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On the Dynamics of a Predator-Prey Model
with the Holling-Tanner Functional Response

Madina Daher Okiye and M.A. Aziz-Alaoui

Lab. Math., Université de Le Havre, B 540, 76058 Le Havre Cedex, France

Abstract. Dynamic bhehavior of a two-dimensionnal system modelling a predator-
prey problem with a modified Holling-Tanner scheme is analyzed. We establish
assumptions under which we have boundedness of solutions, existence of a posi-
tively invariant and attracting set, the global stability of the coexisting interior
equilibrium via Lyapunov function, finally we study the existence and uniqueness
of limit eycle.

1 Introduction and mathematical model

The goal of this paper is to give an improved study of a two-dimensional
system of antonomous differential equations modeling a predator-prey sys-
tem, for which a first study has been done in [1]. This model incorporates a
modified version of the Holling=Tanner (or Leslie- Gower) functional response,
which recently has recovered some interest, see [2,10-12].

This two-species food chain model deseribes a prey population X which
serves as food for a predator Y. The rate equations for the two components
of the chain population can be written as follows :

dX r Y r
T.*-T — (i"] = b1 N — K‘-JI.M ).\
(1)

dY . _ugY vy
AT — (!I‘! T Xtk }}'

with X(0) = 0 and Y(0) > 0, where X and Y represent the population
densities at time T 3 vy, ap, by, ki, ro, az and ke are model parameters
assuming only positive values. See [1.2] for definitions of all these parameters
and for more details concerning the origin of this system.

Let us mention that the first equation of system (1) is standard. By con-
trast, the second equation is absolutely not standard. It contains a modified
Leslie-Gower term, that is the second term on the right hand side in the
second equation of (1), the last depicts the loss in the predator population.

To simplify system (1) we introduce some transformations of variables.
sy .

After applying the rescaling: ( = T, x(t) = — X(T") and y(t) = Y (1),
" 172

system (1) becomes:

e = a1 - )~ 2

i
‘T,:‘rf =b(1 - —y—_,}.’;‘-
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where a = :‘:L:T’ b=, e = £’J‘!—Il and ¢a = "1%-
| 1

2  Boundedness, permanence and global stability

We denote by B the non-negative quadrant, and by Int(IR3) the positive
quadrant. For the boundedness of the model and existence of a positively
invariant. attracting set, see [1], in which the following theoremn has heen
proved :

Theorem 1. Let A be the set defined by:
A= {(a,y) € lkl'."z|| << ,0<a+y < Ly}, where

L = .‘1[7,(5““ + 0)2(1 + e3)). (3)

Then:

a) A s positively movariant

b) all solulions of (2) initiating n lRﬁ are ultimately bounded with vespeet
to B3 and cventually enter the attracting set A.

In this seetion we shall prove the permanence, that is uniform persistence
plus dissipativity, of system (2) and its global stability by constrocting
suitable Lyapunov function. First of all, it is easy to verify that this systemn
has three trivial equilibria, (belonging to the boundary of ]Hﬁ, i.e. at which
one or more of populations has zero density or is extinet) :

Iy = (0,0), I =(1,0), and I =(0,e2).

Eigenvalues associated to Ey are Ay = 1 > 0 and Ay = b > 0, hence F, is an
nnstable node.

For 12, we have Ay = —1 < 0 and Ay = b > 0thus it is a saddle point. s
stable manifold is @ — wris.
Eigenvalues associated to B are Ay = 1 — %- and Ay = —b < 0 and we have

two cases:

i) il aey > ey, then Ay < 0, and F is a stable node,

i) il aea < eq.then Ay > 0, and in this case /25 is a saddle point. Its stable
manifold is y — awis.

Before the study of the permanence of system (2) we introduce some
necessary definitions. Suppose that Y is a complete metric space with Y =
Yo UaYy for an open set Yy, We will choose Yj, to be the positive cone in 2.
For the following definitions and theoren, one can see [3] and, for the prool
of the theorem, see [7].

Definition 1. A How or semiflow on Y under wich Yj, and Y, are forward
invariant is said to be permanent if it is dissipative and if there is a number

= = 0 such that any trajectory starting in Y, will be at least a distance =
from Yy Tor all sufliciently large £,
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Let w(dYy) C= dYy denotes the union of the sets w(u) over u € dYj.

Definition 2. The set w(dYy) is said to be isolated if it has a covering M =
Uf:,M;,. of pairwise disjoint sets My wich are isolated and invariant with
respect to the flow or the semi-flow both on dYy and on Y = YU adYq, (M is
called an isolated covering).

The set w(AYy) is said to be acyclic if there exists an isolated covering
UN_, My such that no subset of {M} is a cycle.

Theorem 2. Suppose that a semiflow on'Y" leaves both Yo and 9Yy forward
invariant, maps bounded sets in Y to precompact set for t > 0, and it is
dissipative. If in addition:

(i) w(AYy) is isolated and acyclic.

(ii) W (M) N Yy = O for all k, where UN_ | M. is the isolated covering
used in the definition of acyclicity of Yy, then the semiflow is permanent,
(W* denotes the stable manifold).

Theorem 3. Let us assume the following condition:
ey < € (4)
Then, system (2) 1s permanent.

Proof. 1f we take Y to be the positive quadrant, then w(aYy) consists of the
equilibra (0,0), (1,0) and (0, e2).

(0,0) is an unstable node;(1,0) is a saddle point, its stable manifold is
v-axis and its unstable manifold is y-axis; and if aey < e1,(0,e2) is a saddle
point stable along the y-axis and unstable along the X-axis.

All trajectories on the x-axis other than (0,0) approach (1,0) and all
trajectories on the y-axis other than (0, 0) approach (0, e2).

It follows from these structural features that the in 9Yy is acyclic. So
w(AYy) is isolated and acyclic. The stable manifold of (1,0) is the x-axis and
the stable manifold of (0,ez) is the y-axis, and we know, from theorem 1,
that these stable manifolds cannot intersect the interior of Yy. In that case,
theorem 2 implies permanence.

Theorem 4. If (4) holds, then system (2) has a unique interior equilibriwm
E*{(z*, y*).

Proof. Tt is straight’forward to show that system (2) has only one interior
equilibrinm point. Indeed, from system (2), such a point satisfies,

(1=z*)(x*+e)) = ay”. (5)
Therefore, the coordinates of the interior equilibrium are,
! .
gt =1y = 5(1 -—(H.‘f‘!'[)-‘-tﬁ%)‘ (6)

' =a" + e (7)
where A = (a+ e — 1) — 4(aez — 1).
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It is easy to verify that this fixed point belongs to A. From system (2), we
get : detJ (2", y") = ;%(‘2;{“—{-&—}-(*1—]), since ¢* = % [l —(a+ep)+ &%],
we have * > 3 [1 — (a+e;)], hence detJ(a*,y*) > 0 ; and trJ(x",y*) =

— o (202 + (b + ey — 1)a” + bey). Let

P(z) = 2% + (b+ e1 — 1) + bey, (%)
by Routh-Hurwitz's criteria, we get the following lemma:

Lemma 1. The equilibrium E*(x*,y") is locally asymptotically stable if
P(x* ) > 0 and it is an unstable focus if P(x*) < 0.

It is obvious that if b4+e; > Lorifb+ey <1 and (1 —(b+ e1))? — Bbey < 0,
then P(z) > 0, and if b+e; < 1 and (1 = (b+ e1))? — 8bey > 0, then P(x)
has two positive roots 0 < ay < g < 1 with,

1 — (h+r.’J)IF¢f3"3
4

vy = where A = (1 — (b+ 1)) — 8bey (9)
Moreover, P(x) > 0if0 <z <y or ag < < 1, and P(x) <0if oy <w <
ova. Thus, we obtain the following result:

Lemma 2. (a) If b+e¢y > 1, 0r 0 < 2" < orap < 2" < 1, then
E*(x*,y*) is asymptotically stable. (b) If oy < &™ < cva, then E*(x*,y*) is
unstable.

Now we will prove that, under some assumptions, this steady state is
globaly asymptotically stable.

Theorem 5. If ¢; > 1, then the interior equilibrium E*(x*,y") is globally
assymptotically stable

Proof. The proof is based on a positive definite Lyapunov function. Let

o C —a* Tt + €y u N — yl
Vie,y) = 1 fn-
w0 = [ et e L

This function is defined and continuous on !-u,a‘{lR'i). [t can be easily veriled
that the function V(x,y) is zero at the equilibrium (2%, y*) and is positive
for all positive values of  and y, and thus E*(x*, ") is global minimum ol
V. Since the solutions of the system are bounded and unltimately enter the
set A, we restrict the study for this set. The time derivate of V along the
solutions of system (2) is:

dV x—a* ot ey —yt y
— = —————— |xg(x) — plx) —by(l —
dt ( + eo)p(x) leg() = plx)y] + by* U W €+ c_e-,)

x —a* [axg(r) x* + e « v
= —1 oy YL 2 :
T+ e [ p(x) y] ¥ v (=) él'+f-'2)
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Since y* = a* + e

dVo_ wew” | wg(;) (o= w—u") T =
:‘Tf_—,:l:; i) _‘U‘ o rfrg + - (U—U )( *Fea ,—F]._:)
_ -r* | =(1 -.|.‘]!.'r'-{-i'|) . "';'Y:l ir (x—x ](l,' u :'
i {4 2 ar . @rtatg

=0 oy [.. )
. m..-|...;((| “-f)(-'-+f|)—u,u e i ey ™)

2 Ttes
|y (y'{-'l‘ wt ) et -y ) —ea(y—y") )
"t (24eq)

Using eq. {":} we get:

1\ - [gi—x -’
‘_f?f—:!l{;.'r'lf"z)[(l (!+f|)—-{|—; )(‘I I"l)} Jllil'u -

a. uyy [.u (w—a* )(_:.:.-J;”(H y' ))

- .e(Iu- |J:'-_,:-(-f' te—at—ew—at—e a4 epr’) — t_l%f%%-;}—r

e = ;";.'.” (r—z* —ey(z —2*) — (x - r' M +at)) — j—""“,‘,:r'{ ,":,.'f:,{!} —y*)?
= '—-——*w"'.z]([ —ey—ax—a*) e —a*t)? - ——m—-H (r:';.}:{”
=—(x+ua*+e — l)m(r - g*)? - 1-'“(1 Periy= ,';"‘)"’.
It follows that . il ¢y > 1, then 'f—" <0 .1lnny., all trajectories in the first quad-
rant, except (", y"), so that E* (2", y*) is globally assymptotically stable.

3 Limit cycle

To prove that the system has no limit eyele, we will use the Dulac’s eriterion,
see [6]. We also will establish conditions under which system (2) has a limit
t'_vt‘][:.

Theorem 6. Let D C R? be a simply connected open sel and B(r,y) be a
real-valued C' function in D.

If the function divB [ = ””U'J + 8L s of constant sign and nol iden-

Ty
tically zero an D, then ﬂ = f( \ has no perwodic orbil lying entively in the

region 1.
Theorem 7. If b+ ¢y > 1 . then the system (2) has no limit eyele.

Proof. Let B(a,y) = {&L)w1 x>0,y >0,

We get divBBf = B(S + 38)+ 1y j’,{’ + fo 48 we have:

N aecyy A fs 2
=12 = ——2 _  and 92 ] = —

Or (.r +e1)? e iy ( T -+ f'-z,}

an r'| an 2 0+ e

—— =——5— and = =

o ary? du e ar

Thus, after some simple algebraic computations, we get.
B(a.y) u)
divBf = = — 2 (= (202 + (b + ey — )+ bey)).

It is obvions Ilml if b+ ¢y = 1, then divBf has a constant sign. By Du-
lac’s criterion, we conclude that system (2) has no limit eyeles under this
asstmption.
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With the following theorem, see [5], we can, under some assumptions,
establish the existence of at least one limit eycle for system (2).

Theorem 8. Suppose that “% = f(x) is a planar system with a finite number
of equilibrium points. If the positive orbit 6 (xg) of g is bounded, then one
of the following is true:

(i) the w-limit set w(xy) is a single point T wich s an equilibrium poind
and §Y(t,xy) — T as t — +o00,

(#i) w(wn) is a periodic orbit I' and either §' (1) = w(wy) = 1" or else
& (ag) spivals with inereasing time toward I' on one side of I',

(iii) wlwg) consists of equilibrium points and orbits whose o—limit and
w—limat sets are the equilibrium points.

Theorem 9. If condition (4) holds,
b+ep <1, (10)

ard
ay < a' <, (11)

(where cvy 5 are given by Fq.(9)), then system (2) has al least one Limat cycle.

Proof. f b+ ¢ < 1 and oy < 2* < a9, then, by lemma 2, E*(z*,y*) is
unstable,

By theorem 3, we saw that if (4) holds, then system (2) is permanent.
Permanence implies that system (2) has a compact attractor lying in the
interior of the positive cone wich is globally attracting for positive solutions
(the set A). So trajectories leaving the vieinity of (x*,y*) must have w-limit
sels in the attractor but distinet from (2, 4") , becaunse it is unstable. Now,
by theoren 8, such w-limit sets are periodic orbits. And hence system (2) has
at least ove limit cycle.

To study the miqueness of limit cycle, we will transform system (2) to

A b
a Gause-Type model, see [8]. Let =z = yl(x), where [(x) = (]_%) . We

obtain the following system,
i (1 ) ar z (@) ()
— = — ) - —_— = glir) — H Yy -4
dt & +ey lx) 7 ¢
dz b £] — aes

%P0 St T

)(.‘r - ::.‘*):-:2 — r,J’I'(:r z"’,

(12)
with 2(0) > 0, 2(0) > 0. Let h(z) = %%% We get h(z) = M'““_lﬂ(_*l and
the following system,

5 = p(x) l_.t(a)f::)=F(1,z 13
{ ‘7{7?- =(x)2? = G(x, 2). 33
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(1—x)(a4ey ) (x
i

We have I/(z) = MP( ') where P(x) is given by (8). If b+ ¢y < 1 and
(1= (b+e1))? —8bey > 0, then A/ (z) = —218) (5 ap ) —ag). Thus the prey

nr
isocline z = h(x) has two humps, a local maximum at @ = a2 and a local
minimum at @ = ay. It is obvious that h(1) = 0, limh(x) = 400 as x — 0,

and /() > 0 for ay < x < arp. Thus, there exist a7, x5 satistying :

Let us consider the prey isocline of (13), z = h(z) =

0<aj <apyap <2y <1, and h(x]) = h(x3) = h(z*) = 2* (14)

(x+e2)(1 —
x4 L=ge

We introduce R(r) = b/ 6= ri( where g(2) = . The

following theorem proves the nulqumu‘.sm of limit cycle, see [‘J]

Theorem 10. Let oy < 2* < g,
If R(xy) = R(x3) then the (2) has a unique limit cycle.

This theorem is proved thanks to the following lemmas in wich we use
the below notations. We will prove the first lemina, proofs of the others ean
be found in [9)].

1 = [0, 0] xRY (25 = [ovy, 0] xRT and 23 = [ag, 1] xR 5 4y 2 (0,00) — R,
hy : [ay, ) = R, hy : g, 1] — R, by hi(x) = h(z) for i =1,2,3.

We denote I' to be a periodic orbit of (13) with period T,

"= {(x(t),z(t)) : 0 <t < T}, and 2(I") to be the region enclosed by I' in
xz phase plane ;

T = T (t) = min {x(t);0 <t < T} ap = ap(t) = max {x(t);0 < t < T
and I(I") = [@, pr].

Lemma 3. Let oy < 2% < ova. Then % [%] <0 forx € [ag,2")U
[r'l'z. |]

Proof. From (13) and since h'(z) = -2{;!(‘::){:.-: — o )(r — ag), we have :
S (e 2z —an)(x —ag) d _;.! £y = b *Y(x
wlae)h'(x) s and ' (2)h(x) = rr.(.'r+r'1]{J ")+

[&h} ey (f +f2J(!-'—ﬂ'1) E
——} Let Q(x) = Etee +n;:m), then,
w(x)h (x) _ 22— on)(w — ag) a(x + e3) - _% Qs ) 18
p(a)h(x) €+ e b(a— 1"‘)(1' s f—‘——_—g'—:) xr—a*
d [p(x)h'(z)] 2 [ T =
= [w_(m)h.(:r)] = [Q( ) IR

Since Qi) is increasing on (o, 1), then fl ‘'om the above identity we complete
the proof of this lemma.

Lemma 4. (i) [ fﬂ(f‘) %"—’H;m!z =)
(it) I(I") is not contained in [z}, w3] where x}, a3 are defined in (14).
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Lemma 5. If Int I(I") D [x7, 23], then I' is orbitally asymptotically stable.

Lemma 6. If oy < a,,, then I is orbitally asymptotically stable.

Lemma 7. If 2} < x,, < oy, then I is orbitally asymptotically stable.

Fig. 1. Phase portrait of system (2), for the parameters g = L1 b=0.2 e = 0.08
and ez = 0.01. A unique limit cycle exists.

References

b

. Aziz-Alaoni M.A. and Daher Okiye M., Boundedness and global stability for

a predator-prey model with modified Leslie-gower and Holling-type 11 schemes,
to appear in Applied Math. Letters, (2003).

- Aziz-Alaoui MLA. | Study of a Leslie-Gower-type tritrophic population, Chaos

Sol. and Fractals, 14(8), 1275-1293, (2002).

Cantrell R.S. and Cosner C., On the dynamics of predator-prey models witl
the Beddington-DeAngelis functional response, Journal of Math, Analysis and
Appl., 257, 206-222, (2001).

- Gasull A, Kooij R.E. and Torregrosa J., Limit cycles in the Holling-"Tanner

model, Publications mathematiques, 41, 149-167, (1997).
Hale J.K. Ordinary differential equations, Wiley, New-York, (1964).

- Hale J.K. and Kogak H., Dynamics and bifurcations | Springer-Verlag, New-

York Ine. (1991).
Hale J.K. and Waltman P., Persistence in infinite-dimensionnal systems, STAM
J. Math. Analysis, 20(2), 388-305, (1989).

- Hsu S.B. and Hwang 'T.W., Global stability for a class of predator-prey sys-

tems, SIAM J. Appl.Math., 55(3), T63-789, (1995).

- Hsu S.B. and Hwang T.W., Uniqueness of limit cycles for a predator-prey

system of Holling and Leslie type, Can.Appl. Math.q., 6(2), 91-117, (1998).



278 M. Daher Okiye, M.A. Aziz-Alaoui

10. Korobeinikov A., A Lyapunov function for Leslie-Gower predator-prey models,
Applied Math. letters 14, 697-699, (2001).

11. Letellier C. and Aziz-Alaoui M.A., Analysis of the dynamics of a realistic eco-
logical model, Chaos Solitons and Fractals, 13(1), 95-107, (2002).

12. Upadhyay R.K. and Rai V., Why Chaos is rarely observed in natural popula-
tions 7, Chaos Solitons and Fractals, 8(12), 1933-1939, (1997).



