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Abstract.

This paper addresses the question of burst synchronization in
networks of chemically coupled Hindmarsh-Rose neurons. After a
brief description of the model and of an algorithm of numerical de-
tection of burst synchronization, we present numerical experiments
designed to give an insight on the influence of the network topology
on the minimal coupling strength needed to obtain burst synchro-
nization in the network. Two topological characteristics are studied:
the network diameter and the in-degrees of the nodes. Our numer-
ical simulations show that when the diameter grows, the network
becomes more difficult to synchronize, while networks with bigger
in-degrees of the nodes synchronize more easily.

Keywords. Neuron models, Dynamical systems, Synchroniza-

tion, Complex networks

1 Introduction

Synchronization of two dynamical systems generally
means that one system somehow follows the motion of
another. A lot of research has been carried out and, as a
result, showed that even chaotic systems could synchro-
nize when they are coupled. Many researchers have dis-
cussed the theory, the design or applications of synchro-
nized motion in coupled chaotic systems [1, 9, 12]. There
are different synchronization regimes. Oscillators firing
bursts exhibit burst synchronization, when they all fire
the same number of bursts starting at the same moment.
The conditions on the network to make burst synchro-

nization appear are weaker than the ones needed to ob-
serve a complete synchronization phenomena [2, 6, 10,
11, 13]. In particular, complete synchronization in non-
linearly coupled networks of Hindmarsh-Rose neurons ne-
cessitates equal in-degrees of all network nodes, which is
biologically unrealistic. That is why in this paper we are
interested in burst synchronization.
We focus on networks composed of Hindmarsh-Rose

neuon models, given by (1).

(HR)







ẋ = y + ax2 − x3 − z + I

ẏ = 1− dx2 − y

ż = ǫ(b(x− cx)− z)
(1)
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Parameters a, b and d are experimentally determined, cx
is the equilibrium x-coordinate of the two-dimensional
system given by the first two equations of (1) when I = 0
and z = 0 and parameter I corresponds to the applied
current. Finally, parameter ǫ represents the ratio of time
scales between fast and slow fluxes across the membrane
of a neuron. This HR neuron model can exhibit most of
biological neuron behavior, such as spiking or bursting.
With appropriate parameter settings, the HR model
exhibits periodic behavior characterized by fast periods
of spiking called bursts, followed by slow quiescent
inter-burst periods, as shown in Fig. 1.

Hereafter, for all numerical experiments, we use HR
system with the following coordinate changes, see [3], y =
1−y, z = 1+I+z, d = a+α, c = −1−I−bxc. Applying
this transformation, we obtain,







ẋ = ax2 − x3 − y − z

ẏ = (a+ α)x2 − y

ż = ǫ(bx+ c− z)
(2)
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Figure 1: Time series (t, x) of (2) when parameters are
fixed as in (5). For this set of parameters values, a HR
system exhibit a periodic bursting behavior.

Let us consider a network composed by n HR neurons.
These neurons are coupled by their first variable xi with a
coupling function modeling chemical synapses. A model
of this network is given by






ẋi = ax2
i − x3

i + yi − zi −
∑n

j=1 cjih(xi, xj)

ẏi = (a+ α)x2
i − yi

żi = ǫ(bxi + c− zi)
(3)

for i = 1, . . . , n, where h is the coupling function and {cij}
is the network adjacency matrix. When the neurons are
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chemically coupled, the coupling function h is given by
[3] and reads as

h(xi, xj) = gsyn
(xi − V )

1 + exp(−λ(xj −Θ))
(4)

where gsyn is the coupling strength, Θ is the threshold
reached by every action potential for a neuron. Param-
eter V is the reversal potential and must be larger than
xi(t) for all i and all t since synapses are supposed exci-
tatory. The parameters are fixed as follows throughout
this paper,

a = 2.8, α = 1.6, c = 5, b = 9, ǫ = 0.001 (5)

V = 2, λ = 10, Θ = −0.25 (6)

These parameter values are commonly used in the litera-
ture (see for example [3].
The rest of this paper is organized as follows. In sec-

tion 2, we recall the algorithm we developed to detect
burst synchronization phenomena in network of coupled
oscillators, and in section 3 we apply this algorithm to
networks of different topologies and sizes.

2 Algorithm of burst synchroniza-

tion detection

We consider that a network of coupled neurons presents a
burst synchronization behavior if the neurons fire bursts
starting all at the same time. Unlike complete synchro-
nization, burst synchronization is not easy to detect nu-
merically. Even the distinction between fast and slow
periods could be difficult, since the dynamics of single
neurons could change in unpredictable way when the cou-
pling force is slightly modified.
In this section we recall the main steps of a general al-

gorithm of burst synchronization detection in networks of
coupled oscillators [4]. Its application is not restricted to
HR neurons, it can be used to detect burst synchroniza-
tion in networks composed of any oscillators displaying
burst behavior.
Our algorithm can be decomposed in four main steps.

In order to detect burst synchronization, bursts of differ-
ent neurons must be matched. To do this, one needs to
determine the start time of each burst, and before detect-
ing bursts, spikes must be detected first.
The first step of our algorithm is the detection of spikes.

For our needs it suffices to find the local maxima of
xi(t) for each neuron i. Thus each spike is associated
to the time when the corresponding local maximum oc-
curs. Fig. 2 shows an example of time pattern of bursts
in a network of 5 neurons. Each spike is represented as a
point on the horizontal line corresponding to the neuron
in which the spike occurs.
Once all spikes localized, we need to determine the first

spike of each burst. Since each burst is preceded by a

quiescent period, the idea is to consider the inter-spike
distances. When the distance between two consecutive
spikes is large enough, the second spike is considered as
the first of a new burst.
For certain coupling force values and network topolo-

gies, the behavior of individual neurons can change from
bursting to spiking. An indicator allowing to distinguish
between these two behaviors is the ratio between the
smallest inter-burst distance and the largest inter-spike
distance. This ratio close to one indicates spiking behav-
ior. With our parameter settings, this ratio is about 4.2
for a single non-coupled neuron.
The next step of our algorithm is to match the bursts

fired by different neurons. We define the distance between
two bursts as the absolute value of the difference of their
starting times determined at the previous step.
A necessary condition for burst synchronisation is that

almost all bursts belong to n-tuples of matching bursts.
This condition is measured by the ratio of the number
of bursts belonging to matching n-tuples and the total
number of bursts in the network, over a long time period.
Another condition for burst synchronization is that all

the bursts within a matching group start in a small time
interval. We measure the largest distance between two
bursts in each n-tuple of matching bursts and we take
the mean of this distance over all n-tuples in the observed
period.
To recapitulate, there are three conditions for burst

synchronization:

• The oscillators must have bursting behavior.

• The ratio between the number of matching bursts
and the total number of bursts must be close to one.

• The average span of the bursts within each matching
group must be below a given threshold.

3 Numerical Simulations

In this section, the algorithm presented in the previous
section is applied to different kinds of networks. The
numerical results are obtained using a code implement-
ing Runge-Kutta 4 integration method and developed in
CUDA C [8]. The code was executed on NVIDIA Tesla
C2050 GPUs. This implementation allows us to reduce
the running times two orders of magnitude compared to
the equivalent CPU implementation and thus to simu-
late networks containing thousands of nodes in reasonable
time. The post-processing (including the algorithm from
the previous section) is implemented in Java. Graph-
Stream library [5] is used to generate and to manipulate
networks.
Our numerical experiments aim to answer the follow-

ing question : What is the coupling strength gsyn (see
(4)) needed to synchronize the bursts of all the neurons
of a given network? The answer is not obvious in the gen-
eral case and that is why we start by studying particular
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Figure 2: Illustration of the burst synchronization detection algorithm. The four steps of the algorithm are repre-
sented on this figure.

network topologies. These particular cases are chosen to
give us an insight on the influence of different network
parameters on the synchronization threshold.

3.1 Network topology

A necessary condition for synchronization of two nodes of
a network is that either one of them must be influenced
by the other one or both of them must be influenced by
a third node. At network level this implies the existence
of at least one “root” node from which all nodes can be
reached.
We impose a second condition, which is the absence

of cycles in the network. The reason for this restriction
is that cycles could significantly modify the individual
neuron behavior. In the presence of cycles, the bursting
phenomenon could even disappear for certain coupling
strength values. To illustrate this fact, let us consider
the simplest cycle case, two neurons with bidirectional
coupling. Fig. 3 shows that when the coupling strength
grows the bursting is progressively transformed in spik-
ing. From the moment when complete synchronization is
observed, bursting behavior comes back but in different
form and disappears again for very big coupling forces.
In the presence of longer cycles, the individual behavior
could be even more perturbed. Our experiments show
that in acyclic networks, the bursting motion is more sta-
ble.
It is easy to see that in acyclic networks the root node

is unique. Our first observation was that the coupling
strength needed to synchronize a given node to the root
node depends on the distance between them. In other
words, networks with smaller diameter require less cou-
pling strength to synchronize. To study the influence of
the network diameter, we use networks constructed by
levels. Level 0 contains the root node. Nodes of level l
receive signal only from nodes of level l − 1. Thus the
distance between the root and all the nodes of level l is
exactly l. An example of such a network is given in Fig. 4.

3.2 Regular and quasi-regular networks

The simplest case of network constructed by levels is a
chain network in which each level contains a single node
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Figure 3: Times series (t, x) of a neuron (1) within a
network with cycles for an increasing coupling strength
(from top to bottom) 0.1, 0.5, 1.0, 1.3 and 3.0. Beyond
a given value of the coupling strength, there is no more
bursting behavior exhibited by the neuron.

connected to the node from the previous level. The results
obtained for chain networks are summarized on Fig. 5.
Fig. 5 (a)-(c) show the values of the three burst synchro-
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Figure 4: Example of a network constructed by levels
containing 50 nodes distributed in 11 levels. Each node
receives signal only from nodes of the previous level.

nization indicators defined in section 2. For each indica-
tor we can see the presence of a threshold value of the
coupling strength, above which the value of the indicator
changes abruptly. These thresholds are shown as green
lines on the figure. Fig. 5 (d) shows the three threshold
lines drawn together. We can see that the first indica-
tor, the ratio between the shortest inter-burst and the
longest inter-spike distances, is predominant. In other
words, when all the neurons have clearly expressed burst
behavior, their bursts are synchronized. The same ob-
servation is valid for all the other network topologies we
tested.
The experimental results show that the minimal cou-

pling strength needed to synchronize a chain network
scales linearly with the network diameter. In other words,

g(l) = Al +B (7)

where g(l) is the minimal coupling strength needed to
synchronize the network up to level l. The values of co-
efficients A and B fitted by the least squares method to
the simulation data are A = 0.044 and B = 1.906. Fig. 5
(d) shows also this linear approximation.
The same results are obtained for tree networks in

which each node receives a signal from exactly one node
from the previous level. Indeed, in these networks the
in-degree of each node, except the root, is one and the
behavior on each path from the root to another node is
exactly the same as in a chain network.
The network diameter is not the only topological char-

acteristics influencing the burst synchronization. The law
observed for chain and tree networks is not preserved
when we introduce nodes of different in-degrees. To illus-
trate the influence of the in-degree, consider a modified
chain network as shown in Fig. 6(a). At a given level l we
introduce k nodes each of them receiving signal from the
node of level l− 1 and sending signal to the node of level
k + 1. Thus, the in-degree of the root is 0, the in-degree
of the node on level l+1 is k and the in-degrees of all the
other nodes are 1.

Fig. 7 shows the burst synchronization thresholds for
modified chain networks in which k = 2 or 5 nodes are in-
troduced on level 20. When the network is synchronized
up to level 20, there is no need to increase the coupling
strength to synchronize the next several levels. In fact the
behavior of the node on level 21 is roughly the same as
if it was coupled with one node but with k times greater
coupling strength. Nevertheless, this influence is only lo-
cal, some more levels away the modification is progres-
sively “forgotten” and the coupling strength joins again
the linear law (7).

To study further the influence of the nodes in-degree,
we consider a regular network shown in Fig. 6(b). In
this type of networks all levels except level 0 contain the
same number of nodes k and each node is connected to
all the nodes from the previous level. In order to ensure
the same in-degree of all nodes, the nodes of level 1 are
connected to the root with k links. Fig. 8 shows the
experimental results for this kind of networks. For the
sake of simplicity, only the cases k = 2 and k = 3 are
shown, but the results are similar for greater values of k.
We can see that the coupling strength needed for burst
synchronization grows linearly with the network diameter
also in this case. Moreover, the simulation data fits to the
lines

gk(l) =
Al +B

k
(8)

where gk(l) is the minimal coupling strength needed to
synchronize a regular network with k nodes per level up
to level l and A and B are the same coefficients as in
the case of chain network. In particular, for k = 1, we
obtain exactly (7). This result is not surprising, because
a neuron coupled with k identical neurons with coupling
strength g behaves as if it was coupled with a single neu-
ron but with coupling strength kg.

3.3 Random networks

We have seen that the burst synchronization is influenced
by two main characteristics of the network: the network
diameter and the in-degree of the nodes. For regular net-
works in which the nodes in-degrees are the same, the
coupling strength needed for burst synchronization grows
linearly with the network diameter. In this section, we
consider networks with heterogeneous in-degrees. They
are always constructed by levels as described previously
but each level contains a random number of nodes ran-
domly connected to the nodes of the previous level. For
our experiment we fixed 384 nodes randomly distributed
on 64 levels. We then generated different random sub-
sets of all possible links between adjacent levels in order
to obtain different average in-degrees. Fig. 9 shows the
experimental results for average in-degrees 1, 1.5, 2 and
3. The case of in-degree 1 corresponds to a tree and logi-
cally we observe a linear growth of the coupling strength
with the network diameter. For bigger in-degrees, the
coupling strength grows stepwisely with the network di-
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ameter. This can be explained by looking again at Fig. 7.
As we have seen, when a neuron receives more strength
than it needs to synchronize, it synchronizes his succes-
sors several levels away. Fig. 9 shows also that the growth
of the coupling force becomes slower when the in-degree
is bigger. The places and the heights of the jumps in the
lines are difficult to predict. In order to do this, an aggre-
gate parameter as the average in-degree is not sufficient.
The coupling strength needed to synchronize a neuron
seems to depend not only on its in-degree, but also on
the in-degrees of its direct and indirect predecessors.

4 Conclusion and perspectives

In this paper, we are interested in the minimal coupling
force needed to obtain burst synchronization within a net-
work of chemically coupled Hindmarsh-Rose oscillators
according to the topology of networks. We study the
influence of two topological network characteristics: the
network diameter and the in-degrees of the nodes. We
performed numerical tests on different network topologies
in order to highlight the role of these characteristics.

Our experiments show that the coupling force needed
to synchronize a network grows with its diameter. In-
versely, when the in-degree of the nodes grows, the net-
work becomes easier to synchronize. In the case of (quasi-
)regular networks where (almost) all the nodes have the
same in-degree, the coupling force grows linearly with the
network diameter. In irregular networks with heteroge-
neous in-degrees we observe stepwise growth of the cou-
pling strength due to the fact that some nodes receive
stronger signal than others which they propagate to their
successors.

In this paper, we present preliminary results which need
to be confirmed by other numerical simulations. To make
the general trends more evident, we have started by con-
sidering a restricted class of network topologies (acyclic
networks with specific level structure). In future numeri-
cal simulations we will progressively remove these restric-
tions. It will be interesting to make a more detailed study
of the influence of the in-degrees and to understand the
evolution of the coupling force needed to synchronize a
node as a function of its in-degree, but also of the in-
degrees of its predecessors, the in-degrees of their prede-
cessors, etc. Finally, a mathematical formalism describing
the burst synchronization needs to be developed and used
to justify theoretically our experimental observations.
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Figure 5: Burst synchronization indicators for a chain
network as a function of the coupling strength and the
network diameter. (a) Ratio between the shortest inter-
burst and the longest inter-spike distances. (b) Propor-
tion of matching bursts. (c) Average span of burst starts
within matching groups. (d) Superposition of the three
indicators and linear approximation of the synchroniza-
tion threshold.
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Figure 6: (a) Modified chain network. Level 3 contains
four nodes. (b) Regular level network. Each level contains
3 nodes connected to all the nodes from the previous level.
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