao J D. Synchronization-based approach for parameters identification in delayed chaotic neural networks. Phys

A, 2007, 382: 672–682

7 Chen L, Lu J, Tse C K. Synchronization: an obstacle to identification of network topology. IEEE Trans Circ Syst-II,

2009, 56: 310–314

8 Zhao J C, Li Q, Lu J A, et al. Topology identification of complex dynamical networks. Chaos, 2010, 20: 023119

9 Ren J, Wang W, Li B, et al. Noise bridges dynamical correlation and topology in coupled oscillator networks. Phys

Rev Lett, 2010, 104: 058701

10 Wu X Q, Wang W H, Zheng W X. Inferring topologies of complex networks with hidden variables. Phys Rev E, 2012,

86: 046106

11 Zhang S N, Wu X Q, Lu J A, et al. Recovering structures of complex dynamical networks based on generalized outer

synchronization. IEEE Trans Circ Syst I, 2014, 61: 3216–3224

12 Li G J, Wu X Q, Liu J, et al. Recovering network topologies via Taylor expansion and compressive sensing. Chaos,

2015, 25: 043102
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