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Lab. of Math., Université du Havre, FST, BP 540,
76058 Le Havre cedex, France

aziz@univ-lehavre.fr

GUANRONG CHEN
Department of Electronic Engineering,

City University of Hong Kong, Hong Kong, China
gchen@ee.cityu.edu.hk

Received November 29, 2000; Revised February 23, 2001

Dynamical behavior of a new piecewise-linear continuous-time three-dimensional autonomous
chaotic system is studied. System equilibria and their stabilities are discussed. Routes to
chaos and bifurcations of the system are demonstrated with various numerical examples, where
the chaotic features are justified numerically via computing the system fractal dimensions,
Lyapunov exponents and power spectrum.

1. Introduction

A simple yet elegant new chaotic attractor of
a three-dimensional continuous-time autonomous
system was coined by Chen and Ueta [1999], in the
pursuit of anti-controlling chaos [Chen, 1997; Chen
& Lai, 1998; Wang & Chen, 1999, 2000]. The new
chaotic system reassembles the familiar Lorenz and
Rössler systems, but they are nevertheless topolog-
ically not equivalent and, in fact, the new system
is a dual system to the Lorenz system [Lü et al.,
2002].

The new system is given by the following closed-
form dimensionless equations:

dx

dt
= a(y − x)

dy

dt
= (c− a)x+ cy − xz

dz

dt
= xy − bz,

(1)

which, with parameters a = 35, b = 3 and c = 28,
exhibits the chaotic attractor shown in Fig. 1, which
has a prominent 3D feature as compared to the
Lorenz attractor.

In recent years, much work has been devoted
to building simple electronic circuits, e.g. with
piecewise-linear (PWL) functions, to realize chaos
in differential systems (see e.g. [Chua, 1990;
Baghious & Jarry, 1993; Tokunaga et al., 1989;
Tang et al., 2001] and references therein).

We have recently discovered that by replacing
the two quadratic-nonlinear terms with PWL terms
in Eq. (1), a new chaotic attractor can be generated
[Aziz-Alaoui, 2001]. This is further discussed in
this paper.

2. The New Chaotic System and
Its Basic Properties

More precisely, we study the following modi-
fied Chen’s system with only PWL nonlinearity
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(a) (b)

(c) (d)

Fig. 1. Chen’s chaotic attractor: (a) three-dimensional view, (b) x–y plane projection, (c) x–z plane projection, (d) y–z
plane projection.

[Aziz-Alaoui, 2000]:

dx

dt
= a(y − x)

dy

dt
= sgn(x)(c− a− z) + cqy

dz

dt
= sgn(y)x− bz,

(2)

where sgn(·) is the standard signum function that
gives the sign of its argument and q is a constant
parameter.

Clearly, the dynamics of system (2) are no
longer governed by the original equation (1).

A detailed study of system (2) for a wide range
of parameter values is given in the next section. At
this point, it is interesting to compare the new at-
tractor with the familiar Lorenz and Chen attrac-
tors, and the graphical comparison is given in Fig. 2.

It should be pointed out that system (2) can be
easily implemented by circuitry in the laboratory,
as in [Baghious & Jarry, 1993] for another (differ-
ent but similar) system.

2.1. Some basic properties

The new attractor shares several important qual-
itative properties with both the Lorenz and Chen
attractors, respectively. This is further discussed
below.

2.1.1. Symmetry and invariance of
the z-axis

(a) Symmetry

The Lorenz and Chen systems both have a nat-
ural symmetry under the coordinates transform
(x, y, z) → (−x, −y, z), which persists for all val-
ues of the system parameters. It can be easily veri-
fied that the new system (2) is also invariant under
the same coordinates change. We will use the ad-
jective “symmetric” to refer to those solutions that
are taken by the symmetry into themselves. Other
solutions will be named “nonsymmetric.”

(b) The z-axis (x = y = 0) is invariant

It is indeed quite obvious that all trajectories that
start from the z-axis remain on it and tend towards
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(a) (b) (c)

Fig. 2. Comparison: Projections on the x–z plane of (a) the Lorenz attractor, for σ = 10.0, r = 28.0 and b = 8.0/3.0, (b) the
Chen attractor, for a = 35, b = 3 and c = 28, (c) the new attractor, for a = 1.18, b = 0.168, c = 7.0 and q = 0.1.

the origin, since for such trajectories, d(x)/dt =
d(y)/dt = 0 and d(z)/dt = −bz.

2.1.2. Dissipativity and the existence
of attractor

Theorem 1. If a + b > cq then system (2) has a
bounded, globally attracting ω-limit set.

Indeed, the variation of the volume V (t) of a
small element δΩ(t) = δxδyδz in the phase space is
determined by the divergence of the flow [Lorenz,
1963]:

∇V =
∂ẋ

∂x
+
∂ẏ

∂y
+
∂ż

∂z
.

From system (2), we get

∇V = −(a+ b− cq) ,

so that, with a + b > cq, system (2) is dissipative,
with an exponential contraction rate:

δΩ(t) = e−(a+b−cq) ,

for the volume element δΩ(t) = δxδyδz. That is, a
volume element V0 is contracted by the flow into a
volume element V0e

−(a+b−cq)t in time t.
In other words, each volume containing the sys-

tem trajectory shrinks to zero as t → ∞ at an ex-
pontential rate −(a+b−cq), which is independant of
x, y and z. Thus, all trajectories are ultimately con-
fined to a specific subset having zero volume and the
asymptotic motion settles onto an attractor. This
has been confirmed by our computer simulations
(see the next section).

2.2. Equilibria: Existence and stability

We now turn to determine the equilibria of sys-
tem (2) and their types of stability in the sense
of Lyapunov.

Due to the nature of the nonlinearities, namely,
sgn(x)(c−a−z) and sgn(y)x, the phase space can be
divided into four piecewise-linear regions denoted as
Di, i ∈ {1, . . . , 4}, according to the signs of x and
y. In each of these regions, the system becomes
linear and one can even obtain its explicit solution
formulas. In each of the four regions, there exists a
“symmetric” point P−(−x, −y, z) for each equilib-
rium point P+(x, y, z), due to the symmetry of the
vector field (recall the invariance under the trans-
form (x, y, z)→ (−x, −y, z)).

The equilibria of system (2) can be easily found
by solving the three equations ẋ = ẏ = ż = 0, which
lead to

a(y − x) = 0 ,

sgn(x)(c − a− z) + cqy = 0 ,

and

sgn(y)x− bz = 0 .

We thus obtain, in addition to the origin, two
“symmetric” equilibria:

E+ = (bz, bz, z) and E− = (−bz, −bz, z) ,
(3)

where

z =
a− c
cqb− 1

. (4)
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Let us now study their stability, i.e. the nature
of the eigenspaces presented in the neighborhood of
each equilibrium.

Note that this system is piecewise-linear, and
linear in each region Di, where the eigenvalues are
all constant. Thus, in each region, the associated
Jacobian J is constant so that no local approxima-
tion is needed to determine it. This is the essential
advantage of piecewise-linear systems [Aziz-Alaoui,
1999].

To study the stability of E± and the dynam-
ics near E±, which is locally driven by the corre-
sponding linearized system on E±, we compute the
Jacobian J±, evaluated at these equilibria,
as follows:

J± =

−a a 0

0 cq −s±
s± 0 −b

 , (5)

where s± = sgn(x).
The eigenvalues are the solutions of the charac-

teristic cubic equation:

Π(λ) = λ3 +Aλ2 +Bλ+ C = 0 , (6)

where 
A = a+ b− cq,
B = ab− acq − bcq,
C = a(1− bcq).

(7)

As for each equilibrium in x = y, the equation above
does not depend on s±; therefore, the Jacobians as-
sociated with both equilibria are equal.

The Routh–Hurwitz conditions lead to the con-
clusion that the real parts of the roots λ are negative
if and only if A > 0, C > 0 and AB − C > 0.

In summary, we have proved the following
result.

Proposition 2. The equilibria E± of system (2)
have the same stability.

Actually, we can determine the exact values of
the eigenvalues by setting λ = ω + Λ in Eq. (6),
with ω = −(A/3). This yields

Π(Λ) = Λ3 + PΛ +Q ,

where P = −(A2/3) + B and Q = (2A3/27) −
(AB/3) + C.

This third-order polynomial in Λ can be solved
by using the Cardan formula, whereby we set ∆ =
4P 3 + 27Q2, resulting in the following:

(i) If ∆ > 0, there is a unique real eigenvalue:

λR = ω + ΛR

= −A
3

+

−Q
2

+

√
Q2

4
+
P 3

27

1/3

+

−Q
2
−
√
Q2

4
+
P 3

27

1/3

, (8)

along with two complex conjugate eigenvalues:

(λC)± = ω + (ΛC)±

= −A
3
− ΛR

2
± i

2

√
4P + 3(ΛR)2 .

(ii) If ∆ < 0, the system has three real and distinct
eigenvalues:

λ1 = −A
3

+ 2

√
−P

3
sin

(
θ

3

)
,

λ2 = −A
3

+ 2

√
−P

3
sin

(
2π + θ

3

)
,

λ3 = −A
3

+ 2

√
−P

3
sin

(
4π + θ

3

)
,

where

θ = arcsin

√−27Q2

4P 3

 ∈ [0, π] .

The case where ∆ = 0 corresponds to a
measure-zero set of parameters. So, by a slight
perturbation of parameters, without changing the
behavior of the system, a system belonging to one
of the two other cases is obtained.

Consequently, for the parameter values given
by Eq. (9) and for a = 1.18, the system has the
strange attractor shown in Figs. 2(c) and 3. In this
case, the equilibria are:

E+(1.114, 1.114, 6.6)

and
E−(−1.114, −1.114, 6.6) .

The eigenvalues corresponding to the linearized
vector field are:

λR = −1.5567 and λ±C = 0.454 ± 0.68 i .



Asymptotic Analysis of a New Piecewise-Linear Chaotic System 151

(a) (b)

(c) (d)

Fig. 3. The chaotic attractor, for the set of parameters specified by Eq. (9) and for a = 1.18, the shape of the attractor in
the (a) x–y–z space, (b) x–y plane, (c) x–z plane, (d) y–z plane.

Thus, locally, there exit two conjugate com-
plex eigenvalues, λ±C , and a real eigenvalue, λR,

where λR and Re(λ±C) have different signs. Hence,
equilibria E± are not stable; they are attract-
ing in one direction but repelling in the other
two directions.

3. Numerical Investigations

To provide some numerical evidence for the chaotic
behavior of system (2), we present various numer-
ical results here to show the chaoticity, including
its sensitive dependence on initial conditions, frac-
tal structure, bifurcation diagrams, and Lyapunov
exponents.

Throughout, we assume that all parameters
of the system are positive and, unless otherwise

specified, we fix

b = 0.16875 , c = 7.0 , q = 0.1 , (9)

and assume

c > a . (10)

Parameter a plays a key role in parameter control
below.

For these parameter values, system (2) has the
chaotic attractor as shown in detail in Fig. 3.

3.1. Sensitive dependence on
initial conditions and the
power spectrum

To demonstrate the sensitivity to intial conditions
of system (2), we compute two orbits with initial
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Fig. 4. Sensitive dependence on initial conditions: x-
coordinates of the two orbits, for system (2), plotted against
the time, with a = 1.18; the x-coordinates of initial condi-
tions differ by 0.0001, the other coordinates are kept equal.

points (x0, y0, z0) and (x0 + 0.0001, y0, z0), respec-
tively. The results are shown in Fig. 4. At the be-
ginning, the time series are undistinguishable; but
after a number of iterations, the difference between
them builds up rapidly.

On the other hand, the aperiodicity of the at-
tractors can be seen from the calculation of the
power spectrum of the time series. Here, we
have chosen the x-component for demonstration.
Figure 5 shows the power spectrum, which was cal-
culated for a very long time series using the algo-
rithm provided by Cooley and Tukey [1965].

From Fig. 5, it seems obvious that the attractor
is aperiodic and the power spectrum of orbit x(t)
exhibits a continuous broadband feature. It con-
tains a dominant discrete peak at a low frequency
that is due to the presence of a limit cycle. This
noise-like spectrum is an essential characteristic of
chaotic systems.

3.2. Fractal dimension and
Lyapunov exponents

Strange attractors are typically characterized by
fractal dimensions. The correlation dimension is
obtained by considering the correlation between
“random” points on a chaotic attractor. The
computational method used here is taken from
[Grassberger & Procaccia, 1983], where the dimen-
sion is defined by

d = lim
ε→0

ln(Ci(ε))

− ln ε

with

Ci(ε) =
1

N
{#{MiMj ∈ SN × SN : ‖MiMj‖ < ε}} ,

Fig. 5. Power spectrum of the time series x(t), where
a = 1.18.

where # indicates the number of points of a set and
SN denotes a set of N points on the attractor, both
obtained from a trajectory.

We have numerically found that dc = 2.047 for
system (2); this value gives evidence of its fractal
structure.

Finally in this section, we examine the impor-
tant characteristic of neighboring chaotic orbits to
see how rapidly they separate each other.

This separation is quantified by using the con-
cept of Lyapunov exponents [Oseledec, 1968]. In
general, the Lyapunov exponents can only be found
by computations using a monitored long-term time
series.

In system (2), Lyapunov exponents can be cal-
culated rigorously by using a method proposed in
[Ml̈ler, 1995]. Nevertheless, by using the efficient al-
gorithm given in [Wolf, 1986], we have found three
Lyapunov exponents as follows:

λ1 = 0.38 , λ2 = 0.23 , λ3 = −1.26 ,

which quantify the rapidity of separation of orbits
inside the attractor.

A typical situation for a continuous-time three-
dimensional autonomous chaotic system with a con-
tinuous vector field is that there are three Lyapunov
exponents, `i, satisfying `1 > 0, `2 = 0, `3 < 0 and
`1+`2+`3 < 0. However, it is interesting to see that
this is not the case for system (2). This is because
system (2) has a discontinuous vector field due to
the signum functions on its right-hand side, there-
fore it may not possess some familiar features of
the continuous or smooth dynamical systems. This
interesting phenomenon deserves special attention
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and detailed analysis, which will be further investi-
gated in the near future.

Moreover, for system (2), its Lyapunov dimen-
sion (see e.g. [Kaplan & York, 1979]), is defined as
follows:

dL = j +

i=j∑
i=1

`i

|`j+1|
with `1 ≥ · · · ≥ `n, where j is the largest integer
such that

∑i=j
i=1 `i ≥ 0 and

∑i=j+1
i=1 `i < 0.

In our case, the Lyapunov dimension is

dL = 2 +
λ1 + λ2

|λ3|
.

Therefore, system (2) has a fractal dimension dL ≈
2 + (0.61/1.26) ≈ 2.48.

3.3. Bifurcation diagrams and some
phase portraits

For system (2), a typical period-doubling route to
chaos is observed, as shown in Fig. 6. This figure
gives a bifurcation diagram for the system with the
parameters fixed by Eq. (9) and a is varied as the
bifurcation parameter: a ∈ [1.13, 1.18]. In this di-
agram, asymptotic values of x(t) are plotted as a
function of a.

As the parameter a is increased, the period-2
behavior bifurcates to a period-4 cycle, after which
period-doubling bifurcations continue. This culmi-
nates in a Feigenbaum cascade of period-doubling
bifurcations leading to a chaotic region beginning
at a = 1.155 . . . approximately. The chaotic re-
gion contains trajectories that are completely non-
periodic, as well as periodic orbits of arbitrary

(a) (b)

Fig. 6. (a) One-parameter bifurcation diagram of system (2) with respect to the control parameter a, while the other
parameters are fixed by Eq. (9); (b) magnification of the first diagram: between a = 1.158 and a = 1.161.

(a) (b) (c)

Fig. 7. A nonsymmetric stable period-1 orbit, obtained with a = 1.13.
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(a) (b) (c)

Fig. 8. A nonsymmetric stable period-2 orbit, obtained with a = 1.15.

(a) (b) (c)

Fig. 9. A nonsymmetric stable period-4 orbit, obtained with a = 1.153.

(a) (b) (c)

Fig. 10. A nonsymmetric quasi-periodic orbit, obtained with a = 1.16 and initial conditions X0(−1.0, 0.1, 10.0).

(a) (b) (c)

Fig. 11. The “symmetric” orbit of the nonsymmetric quasi-periodic orbit, of the previous picture (the same parameter values
as the previous figure), corresponding to the initial conditions X′0(1.0, −0.1, 10.0).
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(a) (b) (c)

Fig. 12. Orbits of both previous pictures (Figs. 10 and 11) plotted together, with a = 1.16.

(a) (b) (c)

Fig. 13. A “symmetric” (chaotic) orbit, obtained with a = 1.164 and initial conditions X0(−1.0, 0.1, 10.0).

(a) (b) (c)

Fig. 14. A “symmetric” (chaotic) attractor, obtained with a = 1.18.

periods. In some cases, these orbits may be non-
symmetric; their “symmetric” orbits coexist due to
the invariance of the system under the transform
(x, y, z) → (−x, −y, z); and as a increases, these
attractors grow slightly in size, become more com-
plex, and then they are merged leading to the for-
mation of a “symmetric” attractor (Figs. 7–14).

Figures 7–14 illustrate the cascade of bifurca-
tions found for the set of parameters specified by
Eq. (9), using again a as the control parameter. In

these figures, the one on the left is the x–y plane
projection of the solution, the central one is its x–z
plane projection, and the one on the right is the y–z
plane projection.

4. Conclusion with Perspective

We have reported the finding of a new chaotic at-
tractor in a piecewise-linear continuous-time three-
dimensional autonomous system obtained by a
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(a) (b)

(c) (d)

Fig. 15. Another “symmetric” chaotic attractor found from system (2), with parameters a = 1.18, b = 0.0001, c = 7.0 and
q = 0.1: (a) Three-dimensional view, projections on (b) x–y plane, (c) x–z plane, (d) y–z plane.

direct modification of the existing Chen’s system.
We have then briefly discussed its complex chaotic
dynamics, which turns out to be quite rich, as
also shown in Fig. 15 for parameters that were not
studied in the paper above. More detailed anal-
ysis for such phenomena will be provided in the
near future.
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