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ABSTRACT

Emergent properties are typically novel and unanticipated.
In this paper, using chaos synchronization tools and ideas,
we demonstrate, via two examples of three-dimensional
autonomous differential systems, that, by simple uni- or
bi-directional coupling, regular (resp. chaotic) behavior
can emerge from chaotic (resp. regular) behavior.

Keywords : Complex Systems, Emergence, Chaos, Syn-
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1. Introduction : Complexity and Emergent Proper-
ties

First of all, let us open by the citation below.
”| think the next century (21th) will be the century of
complexity”, (Stephen Hawking)

But what is complexity ?

An extremely difficult ”1 know it when | see it” concept
to define, see [1].

However, intuitively, complexity is usually greatest in
systems whose components are arranged in some intricate
difficult-to-understand pattern or, in the case of a dynami-
cal system, when the outcome of some process is difficult
to predict from its initial state (sensitive dependence on
initial conditions, see below). And a complex system is
an animate or inanimate system composed of many inter-
acting components whose behavior or structure is difficult
to understand. Sometimes a system may be structurally
complex, like a mechanical clock, but behave very simply.

While several measures of complexity have been pro-
posed in the research literature, they all fall into two gen-
eral classes:

(1) Static Complexity -which addresses the question of
how an object or system is put together (i.e. only purely
structural informational aspects of an object), and is inde-
pendent of the processes by which information is encoded
and decoded;

(2) Dynamic Complexity -which addresses the ques-
tion of how much dynamical or computational effort is re-
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quired to describe the information content of an object or
state of a system.

These two measures are clearly not equivalent. In this
paper we embrace the following defintion.

Complexity is a scientific theory that asserts that
some systems display behavioral phenomena is com-
pletely inexplicable by any conventional analysis of the
systems’ constituent parts.

Besides, emergence refers to the appearance of higher-
level properties and behaviors of a system that while ob-
viously originating from the collective dynamics of that
system’s components -are neither to be found in nor are
directly deducable from the lower-level properties of that
system. Emergent properties are properties of the “whole”
that are not possessed by any of the individual parts mak-
ing up that whole. For example, an air molecule is not a
tornado and a neuron is not conscious : emergent behav-
iors are typically novel and unanticipated.

Moreover, it is becoming a commonplace that, if the
20th was the century of physics, the 21st will be the cen-
tury of biology, and, more specifically, mathematical biol-
ogy, see [8]. We will concentrate our attention to demon-
strate the emergence of complex (chaotic) behavior in cou-
pled (non chaotic) systems. That is to show that for uni-
or bi-directionally coupled non chaotic systems, chaos can
appear even for large values of coupling parameter. This
discussion is based on continuous autonomous differential
systems, first of type-Lorenz illustrating identical chaos
synchronization and regular behavior emerging from chaotic
one, and, second, systems modeling predator-preys food-
chain showing chaotic behaviors emerging from regular
ones.

2. Synchronization and Desynchronization

Synchronization is a ubiquitous phenomenon characteris-
tic of many processes in natural systems and (nonlinear)
science, it has permanently remained an objectif of inten-
sive research and is today considered as one of the basic
nonlinear phenomena studied in mathematics, physics, en-
gineering or life science. Synchronization of two dynam-
ical systems generally means that one system somehow
traces the motion of another. Indeed, it is well known
that many coupled oscillators have the ability to adjust



some common relation that they have between them due
to weak interaction, which yields to a situation in which a
synchronization-like phenomenon takes place, see [2].
Since this discovery, periodic synchronization has found
numerous applications in various domains, for instance in
biological systems and living nature where synchroniza-
tion is encountered on differents levels. Examples range
from the modeling of the heart to the investigation of the
circardian rhythm, phase locking of respiration with a me-
chanical ventilator, synchronization of oscillations of hu-
man insulin secretion and glucose infusion, neuronal infor-
mation processing within a brain area and communication
between different brain areas. Also synchronization plays
an important role in several neurological diseases such as
epilepsies and pathological tremors, or in differents forms
of cooperative behavior of insects, animals or humans. For
more details, see [10].
This process may also be encountered in other areas,
celestical mechanics or radio engineering and acoustics.
But, even though original notion and theory of syn-
chronization implies periodicity of oscillators, during the
last decades, the notion of synchronization has been gen-
eralized to the case of interacting chaotic oscillators.
Roughly speaking, a system is chaotic if it is deter-
ministic, has a long-term aperiodic behavior, and ex-
hibits sensitive dependence on initial conditions on a
closed invariant set.
Chaotic oscillators are found in many dynamical systems
of various origins, the behavior of such systems is charac-
terized by instability and, as the result, limited predictabil-
ity in time.
Despite this, in the two last decades, the search for syn-
chronization has moved to chaotic systems. A lot of re-
search has been done and, as a result, researchers showed
that two chaotic systems could be synchronized by cou-
pling them : synchronization of chaos is actual and chaos
could then be expoitable, see [9], and for a review see
[2]. Ever since, many researchers have discussed the the-
ory, the design or applications of synchronized motion in
coupled chaotic systems. A broad variety of applications
have emerged, for example to increase the power of lasers,
to synchronize the output of electronic circuits, to con-
trol oscillations in chemical reactions or to encode elec-
tronic messages for secure communications. Moreover, in
the topics of coupled chaotic systems, many different phe-
nomena, which are usually referred to as synchronization,
exist and have been studied now for over a decade.

2.1. Synchronization and stability : definitions

For the basic master-slave configuration where an autonomous

chaotic system (the master) :

dX

— =F(X), XeR" (1)

drives another system (the slave) :

dy

E*G(X7Y)7 YERma (2)

synchronization takes place when Y asymptotically copies,
in a certain manner, a subset X, of X. That is, there exists
a relation between the two coupled systems, which could
be a smooth invertible function ¢, the last carries trajecto-
ries on the attractor of a first system on the attractor of a
second system. In other words, if we know, after a tran-
sient regime, the state of the first system, it allows us to
predict the state of the second : Y (t) = (X (¢)). Gener-
ally, it is assumed n > m, however, for the sake of easy
readability, we will reduce, even if this is not a necessary
restriction, to the case n = m, and thus X, = X. Hence-
forth, if we denote the difference Y — ¢(X) by X, in
order to arrive at a synchronized motion, it is expected to
have :

| X.]| — 0, as t — +o0. (3)

If 4 is the identity function, the process is called identical
synchronization (IS hereafter).

Definition of IS. System (2) synchronizes with system
(1),iftheset M = {(X,Y) e R" xR",Y = X} isanat-
tracting set with a basin of attraction B (M C B) such that
lim;_, oo]| X (t) — Y (¢)|| = 0, forall (X (0),Y(0)) € B.

Thus, this regime corresponds to the situation where
all the variables of two (or more) coupled chaotic systems
converge.

If ¢ is not the identity function, the phenomenon is
more general and is referred to as generalized synchroniza-
tion (GS).

Definition of GS. System (2) synchronizes with system
(1), in the generalized sense, if there exists a transforma-
tion ¢ R" — R™, a manifold M = {(X,Y) €
R™™ Y = (X)} and a subset B (M C B), such that
for all (X,,Y,) € B, the trajectory based on the initial
conditions (X,,Y,) approaches M as time goes to infin-

ity.

Henceforth, in the case of identical synchronization,
equation (3) above means that a certain hyperplane M,
called synchronization manifold, within R?", is asymp-
totically stable. Consequently, for the sake of synchrony
motion, we have to prove that the origin of the transverse
system X, = Y — X is asymptotically stable. That is,
to prove that the motion transversal to the synchronization
manifold dies out.

The Lyapunov exponents associated with the variational
equation corresponding to the tranverse system X, :

dX

- DF(X)X, 4)

where DF(X) is the Jacobian of the vector field evaluated
onto the driving trajectory X, are referred to as transverse
or conditional Lyapunov exponents (CLE hereafter).

In the case of IS it appears that the condition Lz <
0, is sufficient to insure synchronization, where L:- is

max

the largest CLE. Indeed, Equation (4) gives the dynamics



of the motion transverse to the synchronization manifold,
therefore CLE will tell us if this motion die out or not, and
hence, whether the synchronization state is stable or not.
Consequently, if L:- . is negative, it will insure the stabil-

ity of the synchronized state. This will be best explained
using two examples below.

2.2. ldentical synchronization

(Or, the larger is the coupling coefficient the stronger is the
synchronization)

Thet simplest form of chaos synchronization and the
best way to explain it, is identical synchronization (IS),
also referred to as Conventional or Complete synchroniza-
tion (see [4]). It is also the most typical form of chaotic
synchronization often observable in two identical systems.

There are various processes leading to synchroniza-
tion, depending on the used particular coupling configu-
ration they could be very different. So, one has to distin-
guish between the two following main situations, even if
they are, in some sense, similar : the uni-directional and
the bi-directional coupling. Indeed, synchronization of
chaotic systems is often studied for schemes of the form :

X PX) + kN(X - Y)
dt )
% — GY)+kM(X - Y)

where F and G actin R", (X,Y) € (R")?, k is a scalar
and M and N are coupling matrices belonging to R"™*".
If F = G the two subsystems X and Y are identical.
Moreover, when both matrices are nonzero then the cou-
pling is called bi-directional, while it is referred to as uni-
directional if one is the zero matrix, and the other being
nonzero.

Other names were given in the litterature of this type
of synchronization, such as one-way diffusive coupling,
drive-response coupling, master-slave coupling or nega-
tive feedback control.

System (5) above with ' = G and N = 0 becomes
uni-directionlly coupled, and reads :

dX

o - P

a (6)
— = FO)+kM(X-Y)

M is then a matrix that determines the linear combination
of X components that will be used in the difference, and &
determines the strength of the coupling.

In uni-directional synchronization, the evolution of the
first system (the drive) is unaltered by the coupling, the
second system (the response) is then constrained to copy
the dynamics of the first.

In contrast to the uni-directional coupling, for the bi-
directionally (also called mutual or two-way) coupling, both
drive and response systems are connected in such a way
that they mutually influence each other’s behavior. Many
biological or physical systems consist of bi-directionally

interacting elements or components, examples range from
cardiac and respiratory systems to coupled lasers with feed-
back.

2.3. Uni- and bi-directional identical synchronization
for a Lorenz-type system

(Or the larger is the coupling coefficient the stronger is the
synchronization)

Let us give an example, and for the sake of simplic-
ity, let us develop the idea on the following 3-dimensional
simple autonomous system, which belongs to the class of
dynamical systems called generalized Lorenz systems, see
[7] and references therein :

T = —9x -9y
y = —1Te—y—xz @)
z = —z+4uxy.

The signs used differentiate system (7) from the well-known
Lorenz system :

8
T =—10x+ 10y, y =28z —y — zz, z't:—gz—i—my.

From previous observations, it was shown that system (7)
oscillate chaotically, its Lyapunov exponents are +0.601,
0.000 and —16.470, it exhibits the chaotic attractor of fig-
ure 1, with a 3D feature very similar to that of Lorenz at-
tractor.

Figure 1. The chaotic attractor of system (7) : zy and
xz-plane projections.

Uni-directional coupling

Let us consider an example with two copies of system
(7), and for

100
M=|0 00 ®)

that is, by adding a damping term to the first equation of
the response system, we get a following uni-directionally
coupled system, coupled through a linear term k£ > 0 ac-



cording to variables z; 5 :

1 = =971 — 9%
yl = —173?1 — Y1 — T121
Z1 = —z21+my
. 9)
Tro = —9332 — 9y2 — k(aig — 5131)
yg = —173?2 — Yo — T229
Zy = —z3+ T2y

For £ = 0 the two subsystems are uncoupled, for £ > 0
both subsystems are uni-directionally coupled. Our nu-
merical computations yield the optimal value % for the
synchronization, we found that for & > k = 4.999 both
subsystems of (9) synchronize. That is, starting from ran-
dom initial conditions, and after some transient time, sys-
tem (9) generates the same attractor as for system (7), see
figure 1. Consequently, all the variables of the coupled
chaotic subsystems converge, that are z» converges to x1,
yo2 t0 1 and zs to 21, see figure 2. Thus, the second system
(the response) is locked to the first one (the drive). One

2162 2164 2166 2168 2170 2172 2174 2176 2178 2180
10 T
° %

2162 2164 2166 2168 2170 2172 2174 2176 2178 2180
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Figure 2. Time series for x;(t), y;(t) and z;(t) in system
(9), (z = 1,2), for the coupling constant k = 5.0, that is
beyond the threshold necessary for synchronization. Af-
ter transients die down, the two subsystems synchronize

perfectly.

also could give correlation plots that are the amplitudes x;
against xs, y1 against yo and z; against z,, and observe
diagonal lines, meaning also that the system synchronizes.

Bi-directional coupling

Let us then take two copies of the same system (7) as
given above, but two-way coupled through a linear con-
stant term & > 0 according to variables x1 5 :

fl = —9331 — 9y1 — k(ml — 5132)
1. = —1Tw1—y1— 1121
21 = —zitnn
(10)
fg = —9332 — 9y2 — k(aig — 5131)
Y2 = —17x3 —ys — x222
Z2 = —z22+ @2y

-15 -10 5 0 5 10 15

Figure 3. Regular behavior emerges from chaotic behav-
iors. The plot of amplitudes y, against i, after transients
die down, shows a diagonal line, which also indicates that
the receiver and the transmitter are maintaining synchro-
nization. The plot of z; against z5 shows a similar figure.

We can get an idea of the onset of synchronization by plot-
ting for example x; against zo for various values of the
coupling strength parameter k. Our numerical computa-
tions yield the optimal value % for the synchronization :
k ~ 2.50, see figure 4, both (z;, y;, z;)-subsystems syn-
chronize and system (10) also generates the attractor of
figure 1.

These results show also that simple bi-directional cou-
pling of two chaotic systems do not increase the chaoticity
of the new system, unlike what one might expect. Thus, in
some sense (see synchronization manifolf below), regular
behavior emerges from chaotic behavior, (i.e. the motion
is confined in some manifold).

2.4. Remark on the stability manifold

Geometrically, the fact that systems (9) and (10), beyond
synchronization, generate the same attractor as for system
(7), implies that the attractors of these combined drive-
response 6-dimensional systems are confined to a 3-dimen-
sional hyperplane (the synchronization manifold) defined
by Y = X. This hyperplane is stable since small pertur-
bations which take the trajectory off the synchronization
manifold will decay in time. Indeed, as said before, condi-
tional Lyapunov exponents of the linearization of the sys-
tem around the synchronous state could determine the sta-
bility of the synchronized solution. This leads to requiring
that the origin of the transverse system, X | , is asymptoti-
cally stable. To see this, for both systems (9) and (10), we
then switch to the new set of coordinates, X | =Y — X,
thatisz| = xo—x1, 9y, =y2—y1andz; = zo—2;. The
origin (0, 0, 0) is obviously a fixed point for this transverse
system, within the synchronization manifold. Therefore,
for small deviations from the synchronization manifold,
this system reduces to a typical variational equation :

dX

o =DFX)X, (11)

where DF(X) is the Jacobian of the vector field evaluated
onto the driving trajectory X. Previous analysis, see [2],
shows that L:- . becomes negative as k increases, for both

uni- or bi-directionally coupling, which insure the stability
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Figure 4. Illustration of the onset of synchronization of
system (10). (), (b) and (c) plot the amplitudes x; against
x4 for values of the coupling parameter £ = 0.5, k = 1.5
and k£ = 2.8 respectively. The system synchronizes for
k> 2.5.

of the synchronized state, for systems (9) and (10), figure
5.

0 5 iO 15 20 25
Coupling strength

Figure 5. The largest transverse Lyapunov exponents
L .. as a function of coupling strength % in the uni-

directional system (9) (solid) and the bi-directional system
(10) (dotted).

Let us note that this can also be proved analytically as
done in [7], by using a suitable Lyapunov function, and
using some new extended version of LaSalle invariance
principle.

Desynchronization motion.  Synchronization de-
pends on the coupling strength, but also on the vector field
and the coupling function. For some choice of these quan-
tities, synchronization may occur only within a finite range
[k1, k2] of coupling strength, in such a case a desynchro-
nization phenomenon occurs. Thus, increasing & beyond
the critical value &, yields loss of the synchronized motion
(Lt becomes positive).

max

3. Emergence of Chaotic Properties : A Predator-Prey
Example

(Or, the larger is the coupling coefficient the weaker is the
synchronization).

3.1. The model

As we said in the introduction, it is becoming a common-
place that, if the 20th was the century of physics, the 21st
will be the century of biology, and, more specifically, math-
ematical biology, ecology, ... and, in general, nonlinear
dynamics and complexity in life sciences.

In this last part, we will hence focus ourself on emer-
gent (chaotic or regular) properties that arrise when we

couple uni- or bi-directionally two 3-dimensional autonomous

differential systems, modeling predator-prey food-chains.

Le us then consider a continuous time dynamical sys-
tem, model for a tritrophic food chain, based on a modified
version of the Leslie-Gower scheme, see [3, 6], for which
the rate equations for the three components of the chain



population can be written as follows :

dx v, XY

_— = JX — b X% - X

T @ do+ X

dy UlXY ’UQYZ

2 - _aY _

dT Wt T TIX  dtY (12)
dz ’U3Z2

Rl A i

T ST LTy

with X (0) > 0,Y(0) > 0and Z(0) > 0, where X, Y and
Z represent the population densities at time 7" ; ag, bo, vo, do,
a1,v1,dy,ve,ds, c3,v3 and dz are model parameters as-
suming only positive values and are defined as follows :
a, is the growth rate of prey X, b, measures the strength
of competition among individuals of species X, v, is the
maximum value which per capita reduction rate of X can
attain, d, measures the extent to which environment pro-
vides protection to prey X, a; represents the rate at which
Y will die out when there is no X, v; and d; have a similar
meaning as vg and d,, v2 and vs have a similar biological
connotation as that of v, and vy, ds is the value of Y at
which the per capita removal rate of Y becomes v2/2, c3
describes the growth rate of Z, assuming that the number
of males and females is equal, d3 represents the residual
loss in species Z due to severe scarcity of its favorite food
Y ; the second term on the right hand side in the third
equation of (12) depicts the loss in the predator popula-
tion.

For the origin of this system and for some theoretical
results, boundedness of solutions, existence of an attract-
ing set, existence and local or global stability of equilib-
ria, etc ..., see [3, 6]. In these works, using intensive nu-
merical qualitative analysis, it has been demonstrated that
the model could exhibit periodic solutions, figure (6), and
quasi-periodic or chaotic dynamics, figure (7), for the fol-
lowing parameters and state values :

bo =0.06, v, =1.0, dp=d; =da=10.0,
a1 = 10, v = 207 Vo = 09,
c3 = 0.02, v3 = 0.01, ds = 0.3.

(13)

—
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Figure 6. Limit cycles of periood one and two, for ag =
3.6 and ag = 3.8 respectively, found for system (12) and
for parameters given by (13).

We will fix, for the rest of the paper, the system param-
eters as given in (13) in order that system (13) oscillates in
a regular maneer around a stable limit cycle of period one
figure 6(b).
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Figure 7. Transition to chaotic (or quasi-periodic) be-
havior is established via period doubling bifurcation, for
respectively ag = 2.85, a9 = 2.87, ag = 2.89 and
ag = 2.90, found for system (12) and for parameters given
by (13).

3.2. Uni-directional desynchronization : Predator-Prey
system

Usually, as we have seen in the previous section, in uni-
directional synchronization, while the evolution of the first
system (the drive) is unaltered by the coupling, the second
system (the response) is constrained to copy the dynamics
of the first.

However, this is not the case for our example below,
for which, as we will see, while both subsystems evolve
periodically (limit cycles of figure 6(b)), the coupled sys-
tem’ behavior is extremely complex.

Let us then consider two copies of system (12). By
adding a damping term to the first equation of the response
system, we get a following uni-directionally coupled sys-
tem, coupled through a linear term k& > 0 according to
variables z1 o :

X1 = aoX; —b,X? - %
= s 2
Zl = 341 — d:izi/l
Xy = a,Xy—b,X2— % —k(Xy — X))
ZQ = ¢34y — d::_ZQ;
(14)

For £ = 0 the two subsystems are uncoupled, for & >
0 both subsystems are uni-directionally coupled, and for
k — 400 One can expect to obtain the same results as



those obtained for the previous example in the previous
section, that is strong synchronization and two subsystems
which evolve identically.

We have choose, for the coupled system, a range of
parameters for which both subsystems constituents parts
evolve periodically, as figure 6(b) shows.

However, our numerical computations show that both
subsystems of (14) never synchronize nor identically nei-
ther generally, unless the coupling parameter & is very
small. In such a case a certain generalized synchronization
form takes place, see figure 8(a). That is, starting from
random initial conditions, and after some transient time,
system (14) generates attractor different from those exhib-
ited by system (12) in figure 6(b). Consequently, all the
variables of the coupled limit cycles subsystems surpris-
ingly do not converge, as, at first sight, one may intuitively
expect, see figure 8.

These results show that uni-directional coupling of these
two non-chaotic systems, that are the subsystems constituent
of system (14), increase the bahavior complexity, and trans-
forms a periodic situation in a chaotic one.

Emergent chaotic properties are typically novel and
unanticipated, for this example.

This corresponds to the classical cascade of periodic-
doubl- ing bifurcation processus, with a sequence of order
and disorder windows.

3.3. Bidirectional desynchronization : Predator-Prey
system

As, many biological or physical systems consist of bi-dir-
ectionally interacting elements or components, let us use a
bi-directionally (mutual) coupling, in order that both drive
and response subsystems are connected in such a way that
they mutually influence each other’s behavior. Let us then
take two copies of the same system (12) as given above,
but two-way coupled through a linear constant term k& > 0
according to variables z; o :

X1 = aoX; —b,X? - % — k(X1 - X»)
Zl = (€341 — d:iLZ;
Xy = a,Xy—b,X2— % —k(Xy — X))
ZQ = ¢34y — d::_ZQ;

(15)

We have also choose, for this bi-directionally coupled
system, the same range of parameters for which the sub-

Figure 8. Illustration of the onset of desynchronization of
the unidirectionel coupled system (14). Figures (a), (b),
... (f) are done left-right and up-down, and plot the am-
plitudes x; against x> for values of the coupling param-
eter (a) £ = 0.01, (b) & = 0.055, (c) & = 0.056, (d)
k = 0.0565, () k = 0.057 and (f) £ = 0.1. Figure
(a,b,c) show a generalized synchronization phenomenon
. the system synchronizes (in the generalized sense) for
very small values of k. But a desynchronization processus
fastly arrises by increasing k, figures (d,e,f) : -in some
interval for k, the larger is the coupling coefficient the
weaker is the synchronization-. Hence, we have emer-
gence of chaotic properties : The coupled system displays
behavioral chaotic phenomena which is not exhibited by
systems’ constituent parts, that are the two predator-prey
systems before coupling, which exhibit the limit-cycle of
figure 6(b), and for the same parameters, same initial con-
ditions. This phenomenon is robust with respect to small
parameters variations.
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Figure 9. Bidirectionel coupling. Figures plot amplitudes
x1 against o for the same values as done for the previ-
ous figure, that are, respectively, for k = 0.01, £ = 0.055
and £ = 0.056 £k = 0.0565, k = 0.057 and k£ = 0.1.
These figures, Illustrate a window of generalized synchro-
nization and desynchronization of system (12). (a), (b)
and (c) plot The system synchronizes (in the generalized
sense) for £ < 0.01, as it has been shown in the uinidirec-
tional case. But the desynchronization processus arrises by
increasing k, fastly in comparison with the unidirectional
case.

systems constituents parts evolve periodically, as figure
6(b) shows.

Figure 9 demonstrates also, for some interval of pa-
rameter k, that the larger is this coupling coefficient the
weaker is the synchronization. That is, we have emergence
of new properties for the coupled system. The last displays
behavioral chaotic phenomena which is not exhibited by
systems’ constituent parts, that are the two predator-prey
systems before coupling, and for the same parameters, same
initial conditions. A robust phenomenon with respect to
small variations of parameters values.

Furthermore, the bidirectional case enhances the desyn-
chronization processus that is the occurence of new com-
plex phenomenon, and makes it occuring fastly in com-
parison to the unidirectinal case ; for the same interval k& €
J =]0,0.1], chaotic properites take place for £ = 0.055 in
the unidirectional case, and for £ = 0.057 in the unidirec-
tional case. This complex behavior remains observable in
whole interval J for the last, but for the first, it disappears
after k = 0.056 -some regular generalized synchroniza-
tion takes place- and appears again for &£ €]0.057,0.1]

Thus, one may conclude that, the larger is the coupling
coefficient & the weaker is the synchronization (within some
interval for k).

All these numerical results show that the whole predator-
prey food chain in 6-dimensional space, displayes behav-
ioral phenomena which is completely inexplicable by any
conventional analysis of the 3-dimensional systems’ con-
stituent parts, which have for the same ranges of parame-
ters a 1-peridoic solutions. They have to be compared to
the obtained results in the previous section, in which it has
been shown that : the larger is the coupling coefficient the
stronger is the synchronization

Therefore, our predator-prey system is an example ex-
hibiting new emergent properties, which are properties of
the “whole” 6-dimensional system that are not possessed
by any of the individual parts (that are the two 3-dimensional
subsystems).

4. Conclusion and Discussion

Identical chaotic systems synchronize by following the same
chaotic trajectory (1S). However, in the real world systems
are in general not identical. For instance, when the pa-
rameters of two-coupled identical systems do not match,
or when those coupled systems belong to different classes,
complete IS may not be expected, because there does not
exist such an invariant manifold Y = X, as for identical
synchronisation. For nonidentical systems, the possibility
of some other types of synchronization has been investi-
gated (see references cited in [2]). It was showed, [11],
that when two different systems are coupled with suffi-
ciently strong coupling strenght, a general synchronous re-
lation between their states could be exist and expressed by



a smooth invertible function, Y (t) = ¢(X (¢)), as we have
done in the previos section.

But, for coupled nonidentical chaotic systems, other
type of synchronization exist. For example phase syn-
chronization (PS hereafter) which is a rather weak degree
of synchronization, see [10]. It is a hidden phenomenon,
in the sense that the synchronous motion is not visible.
Indeed, in case of PS, the phases of chaotic systems are
locked, that is there exists a certain relation between them,
whereas the amplitudes vary chaotically and are practi-
cally uncorrelated. Thus, it is mostly close to synchro-
nization of periodic oscillators.

Let us note that such a phenomenon occurs when a
zero Lyapunov exponent of the response system becomes
negative, while, as explained above, identical chaotic sys-
tems synchronize by following the same chaotic trajectory,
when their largest transverse Lyapunov exponent of the
synchronized manifold decreases from positive to negative
values.

This processus deserves to be investigated for our pred-
ator-prey food chain case. More detailed analysis for such
phenomena will be provided in the near future.
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