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Abstract

When a set of nonlinear differential equations is investigated, most of time there is no analytical solution and only numerical
integration techniques can provide accurate numerical solutions. In a general way the process of numerical integration is the
replacement of a set of differential equations with a continuous dependence on the time by a model for which the time variable
is discrete. In numerical investigations a fourth-order Runge–Kutta integration scheme is usually sufficient. Nevertheless,
sometimes a set of difference equations may be required and, in this case, standard schemes like the forward Euler, backward
Euler or central difference schemes are used. The major problem encountered with these schemes is that they offer numerical
solutions equivalent to those of the set of differential equations only for sufficiently small integration time steps. In some
cases, it may be of interest to obtain difference equations with the same type of solutions as for the differential equations but
with significantly large time steps. Nonstandard schemes as introduced by Mickens [Nonstandard Finite Difference Models
of Differential Equations, World Scientific, 1994] allow to obtain more robust difference equations. In this paper, using such
nonstandard scheme, we propose some difference equations as discrete analogues of the Rössler system for which it is shown
that the dynamics is less dependent on the time step size than when a nonstandard scheme is used. In particular, it has been
observed that the solutions to the discrete models are topologically equivalent to the solutions to the Rössler system as long
as the time step is less than the threshold value associated with the Nyquist criterion.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Until recently, most of the physical processes have been modeled by differential equations where the processes
are assumed to be evolving continuously. When these differential equations are nonlinear, there are seldom any
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analytical solutions and only numerical integration techniques can provide numerical solutions to the original dif-
ferential equations. With the advent of digital computers, this is easily done using a fourth-order Runge–Kutta
integration scheme. Nevertheless, sometimes it could be desirable to replace the set of continuous-time differ-
ential equations with a set of difference equations for which the time is a discrete variable. When standard
schemes as the forward Euler, backward Euler or central difference schemes are used, the discrete system has
solutions which are equivalent to those of the continuous counterpart only for sufficiently small discretization
time steps. With standard scheme, the upper value of the time step for which the solutions are equivalent to
the continuous counterpart is significantly smaller than the sampling time used for recording the time evolution
of a physical quantity. The question of a possible equivalence between differential and difference equations—with
relatively large time steps—and a new scientific theory advocating the discreteness of time have emerged
[2,3].

This equivalence is particularly important when comparing different global modeling techniques. Typically,
global modeling techniques can be used for obtaining a set of equations that capture the dynamics described by a
recorded time series. Such techniques are based on phase space is reconstructions from the measured time series
using either delay or derivatives coordinates[4]. If derivative coordinates are used then we obtain a system of
ordinary differential equations with dimension equal to the dimension of the original phase space[5]. On the other
hand, if delay coordinates are used[6] then a set of difference equations is obtained. Most of time, the dimensions
of the obtained models are significantly greater than those of the original systems[7,28]. Such a feature was never
considered as a major problem since Takens proposed an existence theorem which ensures the existence of a recon-
structed phase space that is diffeomorphically equivalent to the original phase space as long as the dimension of the
former is sufficiently large[8]. Indeed, Takens’ criterion corresponds to a dimension significantly greater than the
dimension of the original phase space. Tempkin and Yorke[9] showed that for almost any choice of measurements
(in the sense of prevalence), there exists a scalar difference equation that describes the evolution of the sequence
of measurements whose dimension is larger than twice the box-counting dimension of the dynamical system’s
attractor.

Nevertheless, according to recent works[10–12] where both types of techniques were applied successfully
to the same data sets, the dimensions and the number of terms of the obtained global models are different and
very much dependent on the techniques used. No direct comparison between the difference and the differential
models was therefore possible. Moreover, the obtained global discrete model depends on the discretization time
step size[13]. Consequently, it becomes an important task to compare the global models provided by these modeling
techniques. It then appears obvious that, before being able to address correctly this problem, it is necessary to have
a clear idea of the possible equivalence between differential equations with time step comparable to the sampling
time.

For all the above-mentioned reasons, we decided to reinvestigate the possible equivalence between difference
and differential equations. This is obviously connected to the important problem of discretizing a set of ordinary
differential equations[1,14,15]. In this context, it is well known that the discretization of continuous equations may
have solutions which depend on the discretization time step sizeh and numerical instabilities may be encountered.
Numerical instabilities are solutions to the discrete finite difference equations that do not correspond to any solution
to the original differential equations. Such a feature occurs mainly when the step sizeh is too large[16]. This may
also be encountered when the order of the difference equations is larger than that of the differential equations[1]
which is one way in which models may become overparametrized[17].

A simple example of numerical instabilities is observed in the discretization of the continuous-time logistic map
using the Euler scheme. Indeed, the elementary nonlinear ordinary differential equation

ẋ(t) = x(t)[1 − x(t)] (1)
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has two fixed pointsx∗
1 = 0 andx∗

2 = 1. The first fixed point is unstable while the second is stable. Thus, every
solution ofx(t) with x(0) > 0 is asymptotically stable. Using the Euler-type discretization scheme

ẋn ≈ xn+1 − xn

h
, (2)

whereh > 0 denotes the discretization step size andxn the value ofx(t) for t = nh. The elementaryequation (1)
thus becomes

xn+1 = hxn

(
1 + 1

h
− xn

)
, (3)

which is a slightly modified version of the logistic map. This difference equation has two fixed points which are
still x∗

1 = 0 andx∗
2 = 1. Nevertheless, the fixed pointx∗

2 is stable only for 0< h < 2. When the discretization
step sizeh is increased beyondh = 2, a period-doubling cascade is observed as well as various chaotic attractors
and periodic solutions usually encountered in the logistic map. Consequently, it appears that the discretization of
Eq. (1)is only valid, from the asymptotic behavior point of view, for a finite interval of the discretization step size.
In fact,Eq. (3)may be rewritten as

xn+1 = δxxn + δx2x
2
n, (4)

whereδx = h + 1 andδx2 = −h. If we takeδx = λ andδx2 = −λ, we obtain the usual logistic map, whereλ is the
bifurcation parameter. It appears that the discretization ofEq. (1)leads to a discrete equation which has the same
structure as the logistic equation sinceh andλ are closely related. The discretization time steph may be viewed as
the bifurcation parameter of the equation. This will be also observed in the less trivial case of the Rössler system
also discussed in this paper.

Indeed, we will take advantage of the chaotic Rössler system when investigating, in a more precise way,
the possible equivalence between a set of ordinary differential equations and its discretization. The case of the
Rössler system, which is a simple set of three ordinary differential equations with chaotic behavior, will be
used because the behavior of such a system allows us to use topological analysis[18] providing a quite ac-
curate characterization of the asymptotic behavior. In a rigorous way, difference and differential equations are
said to have the same general solution if and only ifun = u(tn)|t=nh for h > 0. Here, we will investigate a
weaker equivalence in terms of solutions characterized by the same topology in the phase space. Such a topo-
logical equivalence will be very helpful todistinguish displacement in the parameter space from numerical in-
stabilities. Indeed, when the discretization time step size is varied within a certain range, the solution to the dis-
cretization model corresponds to a solution of the continuous counterpart with a displacement in the parameter
space.

The rest of the paper is organized as follows.Section 2briefly describes the topology of two characteristic solutions
of the Rössler system. InSection 3, different nonstandard discretization schemes are used and their solutions are
investigated versus the discretization time step. A discretization of the analytical model, which is obtained when a
single variable is “measured”, is proposed and some comments on how it relates to the estimation of models from
time series are given. Our conclusions are given inSection 4.

2. Rössler system

Let us start by briefly describing two typical solutions to the Rössler system[19] reading as

ẋ = −y − z, ẏ = x + ay, ż = b + xz− cz, (5)
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Fig. 1. Spiral attractor generated by the Rössler system (5) with the bifurcation parameters (a, b, c) = (0.432, 2, 4).
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Fig. 2. Funnel attractor generated by the Rössler system (5) with the bifurcation parameters (a, b, c) = (0.556, 2, 4).
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Fig. 3. Bifurcation diagram vs. the bifurcation parameter a of the Rössler system (5). Part (a) corresponds to values smaller than 0.432 here used
as a reference and (b) for values larger than this reference.
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where (a, b, c) are the bifurcation parameters. The Rössler system has two fixed points given by

x± = c ± √
c2 − 4ab

2
, y± = −c ± √

c2 − 4ab

2a
, z± = c ± √

c2 − 4ab

2a
. (6)

For a = 0.432, b = 2 and c = 4, the Rössler system has a chaotic attractor for solution (Fig. 1a). According to
Farmer et al. [20], we designate this attractor as the spiral attractor. This attractor is characterized by a first-return
map to the Poincaré section. For three-dimensional systems such a section is defined by the plane

P ≡ {(yn, zn) ∈ R
2|xn = x−, ẋn > 0}, (7)

which is unimodal (Fig. 1b). Thus, the map is constituted by an increasing monotonic branch and a decreasing
branch separated by the critical point located at the maximum (Fig. 1b). The critical point defines the generating
partition of the attractor which allows the encoding of all periodic orbits embedded within the attractor [21]. The
increasing branch is close to the bisecting line and, consequently, the symbolic dynamics is almost complete. A
two-symbol symbolic dynamics is complete when all periodic orbits which can be encoded with these two symbols
are solutions to the Rössler system. Thus, for a = 0.432, most of periodic orbits encoded with two symbols are
embedded within the attractor generated by the Rössler system.

When the bifurcation parameter a is increased, new periodic orbits are created and the chaotic attractor increases
in size (Fig. 2b). The corresponding first-return map is constituted by more than two branches and, for a = 0.556,
up to eleven monotonous branches may been identified [21]. The corresponding attractor is designated as the funnel
attractor [20]. For a greater than 0.556, there is metastable chaos, that is the trajectory visits the neighborhood of
the unstable periodic orbits solution to the Rössler attractor before being ejected to infinity [21]. The dynamics of
the Rössler system can therefore be investigated for a < 0.556, b and c remaining constant.

A bifurcation diagram synthesizes the evolution of the dynamics under the change of the bifurcation parameter a
(Fig. 3). The bifurcation parameter a is varied over the interval [0.432, 0.556]. It will be shown that quite a similar
bifurcation diagram is obtained when the discretization time step h of the discretization of the Rössler system is
increased.

3. Analytical discretization of continuous systems

3.1. Mickens’ guidelines

It is known that discretization of nonlinear differential equations u̇uui = fff i(uuuj) may have chaotic behavior while
its differential counterpart has a limit cycle or, even just a stable fixed point. Lorenz showed that the discretization
version of a simple set of two nonlinear differential equations may exhibit chaotic solutions for sufficiently large
values of the discretization time step [22] and Whitehead and Mc Donald showed that the discretization of a
two-dimensional nonlinear system can exhibit a chaotic regime [23]. In order to improve the discretization scheme,
Mickens formulated a basic set of ad hoc rules for constructing nonstandard schemes for differential equations [24].
We start from the general form

u̇ �→ uk+1 − Ψuk

ϕ
, (8)

where Ψ and ϕ depend on the step size h and other parameters occurring in the differential equations. Functions Ψ

and ϕ should satisfy the conditions

Ψ = 1 + O(h), ϕ = h + O(h2) (9)
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and may vary from one equation to another. Unfortunately, there is no general way to determine Ψ and ϕ. In most
applications, Ψ is usually selected to be Ψ = 1, and ϕ is determined in such a way that special solutions of the
differential equations have the correct stability properties. A general choice for ϕ may be

ϕi(h, gi) = 1 − e−gih

gi

, (10)

where gi’ s are determined as

gi = max

(∣∣∣∣∣ ∂fi

∂ui

∣∣∣∣
uuu=uuuj

∣∣∣∣∣
)
, (11)

where uuuj denote the coordinates of the jth fixed point of the continuous system to discretize.
It is interesting to notice that gi is related to the the fastest time scale of the system. Therefore, in (10) a

normalization is carried out using this fast time scale. The functions ϕi can be interpreted as a “normalized” or a
rescaled time step size such that its value is never larger than the smallest time scale of the system. Since many of
the mechanisms that lead to the occurrence of numerical instabilities have their origin in using a step size that is
greater than some relevant physical time scale, this method for selecting ϕi’ s reduces this source of instabilities. In
other words, the use of functions ϕi, rather than just h, allows the value of h to be much larger than the one normally
selected because it is the effective step size ϕi that determines the stability and not the actual step size h. Another
issue of great importance is that, in general, nonlinear terms are modeled by discrete expressions that are nonlocal
on the computational grid [24]. For instance, a u2 term would be replaced by uk+1uk in the finite difference scheme,
whereas conventional methods would use the local form u2

k . An important rule to build discretization schemes is that
the order of the discrete equations should be equal to the order of the corresponding derivatives of the differential
equations, otherwise spurious solutions (numerical instabilities) may occur [1].

The fundamental reason for the existence of numerical instabilities is that discrete models obtained by discretizing
differential equations have parameter spaces with higher dimensions than those of the corresponding differential
equations. This is easily argued by the fact that the time step size h can be regarded as an additional parameter.
Even if {y(·, λ)} and {yk(λ, h)} are “close” to each other for a particular value of h, say h = h1, if h is changed to
a new value, say h = h2, the possibility exists that yk(λ, h2) differs greatly from yk(λ, h1) both qualitatively and
quantitatively [1].

Our aim is to show how this type of discretization scheme may influence the quality of the discretized model and
its sensitivity to the choice of the discretization time step size h. We will investigate three different discretizations.
The last one follows all of Mickens’ recommendations.

3.2. One simple example

The first discrete model is obtained using the following transformation on system (5):

x �→ xk, y �→ yk, z �→ zk, xz �→ xkzk+1. (12)

Thus, by applying the discretization scheme (8) with Ψ = 1, we obtain the model:

xk+1 = xk − ϕ1(yk + zk), yk+1 = (1 + aϕ2)yk + ϕ2xk, zk+1 = zk(1 − cϕ3) + bϕ3

1 − ϕ3xk
, (13)

where the functions are chosen according to

ϕ1 = ϕ2 = ϕ3 = sin h. (14)
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Although the ϕ functions could be chosen according to (10), for the sake of simplicity, in this example, they were
chosen as shown in (14).

It should be noticed that introducing the nonlocal term xkzk+1 induces the rational form of the third equation.
Depending on the choice of the functions ϕi, the discretization of the Rössler system may be stable over a wider
interval of the discretization time step h as discussed below.

For a very small discretization time step h, the dynamics underlying the difference equations (13) with ϕ defined
by relation (14) is topologically equivalent to the dynamics of the Rössler system (5). This means that the phase
portrait (Fig. 4a) solution of the difference equations (13) with ϕi’ s defined by relation (14) is also characterized
by a first-return map to a Poincaré section (Fig. 4b) equivalent to the one associated with the Rössler dynamics
(Fig. 1b). The populations of periodic orbits embedded within the attractors solution of the Rössler system and its
discretization are the same. Moreover, both attractors are characterized by the same template, that is, periodic orbits
have the same relative organization in the phase space. In other words, the relative organization of periodic orbits
may be described by the same branched manifold.

Nevertheless, when the discretization time step h is increased, bifurcations occur and new periodic orbits are
created or destroyed. For larger values of h, the first-return map presents new monotonous branches (Fig. 5b) as
observed on the Rössler attractor of the funnel type (Fig. 2b). This means that the discretization time step h that
functions as a bifurcation parameter, plays the same role as the parameter a does for the Rössler system. Indeed, when
h is varied over the range (0.0, 0.0924), the bifurcation diagram (Fig. 6) is rather similar to the one computed versus
the a parameter for the Rössler system (Fig. 3b). This discretization of the Rössler system has a chaotic attractor
that is topologically equivalent to one solution to its continuous counterpart but with different bifurcation parameter
values as long as the discretization time step is sufficiently small. Consequently, the discretized version of the Rössler
system remains valid for quite large values of the time step h. Varying the value of the time step h associated to the
discrete model, therefore, corresponds to a displacement in the parameter space of the original Rössler system.

Note that the time step cannot be varied over a very large range. In fact, the interval is restricted to a limited range
because for values beyond 0.0924 s, the trajectory is ejected to infinity as was observed when parameter a is varied.

Such a modification of the dynamics through the discretization procedure is a common feature observed in global
modeling. Indeed, very often the global model estimated from experimental time series does not exhibit exactly the
same behavior than the experimental one. This does not mean that the model is bad since, very often, a parameter of
the model may be slightly varied to recover the expected dynamics [25]. In other words, for a given value of the time
step h, it is possible to modify the bifurcation parameters in order to recover the expected dynamics. For instance,
with h = 0.0924 s and a = 0.321, a two branch first-return map is obtained. In that case, the development of the
dynamics induced by the increase of the discretization time step h is canceled out by the decrease of the a parameter.
This feature results directly from the coefficient 1 + aϕ2 in the second equation (13) since it is the coefficient of the
autoregressive part of the equation. The term 1 + aϕ2 therefore defines the overall dynamics, the second term ϕ2xk

being only the forcing function (the exogenous part of the equation). Since ϕ2 = sin h, the increase of h has to be
followed by the decrease of a in order to keep the coefficient 1 + aϕ2 approximately unchanged, and therefore the
dynamics of the second equation of (13) constant. Of course, the dynamics of the whole system (13) depends on
other things but the compensating effect of a over h is partially explained by this remark.

3.3. An optimized finite difference model

In discrete model (13), we used the nonlocal nonlinear term xkzk+1. It is also possible to choose the other form
xk+1zk. In this case, the third equations becomes polynomial

zk+1 = bϕ3 + [1 + ϕ3(xk+1 − c)]zk (15)
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Fig. 4. Spiral chaotic attractor solution of the difference model (13) for the time step h = 0.001 s with the functions ϕi given in relation (14).

and the time step can be increased to 0.2405 s which is 2.5 times greater than the upper value reached with discretized
model (13). The bifurcation diagram thus obtained is similar to the bifurcation diagram shown in Fig. 6, but with a
rescaling of the a-axis between 0 and 0.2405 s.

A more robust discrete model is obtained when we follow all the recommendation given by Mickens for con-
structing new finite difference equations corresponding to the Rössler system. We use the following transformation:
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Fig. 5. Funnel chaotic attractor solution of the difference model (13) for the time step h = 0.0924 s with the functions ϕi given in relation (14).

• first equation: (xk, yk, zk) �→ (xk, yk, zk);
• second equation: (xk, yk, zk) �→ (xk+1, yk, zk);
• third equation: (xk, yk, zk) �→ (xk+1, yk+1, zk).

and the nonlinearity xz is replaced by the nonlocal term xk+1zk. This choice has also the advantage of preserving a
polynomial form for the discretization model. Function Ψ is equal to 1. Thus, we obtain
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Fig. 6. Bifurcation diagram vs. the time step h for model (13) with the functions ϕi given in relation (14). Compare with Fig. 3b.

xk+1 = xk − ϕ1(yk + zk), yk+1 = (1 + aϕ2)yk + ϕ2xk+1, zk+1 = bϕ3 + [1 + ϕ3(xk+1 − c)]zk.

(16)

The function ϕi is chosen according to the on-diagonal elements of the Jacobian matrix of the original continuous
system (5):

Jij =

 0 −1 −1

1 a 0
z 0 x − c


 . (17)

Note that since J11 = 0, there is no natural time scale associated with the autoregressive part of the first equation.
We therefore choose the function ϕ1 equal to h, thus expressing this fact. According to Eqs. (10) and (11), the second
function is

ϕ2 = 1 − e−ah

a
(18)

and the third one is

ϕ3 = 1 − e−xch

xc
, (19)

where xc = (−c+√
c2 − 4ab)/2 is estimated using the fixed point coordinates and Eq. (11). Note that the optimized

model (16) is polynomial.
This discrete model can be iterated with a discretization time step size h over the range (0, 0.6194), that is over

three times larger than the one used with the previous discretization schemes. The bifurcation diagram versus h

(Fig. 7) is similar to the diagrams computed with the continuous Rössler system (Fig. 3) if the a parameter is varied
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Fig. 7. Bifurcation diagram vs. the time step h for the optimized discrete model (16) with the functions ϕi given in relations (18) and (19).
Numerical instabilities occur when the discretization time step is greater than Nyquist’ s criterion (b).
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Fig. 8. Fourier spectrum of the Rössler system with (a, b, c) = (0.432, 2, 4). The main frequency f0 is equal to 0.1587 Hz which corresponds
to a pseudo-period equal to 6.3 s. The highest significant frequency fmax ≈ 1.0 Hz.

“backwards” . By similarity it is meant that both models undergo the same sequence of bifurcations. As far as the
bifurcations are concerned, the increase of h has a similar effect as the decrease of a. This may be understood by
replacing xk+1 in second equation of system (16) by the first equation of this system: we thus obtain

yk+1 = [1 + ϕ2(a − ϕ1)]yk + ϕ2xk − ϕ1ϕ2zk, (20)

where in the term [1 + ϕ2(a − ϕ1)]yk, ϕ1 = h tends to balance the effect of parameter a. The bifurcation di-
agram (Fig. 7) reveals that the solutions of the discretized version of the Rössler system have clear counterpart
solutions in the continuous system for appropriate values of the bifurcation parameters. Note that when h ∈
]0, 0.05], very few bifurcations are observed and, consequently, the dependence to the solution of the discrete
model (16) on the time step size h is very weak. This model is therefore very robust against increase of the time
step h.

The pseudo-period of the original Rössler system is 6.3 s as given by the main frequency f0 = 0.1587 Hz (Fig. 8).
The largest significant frequency which may be seen in the power spectrum is fmax ≈ 1 Hz. According to Nyquist’ s
criterion, the sampling frequency should be greater than 2fmax, that is greater than 2 Hz. At lower sampling rates
there would be aliasing of spectra. Such a threshold corresponds to a sampling time �t ≈ 0.5 s. It is interesting to
note that the behaviors, which are no longer topologically equivalent to the solution to the original Rössler system,
appear for discretization time step size h greater than the critical sampling time corresponding to Nyquist’ s criterion.

Indeed, for h = 0.5 s, a period-1 limit cycle (Fig. 9a), which is still obviously topologically equivalent to the
period-1 limit cycle of the original Rössler system, is observed if the limit cycle is progressively constrained
by the heterocline connections between the periodic points of an unstable period-11 orbit (Fig. 9b and c). With
h = 0.589 s, the limit cycle is shown with the unstable periodic orbit (Fig. 9c) on the continuous Rössler system
and, consequently, results from numerical instabilities. When the time step is increased, the limit cycle presents
apparent cusps which are actually points of extreme curvature. A similar phenomenon has been observed by
Lorenz [22]. Unfortunately, the discrete model is not sufficiently stable to remain stable for a higher discretiza-
tion time step but we may expect that spurious chaotic behavior would have been observed in such a case. This
was observed by Lorenz [22] and in another investigation using another scheme for discretizing another system
[26,27].

Note that numerical instabilities appear when the discretization time step h is greater than the Nyquist’ s criterion.
Indeed, the Nyquist criterion is a criterion for the sampling rate of a continuous variable which guarantees that
there is no spectra superposition. In other words, this criterion provides an upper value for the time step size
at which the time series can be sampled. With greater time steps, some information is lost and the dynamics
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Fig. 9. Solutions to the optimized discrete model of the Rössler system for different values of h. (a) h = 0.500 s, (b) h = 0.580 s, (c) h = 0.589 s, (d) h = 0.6194 s.
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cannot be fully recovered from the measurements. By analogy, we conjecture that when a discretization of a
continuous system is built and iterated with a discretization time step size h greater than the Nyquist criterion, the
dynamics cannot be recovered without any damage. Consequently, the solutions thus observed are expected not
to correspond to a solution to the original differential system, even with a displacement in the parameter space.
This is directly related to a comment made by Mickens [24] who stated that numerical instabilities can occur
when the finite difference equations do not satisfy some condition that is of importance for the corresponding
differential equations. The main time scale of the dynamics is definitely an important characteristic and choosing
the time step without any consideration related to this property does not make sense. This means that we obtained
difference equations that have good equivalence with the Rössler dynamics, that is, that have a solution that is
topologically equivalent to some solution to the Rössler system with a possible displacement in the parameter
space.

4. Differential embedding versus delay embedding

In applications, usually only a single time series {s(t)} is available to investigate the dynamics. In such cases the first
step is to reconstruct the phase space. Two main choices are: using the delay coordinates {s(t), s(t+τ), s(t+2τ), . . . }
or using the derivative coordinates {s(t), ṡ(t), s̈(t), . . . }. In the first case, a discrete-time model will be attempted [6]
while in the second, a continuous-time model has to be estimated [5]. Thus difference or differential equations may
be estimated depending on the kind of the embedding chosen. Recent works [10–12] suggest that both approaches
are more or less equivalent although rigorous results are still lacking. The structure selection technique implemented
for selecting the relevant terms and the dimensionality of the difference equations estimated from the time series [28]
usually provides difference equations with a dimensionality greater than the one obtained with differential equations
although, in general, with far less terms than the continuous counterpart has. This hampers direct comparison of
such mathematical representations. If, on the one hand, the dimensionality of differential models cannot be varied
because it is strongly constrained by the embedding dimension [29,30],1 on the other hand, it is rather natural to find
difference equations of orders larger than those of the original systems that produced the data. Therefore, it becomes
obvious that it is quite difficult to establish a link between equations working in spaces with different dimension.

In order to show that it is possible to establish an equivalence between a discrete model and a differential one,
we will discretize the differential model induced by the y-variable of the Rössler system. Since the equations of the
system are known, it is possible to analytically derive the difference model.

Let us assume that the y-variable of the Rössler system is measured. In such a case, the phase space may be
reconstructed using the derivative coordinates

X = y, Y = ẏ, Z = ÿ. (21)

The reconstructed space is three-dimensional, in agreement with the embedding dimension which can be computed
using the false nearest neighbors technique [30]. The derivatives may be expressed analytically using Lie derivatives
defined as

LfΦ(xxx) =
3∑

k=1

fk(xxx)
∂Φ(xxx)

∂xxxk
(22)

and recursively for the higher-order derivatives L
j

fΦ(xxx) = Lf (L
j−1
f Φ(xxx)). Here the Rössler system ẋxx = fff(xxx)

is observed using s = Φ(xxx) = y. The function Φ : R
3(x, y, z) → R(y) is here a smooth function called the

1 The smallest dimension with which the phase portrait may be represented without self-intersections.
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measurement function. Thus, the derivatives are equal to

Θ ≡

∣∣∣∣∣∣∣∣∣∣

X = Φ(xxx) = y,

Y = LfΦ(xxx) = f2(xxx) = x + ay,

Z = L2
fΦ(xxx) = f1(xxx)

∂f2

∂x
+ f2(xxx)

∂f2

∂y
+ f3(xxx)

∂f2

∂z
= ax + (a2 − 1)y − z.

(23)

Note that this coordinate transformation Θ : R
3(x, y, z) → R

3(X, Y, Z) defines a diffeomorphism between the
original phase space R

3(x, y, z) and the differential space R
3(X, Y, Z) spanned by the successive derivatives of y.

A general form for the differential model induced by the y-variable of the Rössler system reads as

Ẋ = Y, Ẏ = Z, Ż = F(X, Y,Z) = L3
fΦ(xxx), (24)

where F(X, Y,Z) is the model function which has to be estimated [5]. In our case, since we know the equations
of the original system, this function can be computed analytically. To express the function F(X, Y,Z) in terms of
derivative coordinates, the coordinate transformation Θ : R

3(x, y, z) → R
3(X, Y, Z) given by relation (23) has to

be inverted:

Θ−1 ≡
∣∣∣∣∣∣
x = −aX + Y,

y = X,

z = −X + aY − Z.

(25)

Thus, the model function reads as [31]

F(X, Y,Z) = −b − cX + (ac − 1)Y + (a − c)Z − aX2 + (a2 + 1)XY − aXZ − aY2 + YZ. (26)

Such a three-dimensional differential model may be discretized as done for the Rössler system in the previous
section. Using the scheme (12), we obtain

Xk+1 = Xk + ϕ1Yk, Yk+1 = Yk + ϕ2Zk,

Zk+1 = [−b − cXk + (ac − 1)Yk + (a − c)Zk − aX2
k + (a2 + 1)XkYk − aY2

k]ϕ3 + Zk

1 + ϕ3(aXk − Yk)
, (27)

with ϕ1 = ϕ2 = ϕ3 = sin h. Integration of (27) generates an attractor (Fig. 10a) topologically equivalent to
the Rössler system for h = 0.001 s. As observed for the various discretizations of the Rössler system, when the
discretization time step h is increased, the attractor, which is of the spiral type for small values of h (Fig. 10a),
becomes progressively a funnel type attractor (Fig. 10b).

When the discretization time step h is varied, a bifurcation diagram is obtained (Fig. 11a). It is very similar to the
diagram of the Rössler system for a > 0.432 (Fig. 7b). As we observed for the Rössler system, it is possible to vary
the bifurcation parameter to increase the interval over which the discretization time step may be varied. For instance,
with h = 0.101 s, the a-bifurcation parameter has to be decreased to a = 0.338 to recover the spiral attractor with
its unimodal map. For this value of a, the discretization time step may be increased up to h = 0.162 s (Fig. 11b to
compare with Fig. 7a and b) and with a = 0.200, h may be increased up to 0.253 s. As observed for the discretization
of the Rössler system, the difference equation describing the phase portrait reconstructed using delay coordinates
have solution attractors which are topologically equivalent to attractors solution to the Rössler system. Moreover,
when the bifurcation parameters are varied, the spiral attractor may be recovered for any value of the discretization
time step less than 0.253 s. Note that such a time step h corresponds to roughly 1/25 of the pseudo-period equal to
6.2 s. This is still a very small value since difference equations have been estimated numerically using the technique
described in [28] with a time step around to 1.0 s!
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Fig. 10. Attractors of the difference model (27) obtained via discretization using Mickens’ scheme, assuming that the observed variable was y.
(a) h = 0.001 s, (b) h = 0.101 s
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Fig. 11. Bifurcation diagram of the discretization of the differential model induced by the y-variable of the Rössler system for two different
values of a. (a) a = 0.432, (b) a = 0.338.
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Applying Mickens’ recommendations as done in the previous section. The obtained discrete model reads as

Xk+1 = Xk + ϕ1Yk, Yk+1 = Yk + ϕ2Zk,

Zk+1 = [1 + ϕ3(Yk+1 − aXk+1 + a − c)]Zk

+ϕ3[−b − cXk+1 + (ac − 1)Yk+1 − aXkXk+1 + (a2 + 1)Xk+1Yk − aYkYk+1], (28)

where ϕ1 = ϕ2 = h and

ϕ3 = 1 − e−Xch

Xc

, (29)

withXc = (c+√
c2 − 4ab)/2+a−c. Unfortunately, this model is less robust against an increase of the discretization

time step size since the trajectory settles down onto the inner fixed point for h = 0.0424 s. Changing the functions
ϕi’ s does not change this upper value for h.

With this discretization of the differential model induced by the y-variable of the Rössler system, we have an
analytical form for the function which can be estimated using discrete polynomial techniques [6,28]. Thus, it is
possible to directly compare the model obtained with these theoretical forms. Note that these discretizations are
mainly valid when the discretization time step is small enough and, consequently, can be used for comparison when
the sampling rate is high enough. Nevertheless, the form of the first discretization is rational while the discrete
models to be used are polynomials. We thus have a polynomial approximation of such a rational function. For
analytical comparison, (28) would be preferred. It is possible to obtain a discrete polynomial model with a time step
h much larger than what is reasonable with the discretization scheme used here. Consequently, such a discretization
scheme cannot be applied and more sophisticated ones should be used [26]. Also, since a possible form for the
NARMA model induced by the y-variable of the Rössler model can be derived, it is now clearer why the NARMA
technique provides more or less the same results than a global modeling technique using derivative coordinates [31].
This is reinforced by the theorem proposed by Mickens [1] which states that an exact finite difference scheme of
differential equations always exists. Such an exact discrete model is still to be found for the differential model (26).

5. Conclusion

The problem of the possible equivalence between difference and differential equations has been investigated in the
case of the Rössler system. Using nonstandard Mickens’ schemes, we showed that the discretizations of the Rössler
system have solutions which are topologically equivalent to solutions to the Rössler system with a displacement
in the parameter space. This means that varying the time step used in the discretization corresponds to applying
a displacement in the parameter space for the original Rössler system. Nevertheless, using Mickens’ nonstandard
discretization scheme, we found a discretization model very robust under discretization time step increases. In this
case, it has been observed that as long as the time step is less than the threshold value associated with the Nyquist
criterion, the discrete model has solutions which are topologically equivalent to solutions to the original continuous
system with appropriate bifurcation parameter values. This is quite important because this means that there exists
a possible discrete counterpart to a set of differential equations as long as the time step does not exceed a value
related to the Nyquist’ s criterion. This is all what we need since when a global model is attempted from a time
series, the Nyquist’ s criterion states that the sampling rate has to be lower than this upper value. Of course, the
discrete model proposed here has still to be improved. Unfortunately, there is no general guideline for that and other
choices for functions ϕ and Ψ have to be tried. Nevertheless, this study suggests that a discrete global model of the
same dimension as the differential model can be obtained. Such a result already opens new insight for comparing
discrete and continuous-time global models.
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