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Laboratoire de Mathématiques Appliquées,
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Summary. Emergent properties are typically novel and unanticipated. In this pa-
per, using chaos synchronization tools and ideas, we demonstrate, via two exam-
ples of three-dimensional autonomous differential systems, that, by simple uni- or
bi-directional coupling, regular (resp. chaotic) behaviour can emerge from chaotic
(resp. regular) behaviour.
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1 Introduction : Complexity and Emergent Properties

First of all, let us start with the citation below.

“I think the next century (21th) will be the century of complexity”,
(Stephen Hawking).

But what is complexity? An extremely difficult “I know it when I see it” con-
cept to define, see [1]. However, intuitively, complexity is usually greater in sys-
tems whose components are arranged in some intricate difficult-to-understand
pattern or, in the case of a dynamical system, when the outcome of a pro-
cess is difficult to predict from its initial state (sensitive dependence on initial
conditions, see below). A complex system is an animate or inanimate sys-
tem composed of many interacting components whose behaviour or structure
is difficult to understand. Sometimes a system may be structurally complex,
like a mechanical clock, but behave very simply.

While several measures of complexity have been proposed in the research
literature, they all fall into two general classes:
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(1) Static Complexity which addresses the question of how an object or sys-
tem is put together (i.e. only pure structural informational aspects of an
object).

(2) Dynamic Complexity which addresses the question of how much dynami-
cal or computational effort is required to describe the informational con-
tent of an object or state of a system.

These two measures are clearly not equivalent. In this paper we embrace the
following definition.

Complexity is a scientific theory that asserts that some systems display
behavioural phenomena completely inexplicable by any conventional analysis
of the systems’ constituent parts.

Besides, emergence refers to the appearance of higher-level properties
and behaviours of a system that while obviously originating from the collec-
tive dynamics of that system’s components -are neither to be found in nor are
directly deductable from the lower-level properties of that system. Emergent
properties are properties of the ‘whole’ that are not possessed by any of the
individual parts making up that whole. For example, an air molecule is not a
cyclone, an isolated species doesn’t form a food chain and an ‘isolated’ neuron
is not conscious: emergent behaviours are typically novel and unanticipated.

Moreover, it is becoming a commonplace that, if the 20th was the century
of physics, the 21st will be the century of biology, and, more specifically, math-
ematical biology, see [8]. We will concentrate our attention in demonstrating
the emergence of complex (chaotic) behaviour in coupled (non chaotic) sys-
tems. That is to show that for uni- or bi-directionally coupled non chaotic
systems, chaos can appear even for large values of coupling parameter. This
discussion is based on continuous autonomous differential systems, firstly of
Lorenz-type illustrating identical chaos synchronization and regular behaviour
emerging from chaotic one, and, secondly, systems modeling predator-prey
food-chain showing chaotic behaviours emerging from regular ones.

2 Synchronization and Desynchronization

Synchronization is a ubiquitous phenomenon characteristic of many processes
in natural systems and (nonlinear) science. It has permanently remained an
object of intensive research and is today considered as one of the basic non-
linear phenomena studied in mathematics, physics, engineering or life science.
Synchronization of two dynamical systems generally means that one system
somehow traces the motion of another. Indeed, it is well known that many
coupled oscillators have the ability to adjust some common relation that they
have between them due to weak interaction, which yields to a situation in
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which a synchronization-like phenomenon takes place, see [2].

Since this discovery, periodic synchronization has found numerous appli-
cations in various fields, for instance in biological systems and living nature
where synchronization is encountered on differents levels. Examples range
from the modeling of the heart to the investigation of the circardian rhythm,
phase locking of respiration with a mechanical ventilator, synchronization of
oscillations of human insulin secretion and glucose infusion, neuronal infor-
mation processing within a brain area and communication between different
brain areas. Synchronization also plays an important role in several neuro-
logical diseases such as epilepsies and pathological tremors, or in different
forms of cooperative behaviour of insects, animals or humans. For more de-
tails, see [10]. This process may also be encountered in other areas, celestical
mechanics or radio engineering and acoustics.

But, even though original notion and theory of synchronization implies pe-
riodicity of oscillators, during the last decades, the notion of synchronization
has been generalized to the case of interacting chaotic oscillators.

Roughly speaking, a system is chaotic if it is deterministic, has a long-
term aperiodic behaviour, and shows sensitive dependence on initial conditions
on a closed invariant set.

Chaotic oscillators are found in many dynamical systems of various ori-
gins, the behaviour of such systems is characterized by instability and, as a
result, limited predictability in time.

Despite this, in the two last decades, the research for synchronization
moved to chaotic systems. A lot of research has been done and, as a result, re-
searchers showed that two chaotic systems could be synchronized by coupling
them : synchronization of chaos is actual and chaos could then be exploitable,
see [9], and for a review see [2]. Ever since, many researchers have discussed the
theory, the design or applications of synchronized motion in coupled chaotic
systems. A broad variety of applications have emerged, for example to in-
crease the power of lasers, to synchronize the output of electronic circuits, to
control oscillations in chemical reactions or to encode electronic messages to
secure communications. Moreover, in the topics of coupled chaotic systems,
many different phenomena, which are usually referred to as synchronization,
exist and have been studied for more than a decade.

2.1 Synchronization and stability : definitions

For the basic master-slave configuration where an autonomous chaotic system
(the master) :
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dX

dt
= F (X), X ∈ R

n (1)

drives another system (the slave):

dY

dt
= G(X,Y ), Y ∈ R

m, (2)

synchronization takes place when Y asymptotically copies, in a certain man-
ner, a subset Xp of X . That is to say, it exists a relation between the two
coupled systems, which could be a smooth invertible function ψ, the last car-
ries trajectories on the attractor of a first system on the attractor of a second
system. In other words, if we know, after a transient regime, the state of the
first system, it allows us to predict the state of the second: Y (t) = ψ(X(t)).
Generally, it is assumed n ≥ m, however, for the sake of easy readability, we
will reduce, even if it is not a necessary restriction, to the case n = m, and
thus Xp = X . Henceforth, if we denote the difference Y − ψ(X) by X⊥, in
order to reach at a synchronized motion, one expects to have:

||X⊥|| −→ 0, as t −→ +∞. (3)

If ψ is the identity function, the process is called identical synchronization (IS
hereafter).

Definition of IS. System (2) synchronizes with system (1), if the set
M = {(X,Y ) ∈ R

n×R
n, Y = X} is an attracting set with a basin of attraction

B (M ⊂ B) such that limt→ ∞||X(t) − Y (t)|| = 0, forall (X(0), Y (0)) ∈ B.

Thus, this regime corresponds to the situation where all the variables of
two (or more) coupled chaotic systems converge. If ψ is not the identity func-
tion, the phenomenon is more general and is referred to as generalized syn-
chronization (GS).

Definition of GS. System (2) synchronizes with system (1), in the gen-
eralized sense, if it exists a transformation ψ : R

n −→ R
m, a manifold

M = {(X,Y ) ∈ R
n+m, Y = ψ(X)} and a subset B (M ⊂ B), such that for

all (Xo, Yo) ∈ B, the trajectory based on the initial conditions (Xo, Yo) ap-
proaches M as time goes to infinity.

Henceforth, in the case of identical synchronization, equation (3) above
means that a certain hyperplane M , called synchronization manifold, within
R

2n, is asymptotically stable. Consequently, for the sake of synchrony motion,
we have to prove that the origin of the transverse system X⊥ = Y − X is
asymptotically stable. That is, to prove that the motion transversal to the
synchronization manifold dies out.

The Lyapunov exponents associated with the variational equation corre-
sponding to the transverse system X⊥ :
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dX⊥
dt

= DF (X)X⊥ (4)

where DF (X) is the Jacobian of the vector field evaluated onto the driving
trajectory X , are referred to as transverse or conditional Lyapunov exponents
(CLE hereafter).

In the case of IS it appears that the condition L⊥
max < 0 is sufficient to

insure synchronization, where L⊥
max is the largest CLE. Indeed, Equation (4)

gives the dynamics of the motion transverse to the synchronization manifold,
therefore CLE will tell us if this motion die out or not and hence, whether the
synchronization state is stable or not. Consequently, if L⊥

max is negative, it will
insure the stability of the synchronized state. This will be better explained
using the two examples below.

2.2 Identical synchronization

The simplest form of chaos synchronization and the best way to explain it is
identical synchronization (IS), also referred to as Conventional or Complete
synchronization, see [4]. It is also the most typical form of chaotic synchro-
nization often observable in two identical systems.

There are various processes leading to synchronization, depending on the
used particular coupling configuration they could be very different. Thus, one
has to distinguish the following two main situations, even if they are, in some
sense, similar: the uni-directional and the bi-directional coupling . Indeed,
synchronization of chaotic systems is often studied for schemes of the form:

dX

dt
= F (X) + kN(X − Y )

dY

dt
= G(Y ) + kM(X − Y )

(5)

where F and G act in R
n, (X,Y ) ∈ (R

n)2, k is a scalar and M and N are
coupling matrices belonging to R

n×n. If F = G the two subsystems X and Y
are identical. Moreover, when both matrices are nonzero then the coupling is
called bi-directional, while it is referred to as uni-directional if one is the zero
matrix, and the other being nonzero.

Other names were given in the literature of this type of synchronization,
such as one-way diffusive coupling, drive-response coupling, master-slave cou-
pling or negative feedback control.

System (5) above with F = G andN = 0 becomes uni-directionlly coupled,
and reads:
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dX

dt
= F (X)

dY

dt
= F (Y ) + kM(X − Y )

(6)

M is then a matrix that determines the linear combination of X components
that will be used in the difference, and k determines the strength of the cou-
pling.

In uni-directional synchronization, the evolution of the first system (the
drive) is unaltered by the coupling, the second system (the response) is then
constrained to copy the dynamics of the first.

By contrast to the uni-directional coupling, for the bi-directionally cou-
pling (also called mutual or two-way), both drive and response systems are
connected in such a way that they mutually influence each other’s behaviour.
Many biological or physical systems consist in bi-directionally interacting el-
ements or components, examples range from cardiac and respiratory systems
to coupled lasers with feedback.

3 Emergence of Regular Properties: A Lorenz-type
Example

3.1 Uni- and bi-directional identical synchronization for a
Lorenz-type system

Let us give an example, and for the sake of simplicity, let us develop the idea
on the following 3-dimensional simple autonomous system, which belongs to
the class of dynamical systems called generalized Lorenz systems, see [7] and
references therein: 




ẋ = −9x− 9y
ẏ = −17x− y − xz
ż = −z + xy .

(7)

The signs used differentiate system (7) from the well-known Lorenz system:

ẋ = −10x+ 10y, ẏ = 28x− y − xz, ż = −8

3
z + xy.

From previous observations, it has been shown that system (7) oscillates chaot-
ically, its Lyapunov exponents are +0.601, 0.000 and −16.470, it shows the
chaotic attractor of figure 1, with a 3D feature very similar to that of Lorenz
attractor.

Uni-directional coupling
Let us consider an example with two copies of system (7), and for
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Fig. 1. The chaotic attractor of system (7) : xy and xz-plane projections.

M =




1 0 0

0 0 0

0 0 0


 (8)

that is, by adding a damping term to the first equation of the response system,
we get a following uni-directionally coupled system, coupled through a linear
term k > 0 according to variables x1,2 :





ẋ1 = −9x1 − 9y1
ẏ1 = −17x1 − y1 − x1z1
ż1 = −z1 + x1y1

ẋ2 = −9x2 − 9y2 − k(x2 − x1)
ẏ2 = −17x2 − y2 − x2z2
ż2 = −z2 + x2y2

(9)

For k = 0 the two subsystems are uncoupled, for k > 0 both subsystems are
uni-directionally coupled. Our numerical computations yield the optimal value
k̃ for the synchronization , we found that for k ≥ k̃ = 4.999 both subsystems
of (9) synchronize. That is to say, starting from random initial conditions,
and after some transient time, system (9) generates the same attractor as for
system (7), see figure 1. Consequently, all the variables of the coupled chaotic
subsystems converge, that are x2 converges to x1, y2 to y1 and z2 to z1, see
figure 2. Thus, the second system (the response) is locked to the first one
(the drive). One could also give correlation plots, that are the amplitudes
x1 against x2, y1 against y2 and z1 against z2, and observe diagonal lines,
meaning also that the system synchronizes.

Bi-directional coupling
Let us then take two copies of the same system (7) as given above, but two-way
coupled through a linear constant term k > 0 according to variables x1,2 :
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Fig. 2. Time series for xi(t), yi(t) and zi(t) in system (9), (i = 1, 2), for the coupling
constant k = 5.0, that is beyond the threshold necessary for synchronization. After
transients die down, the two subsystems synchronize perfectly: Regular behaviour
emerges from chaotic behaviours.
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Fig. 3. The plot of amplitudes y1 against y2, after transients die down, shows a
diagonal line, which also indicates that the receiver and the transmitter are main-
taining synchronization. The plot of z1 against z2 shows a similar figure: Regular
behaviour emerges from chaotic behaviours.
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ẋ1 = −9x1 − 9y1 − k(x1 − x2)
ẏ1 = −17x1 − y1 − x1z1
ż1 = −z1 + x1y1

ẋ2 = −9x2 − 9y2 − k(x2 − x1)
ẏ2 = −17x2 − y2 − x2z2
ż2 = −z2 + x2y2

(10)

We can get an idea of the onset of synchronization by plotting for example
x1 against x2 for various values of the coupling strength parameter k. Our
numerical computations yield the optimal value k̃ for the synchronization :
k̃ ≃ 2.50, see figure 4, both (xi, yi, zi)-subsystems synchronize and system (10)
also generates the attractor of figure 1.

These results also show that, for sufficiently lage values of the coupling
parameter k, simple uni- or bi-directional coupling of two chaotic systems
does not increase the chaoticity of the new system, unlike what one might
expect. Thus, in some sense (see synchronization manifold below), regular
behaviour emerges from chaotic behaviour (the motion is confined in some
manifold).

3.2 Remark on the stability manifold

Geometrically, the fact that systems (9) and (10) beyond synchronization
generate the same attractor as system (7), implies that the attractors of these
combined drive-response 6-dimensional systems are confined to a 3-dimen-
sional hyperplane (the synchronization manifold) defined by Y = X . This
hyperplane is stable since small perturbations which take the trajectory off
the synchronization manifold will decay in time. Indeed, as we said before,
conditional Lyapunov exponents of the linearization of the system around the
synchronous state could determine the stability of the synchronized solution.
This means that the origin of the transverse system X⊥ is asymptotically
stable. To see this, for both systems (9) and (10), we switch to the new set
of coordinates, X⊥ = Y − X , that is x⊥ = x2 − x1, y⊥ = y2 − y1 and
z⊥ = z2 − z1. The origin (0, 0, 0) is obviously a fixed point for this transverse
system, within the synchronization manifold. Therefore, for small deviations
from the synchronization manifold, this system reduces to a typical variational
equation:

dX⊥
dt

= DF (X)X⊥ (11)

where DF (X) is the Jacobian of the vector field evaluated onto the driving
trajectory X . Previous analysis, see [2], shows that L⊥

max becomes negative
as k increases, for both uni- or bi-directionally coupling, which insures the
stability of the synchronized state for systems (9) and (10), figure 5.
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Fig. 4. Illustration of the synchronization onset of system (10). (a), (b) and (c) plot
the amplitudes x1 against x2 for values of the coupling parameter k = 0.5, k = 1.5
and k = 2.8 respectively. The system synchronizes for k ≥ 2.5.



Emergent properties, chaos and synchronization 141

Lmax
⊥

coupling

unidirectional couplingbidirectional

Coupling strength

−1.2

−1

−0.8

−0.6

−0.4

−0.2

 0

 0.2

 0.4

 0.6

 0  5  10  15  20  25

Fig. 5. The largest transverse Lyapunov exponents L⊥

max as a function of coupling
strength k in the uni-directional system (9) (solid) and the bi-directional system
(10) (dotted).

Let us note that this can also be proved analytically, as done in [7], by us-
ing a suitable Lyapunov function, and using a new extended version of LaSalle
invariance principle.

Desynchronization motion. Synchronization depends on the coupling
strength, but also on the vector field and the coupling function. For a choice of
these quantities, synchronization may occur only within a finite range [k1, k2]
of coupling strength, in such a case a desynchronization phenomenon occurs:
thus, increasing k beyond the critical value k2 yields loss of the synchronized
motion (L⊥

max becomes positive).

4 Emergence of Chaotic Properties : A Predator-prey
Example

This example, contrary to the first, shows a situation where the larger is the
coupling coefficient the weaker is the synchronization.

4.1 The model

As we said in the introduction, it is becoming a commonplace that, if the
20th was the century of physics, the 21st will be the century of biology and
more specifically, mathematical biology, ecology, ... and in general, nonlinear
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dynamics and complexity in life sciences.

In this last part, we will hence focus ourselves on emergent (chaotic or
regular) properties that arise when we couple uni- or bi-directionally two
3-dimensional autonomous differential systems, modeling predator-prey food-
chains.

Let us then consider a continuous time dynamical system, model for a
tritrophic food chain, based on a modified version of the Leslie-Gower scheme,
see [3, 6], for which the rate equations of the three components of the chain
population can be written as follows:






dX

dT
= aoX − boX

2 − voXY

do +X
dY

dT
= −a1Y +

v1XY

d1 +X
− v2Y Z

d2 + Y

dZ

dT
= c3Z − v3Z

2

d3 + Y
,

(12)

with X(0) ≥ 0, Y (0) ≥ 0 and Z(0) ≥ 0, where X,Y and Z represent the
population densities at time T ; a0, b0, v0, d0, a1, v1, d1, v2, d2, c3, v3 and d3

are model parameters assuming only positive values and defined as follows: ao

is the growth rate of prey X , bo measures the strength of competition among
individuals of species X , vo is the maximum value which per capita reduction
rate of X can attain, do measures the extent to which environment provides
protection to prey X , a1 represents the rate at which Y will die out when
there is no X , v1 and d1 have a similar meaning to v0 and do, v2 and v3
have a similar biological connotation as that of vo and v1, d2 is the value of
Y at which the per capita removal rate of Y becomes v2/2, c3 describes the
growth rate of Z, assuming that the number of males and females is equal, d3

represents the residual loss in species Z due to severe scarcity of its favourite
food Y ; the second term on the right hand side in the third equation of (12)
depicts the loss in the predator population.

For the origin of this system and for some theoretical results, bounded-
ness of solutions, existence of an attracting set, existence and local or global
stability of equilibria, etc ..., see [3,6]. In these works, using intensive numer-
ical qualitative analysis, it has been demonstrated that the model could show
periodic solutions, figure (6), and quasi-periodic or chaotic dynamics, figure
(7), for the following parameters and state values:






bo = 0.06, vo = 1.0, d0 = d1 = d2 = 10.0,
a1 = 1.0, v1 = 2.0, v2 = 0.9,
c3 = 0.02, v3 = 0.01, d3 = 0.3.

(13)
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Fig. 6. Limit cycles of period one and two, for a0 = 3.6 and a0 = 3.8 respectively,
found for system (12) and for parameters given by (13).
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Fig. 7. Transition to chaotic (or quasi-periodic) behaviour found for system (12), it
is established via period doubling bifurcation, respectively for a0 = 2.85, a0 = 2.87,
a0 = 2.89 and a0 = 2.90, with parameters given by (13).
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We will set, for the rest of the paper, the system parameters as given in
(13) in order that system (13) oscillates in a regular way around a stable limit
cycle of period one, figure 6(b).

4.2 Uni-directional desynchronization : Predator-prey system

Usually, as we have seen in the first example, section 2, in uni-directional syn-
chronization, while the evolution of the first system (the drive) is unaltered
by the coupling, the second system (the response) is constrained to copy the
dynamics of the first.

However, it is not the case for our example below, for which, as we will
see, while both subsystems evolve periodically (limit cycles of figure 6(b)), the
coupled system behaviour is extremely complex.

Let us then consider two copies of system (12). By adding a damping
term to the first equation of the response system, we get a following uni-
directionally coupled system, coupled through a linear term k > 0 according
to variables x1,2:






Ẋ1 = aoX1 − boX
2
1 − voX1Y1

do +X1

Ẏ1 = −a1Y1 +
v1X1Y1

d1 +X1
− v2Y1Z1

d2 + Y1

Ż1 = c3Z1 −
v3Z

2
1

d3 + Y1

Ẋ2 = aoX2 − boX
2
2 − voX2Y2

do +X2
− k(X2 −X1)

Ẏ2 = −a1Y2 +
v1X2Y2

d1 +X2
− v2Y2Z2

d2 + Y2

Ż2 = c3Z2 −
v3Z

2
2

d3 + Y2

(14)

For k = 0 the two subsystems are uncoupled, for k > 0 both subsystems are
uni-directionally coupled, and for k −→ +∞ one can expect to obtain the
same results as those obtained for the previous example in section 2, that is
strong synchronization and two subsystems which evolve identically.

We have chosen, for the coupled system, a range of parameters for which
both subsystem constituent parts evolve periodically, as figure 6(b) shows.

However, our numerical computations show that both subsystems of (14)
never synchronize nor identically neither generally, unless the coupling param-
eter k is very small. In such a case a certain generalized synchronization form
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takes place, see figure 8(a). That is, starting from random initial conditions,
and after some transient time, system (14) generates an attractor different
from those showed by system (12) in figure 6(b). Consequently, all the vari-
ables of the coupled limit cycle subsystems surprisingly do not converge, as,
at first sight, one may intuitively expect, see figure 8.

These results show that uni-directional coupling of these two non-chaotic
systems (that are the subsystem constituents of system (14)) increases the
bahaviour complexity, and transforms a periodic situation into a chaotic one.

Emergent chaotic properties are typically novel and unanticipated, for this
example.

In fact, this phenomenon corresponds to the classical cascade of periodic-
doubling bifurcation processus, with a sequence of order and disorder windows.

4.3 Bi-directional desynchronization : Predator-prey system

As many biological or physical systems consist in bi-directional interacting
elements or components, let us use a bi-directionally (mutual) coupling, in
order that both drive and response subsystems are connected in such a way
that they mutually influence each other’s behaviour. Let us then take two
copies of the same system (12) given above, but two-way coupled through a
linear constant term k > 0 according to variables x1,2:






Ẋ1 = aoX1 − boX
2
1 − voX1Y1

do +X1
− k(X1 −X2)

Ẏ1 = −a1Y1 +
v1X1Y1

d1 +X1
− v2Y1Z1

d2 + Y1

Ż1 = c3Z1 −
v3Z

2
1

d3 + Y1

Ẋ2 = aoX2 − boX
2
2 − voX2Y2

do +X2
− k(X2 −X1)

Ẏ2 = −a1Y2 +
v1X2Y2

d1 +X2
− v2Y2Z2

d2 + Y2

Ż2 = c3Z2 −
v3Z

2
2

d3 + Y2

(15)

We have also chosen, for this bi-directionally coupled system, the same
range of parameters for which the subsystem constituent parts evolve period-
ically, as figure 6(b) shows.

Figure 9 demonstrates also, for some interval of parameter k, that the
larger is this coupling coefficient the weaker is the synchronization. Thus, we
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Fig. 8. Illustration of the desynchronization onset of the unidirectional coupled
system (14). Figures (a), (b), ... (f) are done from left to right and up to down, and
plot the amplitudes x1 against x2 for values of the coupling parameter (a) k = 0.01,
(b) k = 0.055, (c) k = 0.056, (d) k = 0.0565, (e) k = 0.057 and (f) k = 0.1. Figure
(a) shows a generalized synchronization phenomenon: the system synchronizes (in
the generalized sense) for very small values of k. But a desynchronization processus
quickly arises by increasing k, figures (b,c,d,e,f): in some interval for k, the larger
is the coupling coefficient the weaker is the synchronization. Hence, we have the
emergence of chaotic properties: the coupled system displays behavioural chaotic
phenomena which are not showed by the systems’ constituent parts (that are the
two predator-prey systems without coupling) which point out the limit-cycle of figure
6(b), for the same parameters and the same initial conditions. This phenomenon is
robust with respect to small parameters variations.
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Fig. 9. Bi-directional coupling. Figures are done from left to right and up to down
and plot amplitudes x1 against x2 for the same values as done in the previous
figure, respectively for k = 0.01, k = 0.055 and k = 0.056 k = 0.0565, k = 0.057
and k = 0.1. These figures, Illustrate a window of generalized synchronization and
desynchronization of system (12). (a), (b) and (c) plot The system synchronizes (in
the generalized sense) for k ≤ 0.01, as it has been shown in the uinidirectional case.
But the desynchronization processus arises by increasing k, quickly in comparison
with the unidirectional case.
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have emergence of new properties for the coupled system. The latter displays
behavioural chaotic phenomenon which is not showed by systems’ constituent
parts (that are the two predator-prey systems without coupling) and for the
same parameters and the same initial conditions. A robust phenomenon with
respect to small variations of parameter values.

Furthermore, the bi-directional case enhances the desynchronization pro-
cessus which allows occurence of new complex phenomenon. The latter oc-
curs quickly in comparison to the uni-directinal case. For the same interval
k ∈ J =]0, 0.1], chaotic properites take place for k = 0.055 in the unidi-
rectional case and for k = 0.057 in the uni-directional case. This complex
behaviour remains observable in the whole interval J for the last, but for the
first, it disappears after k = 0.056 -some regular generalized synchronization
takes place- and appears again for k ∈]0.057, 0.1]

Thus, we can conclude that, the larger is the coupling coefficient k the
weaker is the synchronization (within some interval for k).

All these numerical results show that the whole predator-prey food chain
in 6-dimensional space, displays behavioural phenomena which are completely
inexplicable by any conventional analysis of the 3-dimensional systems’ con-
stituent parts, which have for the same ranges of parameters a one-peridoic
solutions. They have to be compared to the results obtained in the previous
section, in which it has been shown that the larger is the coupling coefficient
the stronger is the synchronization

Therefore, our predator-prey system is an example pointing out new emer-
gent properties, which are properties of the ”whole” 6-dimensional system,
being not possessed by any of the individual parts (which are the two 3-
dimensional subsystems).

5 Conclusion and Discussion

Identical chaotic systems synchronize by following the same chaotic trajectory
(IS). However, in the real world systems are in general not identical. For in-
stance, when the parameters of two-coupled identical systems do not match,
or when these coupled systems belong to different classes, complete IS is not
to be expected, because it does not exist such an invariant manifold Y = X ,
as for identical synchronisation. For non-identical systems, the possibility of
some other types of synchronization has been investigated (see [2] and refer-
ences within cited). It has been showed [11] that when two different systems
are coupled with sufficient strong coupling strenght, a general synchronous
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relation between their states could exist and be expressed by a smooth invert-
ible function, Y (t) = ψ(X(t)), as we have done in the previous section.

But, for coupled non-identical chaotic systems, other types of synchroniza-
tion exist. For example phase synchronization (PS hereafter) which is rather
a weak degree of synchronization, see [10]. It is a hidden phenomenon, in the
sense that the synchronous motion is not visible. Indeed, in case of PS, the
phases of chaotic systems are locked, that is to say that it exists a certain
relation between them, whereas the amplitudes vary chaotically and are prac-
tically uncorrelated. Thus, it is mostly close to synchronization of periodic
oscillators.

Let us note that such a phenomenon occurs when a zero Lyapunov ex-
ponent of the response system becomes negative, while, as explained above,
identical chaotic systems synchronize by following the same chaotic trajec-
tory, when their largest transverse Lyapunov exponent of the synchronized
manifold decreases from positive to negative values.

This processus deserves to be investigated for our predator-prey food chain
case. A more detailed analysis of such phenomena will be provided in the near
future.
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