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The aim of this paper is to contribute to the modeling and analysis of complex systems, taking
into account the nature of complexity at different stages of the system life-cycle: from its genesis
to its evolution. Therefore, some structural aspects of the complexity dynamics are highlighted,
leading (i) to implement the morphogenesis of emergent complex network structures, and (ii) to
control some synchronization phenomena within complex networks. Specific applications are
proposed to illustrate these two aspects, in urban dynamics and in neural networks.
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1. Introduction

1.1. Context

The complexity of some dynamical systems has
been studied since several decades. As an example,
multiscale properties of hydrodynamic instabilities
have been observed since mid twentieth century, in
the early studies of turbulence. The description of
multiscale turbulence has been defined by Richard-
son [1922] and then formulated with Kolmogorov

cascade [Kolmogorov, 1941] as early work on sta-
tistical physics theory. The observations and anal-
ysis of complex properties have been developed in
many scientific domains according to their context,
in relation to the feedback process [Brian Arthur,
1990] or with market crash [Sornette, 2003], in
geopolitics [Cederman, 1997], in city development
[Batty & Longley, 1994; Batty, 2005] where emer-
gent scaling laws can be observed [Pumain et al.,
2007] or with seggregative urban pattern formation

1250025-1

http://dx.doi.org/10.1142/S0218127412500253


March 10, 2012 11:31 WSPC/S0218-1274 1250025

N. Corson et al.

[Schelling, 1971], but also in biology with collective
formation of bacteria [Ben-Jacob & Levine, 2001],
of birds [Reynolds, 1987] and with self-organized
process [Camazine et al., 2001]. New approaches to
the Science of Complexity — to which such a large
number of scientists claim to belong nowadays —
is mainly due to two important aspects. The first
one is to identify specific properties of complex-
ity, crossing a great variety of disciplinary fields:
from biology to sociology or linguistics [Érdi, 2008].
The second aspect is to propose some mechanisms
of complex system reconstruction, preserving the
complexity itself. A reconstruction, as any concep-
tual approach, does not avoid reductionist touches
within the engineering steps, commonly opposed
to the holistic approach of complexity. The great
challenge is therefore to preserve the complexity
of the system through its recreation. That means
the elementary features of the system complexity
need to be identified and the complexus of links
among these features need to be created, allow-
ing the whole to emerge as the essential complex
property of the system. Generally, these elementary
features of complexity find their roots in interdisci-
plinary concepts, making them transversal to many
scientific domains.

1.2. Complexity of dynamical
systems through structural
properties

One of the main characteristics of complexity is the
emergence of properties due to dynamical processes.
Our objective is to contribute to the formalization
of these emergent properties studying dynamical
structures. The complexity dynamics is not only
a one-way expression of the structure properties,
but the structure itself controls the dynamics of
the whole. The structures of complexity proposed
here, are interaction systems at the core of self-
organization mechanisms. During morphogenesis or
more generally along morphodynamics, the struc-
ture topology is emergent or evolving [Bourgine &
Lesne, 2006].

Dynamical networks are efficient tools to
express some local or global properties of this evolv-
ing topology. They capture structural aspects of
complex systems representing entities as nodes and
interactions between them as links. Empirical stud-
ies of different networks, such as Internet and World
Wide Web [Pastor-Satorras & Vespignani, 2004],

metabolic and protein networks [Jeong et al., 2000,
2001], collaboration networks [de Castro & Gross-
man, 1999; Watts & Strogatz, 1998] and many
others, have shown that despite their diversity,
these networks share common topological features.
Such features include degree distribution, cluster-
ing, shortest path lengths and betweenness, com-
munity structure, etc. Different classes of complex
networks have been proposed and largely studied,
including small-world networks [Watts & Strogatz,
1998; Watts, 1999; Buchanan, 2002] and scale-
free networks [Barabási & Albert, 1999; Barabási,
2003; Caldarelli, 2007]. Different growth models
have been proposed [Albert & Barabási, 2002;
Dorogovtesev & Mendes, 2003] which mimic the
morphogenesis of real-world networks. There are
many experimental and analytical evidences that
the network topology crucially influences essential
network properties, such as resilience and toler-
ance to attacks [Albert et al., 2000; Cohen et al.,
2001], spreading processes [Newman, 2002; Pastor-
Satorras & Vespignani, 2004], but also the collective
dynamics phenomena, such as self-organization,
traveling waves and synchronization [Wu, 2007;
Barrat et al., 2008]. For extensive lists of references
on complex networks, see for example [Newman,
2003; Boccaletti et al., 2006].

In this paper, we focus on the implementation
of the dynamic aspects within the reconstruction
of complex systems, which essential property is to
be open, i.e. permanently crossed by energy fluxes.
Two major aspects of the dynamics characterize
the complex properties of the studied system, what-
ever its scientific discipline. The first one concerns
the constitution of the system itself: how such per-
manently open systems construct themselves? This
first aspect corresponds to what we call morpho-
genesis. The second one concerns the dynamics of a
system after its constitution: how does this open
system evolve? What are its self-control mecha-
nisms? What is the impact of this self-control on its
complexity? Note that these two aspects, appear-
ing during and after the constitution of the sys-
tem, are closely related. Indeed, an open complex
system is never completely defined or created at a
given moment but is permanently rebuilding itself,
by both its internal interactions and its interactions
with its environment.

A complex system is characterized by all these
interactions, which constitute its structure as the
output of its morphogenesis. Our work focuses on
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the structural aspects of complex systems and more
precisely on the fact that the dynamics on struc-
tures and complexity emergence are linked from
their genesis to their control and their evolution. In
the two following sections, we develop (i) structural
morphogenesis of complex self-organized systems
and (ii) dynamical control and synchronization of
complex networks. Each of these two sections starts
with general concepts and results and ends with
specific applications as a practical illustration. The
first application, based on human sciences, concerns
urban dynamics while the second one, based on biol-
ogy, concerns neuronal networks.

2. Structural Morphogenesis of
Complex Self-Organized
Systems — Concept and
Application

In this section, our first objective is to study
the genesis of complex systems through self-
organization processes. Our modeling approach is
then to combine elementary behaviors in order to
simulate a system whose overall behavior cannot
be designed by the modeler but has to emerge from
local interactions and dynamical process [Bertelle
et al., 2009].

2.1. Emergent structure from local
behavioral interaction on
spatial systems

The aim of this study is to model and analyze social
organizations. Indeed, from interactions between

individuals emerge some organizations. We focus
both on interactions between individuals and inter-
actions between individuals and organizations. Our
objective is to highlight the emergent complexity
based on the two main factors: (i) the spatial dimen-
sion as a major input for the component interaction,
(ii) the self-organization as a major process for the
system dynamics and adaptation.

In order to model the dynamics of complex
interactions between individuals and organizations,
we introduce two levels of description for each of
them, as described in Fig. 1. The objective is to
implement an adaptive mechanism for our model
that is structured three-fold:

• The emergent process. Inputs are (i) the sys-
tem of spatial individuals, (ii) the system of
spatial organizations. The output is the spatial
distribution of individuals over the emergent
organizations system. The process is based on an
attraction mechanism involving complex interac-
tions between individuals and organizations.

• The adaptive process. The input is the spatial dis-
tribution of individuals over the emergent organi-
zations system. The output is the response of the
organizations according to their dynamic evolu-
tion. This response leads to modification of the
organization characteristics and morphology.

• The feed-back process. The input is the new char-
acteristics of the organizations which are pro-
duced by the adaptive process. The output is the
new spatial distribution of individuals according
to the organization’s system evolution.

Fig. 1. Multilevel system model: interactions between individuals inside the Entity Level, lead to emergent processes and
generate organization formations; interactions from organizations over the entities lead to feedback process; adaptive processes
on organizations are generated in response to these two previous processes, emergent and feedback ones. Moreover, interactions
between structures inside the organization level are described by complex networks.
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In the following section, we first describe the
bioinspired mechanism as the basis of our model,
the model formalism is then described and finally,
experiments and analyses are given.

2.2. Bioinspired model

2.2.1. Natural template in collective
building

Termites mounds, ant nest, bees and wasp hives are
some examples of complex structures emerging from
the interactions between the social insects and their
spatial environment [Perna et al., 2008]. One of the
mechanisms used in these structures is templates.
A template is a pattern existing in the environment
and used to construct another pattern [Bonabeau
et al., 1999]. Temperature, humidity, chemical gra-
dient, physical functions produce different kinds of
natural templates leading to specific structures.

An example of template (combined with self-
organization mechanism) is the one proposed by
Leptothomx albipennis ants [Camazine et al., 2001],
which constructs simple perimeter walls in a two-
dimensional nest at a given distance from the tight
cluster of ants and brood and which serves as a
chemical or physical template (see Fig. 2). The
probability of depositing a grain is higher when both
the distance from the cluster is appropriate and the
local density of grains is large. On the opposite, the

Fig. 2. Wall formation generated by Leptothomx albipennis
ant colonies [Camazine et al., 2001].

probability of depositing a grain is lower when the
cluster is either too close or too far and when the
local density of grains is small. When the distance
from the cluster does not lie within the appropriate
range, deposition can nevertheless be observed if
grains are present. Conversely, if the distance from
the cluster is appropriate, deposition can take place
even if the number of grains is small.

(i) Wall building model : Implementation
in repast

The algorithm is based on the ant clustering algo-
rithm which consists of simulating how ants are able
to spatially classify corpses or larvea using the fol-
lowing elementary decentralized behavioral process.
In order to extend this basic ant clustering algo-
rithm toward nest building algorithm, we have to
define a template probability Pt which will be added
to the probability of picking up and dropping.

• When an ant is moving without carrying mate-
rial, if it finds some, it will take it respecting the
probability number [Camazine et al., 2001]:

Pp =
(

k1

k1 + f

)2

(1 − Pt) (1)

where f is the material density that the ant per-
ceives locally around itself, k1 is a given threshold
and Pt is the template function.

• When an ant is moving and carrying some mate-
rial, the probability to deposit is computed by
[Camazine et al., 2001]:

Pd =
(

f

k2 + f

)2

Pt (2)

where f is still the material density perceived by
the ant, locally around itself and k2 is another
given threshold.

In Fig. 3(a), we represent a template function
adapted to the natural ant wall building and we
then represent [Figs. 3(b) and 3(c)] the result of a
simulation made on the agent-based java platform,
Repast [2009].

(ii) Adaptive spatial organization feedback
implementation

Complex systems deal not only with emergent orga-
nization processes arising from interactions of its
own entities, but also with the feedback processes
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(a)

(b)

Fig. 3. Simulation of the adaptive queen behavior, according to the spatial perception of its surround material. The template
function is drawn in (a) and simulation results are shown in (b) and (c). An adaptive process is implemented making the
queen size grow. This size corresponds to the yellow circle diameter. Two areas are defined. The first area is near the queen
and materials are expected to be removed by ants from this area. The second area is a disk where materials are expected to
be deposit by ants. When material number in each of these two areas reaches some threshold, the queen grows and the two
area diameters are modified: (a) Template function adapted to the natural ant wall building, (b) simulation on Repast: after
few steps and (c) Simulation on Repast: after queen adaptive development.
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(c)

Fig. 3. (Continued)

of the organization over its components. In the
proposed model, we can take into account such
feedback processes and we present in Fig. 3 an
adaptive process which makes the queen (describ-
ing the organization itself) modify the environment
and the clustering processes. Following the template
function, the queen locally defines her two zones.
The first zone is near the queen and no material
is expected there. The second zone corresponds to
the template maximum and a great concentration
of material is expected there. In the simulation, we
count in a dynamical way the number of materials
in these two zones and when these numbers reach
some thresholds, the queen evolves by increasing
its own size and hence increasing the two associ-
ated zones. After this evolution, ants have to move
some material following the new template function
attraction. The lower part of Fig. 3 shows the evolu-
tion of the queen which has evolved six times since
the simulation beginning. In this figure, we can see
the red curves counting the zones density. Each gap
in these density curves corresponds to an evolution
of the queen.

2.2.2. Multi-criteria user/service system
modeling

To model the concept of multicriteria phenomena,
we introduce different kinds of pheromones. Each
kind of pheromone is represented by a specific color.
We introduce the notion of center, which is a spe-
cific spatial location. On each center, we are able
to define many queens. Each queen, belonging to a
center, is able to emit its own pheromone which is
represented by a colored pheromone different from
the other queens belonging to the same center. A
queen, associated to a spatial center, describes a
specific criterium linked to a colored pheromone.
To represent the same criterium on different cen-
ters, we use the same colored pheromone on these
different spatial locations. In order to force the ants
to deposit their material only near the center, we
have introduced the template function.

Definition 2.1. A spatial multi-criteria multi-
center simulation is described by a spatial domain,
S, by a set of np centers, {Pi; 1 ≤ i ≤ np}, and by
a set of nc colors, {cj ; 1 ≤ j ≤ nc}.
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For each center Pi, we define a cj-colored tem-
plate function, Φij : → R, which gives the value
of the cj template intensity on each spatial position.

For each center Pi, we can define a cj-colored
pheromone function, fij :S → R, which gives the
value of the cj pheromone intensity at each spatial
position.

Remark 2.1. We can define the cj-colored template
function of the Pi center by the following radial
exponential function,

Φij(x, y) = αij exp(−βij(d((x, y),

(xPi , yPi)) − rij)2) (3)

where αij is the template amplitude, βij is the tem-
plate slope, (xPi , yPi) are the Pi center coordinates.

We then define the cj-colored pheromone func-
tion for the Pi center by a similar formula,

fij(x, y) = aij exp(−bij(d((x, y),

(xPi , yPi)) − rij)2) (4)

where aij is the pheromone amplitude, bij is the
pheromone slope.

We then give some definitions which allow to
generalize the ant nest building algorithm for the
multi-criteria multi-center simulation.

Definition 2.2. A center Pi has the dominant
color cj if

aij = max{aik; 1 ≤ k ≤ nc}.
Definition 2.3. On each space location Z = (x, y),
we define the cj colored pheromone intensity as
the function Fj(Z) or Fj(x, y) defined by the for-
mula,

Fj(Z) = Fj(x, y) =
np∑
i=1

fij(x, y). (5)

The multi-criteria multi-center model proposed
here implements some spatial objects that are the
material and spatial agents (which are the ants).
The ants have to carry the material in order to
achieve the spatial self-organization simulation.

Definition 2.4. A material involved in a spatial
multi-criteria multi-center simulation has to include
a characteristic color table which corresponds to
the only colors that the material is able to perceive
and upon which it will be able to react.

Remark 2.2. An ant involved in a spatial multi-
criteria multi-center simulation and which is
carrying a material has to include a characteris-
tic color table which corresponds to the material
characteristic color table.

Each ant of the simulation which is carrying
some material Ml, has to implement a decision pro-
cess which gives, as output, a color pheromone tem-
plate cj that is used for the material transportation
by the ant. This selected color cj is called the ant
behavior.

At each simulation step, a carried material Ml

is associated to a color cj , called the ant behav-
ior in Definition 2.2. The ant which is carrying this
material will then move by searching in its neigh-
boring position, the appropriate one. Ant move
computation is based on a specific ranking process
which evaluates the greatest ranking place within
the neighboring places, corresponding to the high-
est pheromone color rate.

Definition 2.5. For each material M (or the ant
carrying it), we define the cj color attribute pref-
erence as the rate, a real number sjM ∈ [0, 1]. For
each material M (or the ant carrying it) and each
space location Z = (x, y), we compute the ranking,
ρMZ by the formula,

ρMZ =
nc∑

j=1

sjM .Fj(Z) (6)

where nc is the number of pheromone colors, Fj(Z)
is the cj colored pheromone intensity on the location
Z, defined in Definition 2.3 and sjM is the cj color
attribute preference for the material M defined in
Definition 2.5. The ant move process consists of the
moving of the ant to the place with the best ranking
value.

2.2.3. Experimental output and analysis

We study an experimental configuration, composed
of seven centers and with random initial positions
for the materials and for the ants. On each center,
we put eight queens, each one is associated to a
colored pheromone labeled from 0 to 7. In Fig. 4,
we show the result of one simulation in which ants
progressively aggregate the material around cen-
ters, following pheromone trails and based, not only
on the ant move process described in the previous
definition, but also on the probability of taking or
depositing material defined as in Eqs. (1) and (2).
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Fig. 4. Simulation computation, at successive steps: iterations 0, 152, 250, 370, 601, 1601. For each of the seven centers, eight
queens emit pheromons able to progressively aggregate materials around them, based on multi-criteria aspects.

On the left top subfigure, we see the initial dis-
tribution of materials and ants. In the five other
subfigures, we see three successive steps of the
simulation. We observe the formation of material
affectation to each center in order to respect the
attraction process, according to the material char-
acteristics. In Fig. 5, we take a zoom of the last step
of the simulation shown in Fig. 4, removing the ant
representation.

Attraction analysis based on dominant
component

We need to exhibit some analysis to better under-
stand how the computation produced, by self-
organization, the distribution of the material over
the whole domain. The analysis is based on the
dominant component for the material: a charac-
teristic color table is associated to each material.

The process of attraction is led by the ant behav-
ior defined previously. This ant behavior consists
here of extracting from the characteristic color
table, a selected color corresponding to the col-
ored pheromone, which controls the ant in order to
move to the places of highest values for this colored
pheromone.

To better understand the mechanism of attrac-
tion, we have to focus on the selected color
associated to each material which controls the ant
displacement and to forget the other colors belong-
ing to the characteristic color table of the mate-
rial. In this part, we only associate to each material
the dominant color and we study how these colored
material are distributed over the entire domain. To
analyze this distribution, we represent three graphs
for each center. On each graph, we have a specific
representation of the distribution of all attracted
material according to its dominant selected color.
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Fig. 5. Simulation: zoom on final step, at iteration 1601.

Before defining all these graphs, we have to define
a zone of analysis for each center:

Definition 2.6. For each center Pi and each color
pheromone cj corresponding to the template func-
tion fij defined in Remark 2.1, we define the refer-
ential disk as,

Dij = {M = (x, y); fij(M) < raij}
where aij is the template amplitude of function fij

and r ∈ [0, 1] is a real number, the value of which
is generally equal to 0.5 in the following.

According to this referential disk, we compute,
using three different methods, some indicators cor-
responding to the quantity of material of each color
in this disk, another corresponding to some relative
quantity of material in function of the pheromone
amplitude and finally, the last indicator depends
on the neighborhood. The three graphs used in our
study are defined by,

• The material density of dominant color cj for
the center Pi which is computed as follows,

ρ(Pi, cj) =
η(Dij)
A(Dij)

where η(Dij) is the number of materials of dom-
inant color cj inside the referential disk Dij of

center Pi and A(Dij) is the area (e.g. number of
material places) of the disk Dij .

• The pheromone efficiency of dominant color
cj for center Pi, which is computed as follows,

ρr(Pi, cj) =
ρ(Pi, cj)

aij

• The relative pheromone efficiency graph
which computes the queen efficiency relatively to
the neigborhood network. This computation con-
sists of changing the pheromone amplitude used
in the previous graph by a relative pheromone
amplitude ar

ij defined by,

ar
ij =

aij∑
k∈ϑi

akj

where ϑi is the set of centers belonging to
the neighborhood of the center ci. The relative
pheromone efficiency of dominant color cj for the
center Pi is computed as follows,

ρsr(Pi, cj) =
ρ(Pi, cj)

ar
ij

The last graph exhibits a complex indicator
which takes into account the interaction network
of the center system. In Fig. 6, we represent, for
center 4, the three graphs previously defined and
we represent two additional graphs corresponding
to the pheromone amplitude and to the relative
pheromone amplitude according to the neighbor-
hood, for each color.

Results analysis

This attraction analysis with the three associated
graphs, allows us to better understand the complex-
ity of the phenomena according to the multi-criteria
and to the spatial effects. To illustrate this analysis,
we observe the following results of center 4, based
on Fig. 6:

(1) A first remark concerns the nonlinear properties
of the attraction phenomenon, which makes the
color of the more important pheromone intensi-
ties attract a great number of materials of this
color and a few number of materials of color of
lower pheromone intensities. There is no linear
relation between the number of colored mate-
rial and the corresponding colored pheromone
intensity. Finally, the material of color of lower

1250025-9



March 10, 2012 11:31 WSPC/S0218-1274 1250025

N. Corson et al.

(1) (2) (3)

(4) (5)

Fig. 6. Attraction analysis for center 4: (1) material density, (2) pheromone efficiency, (3) relative pheromone efficiency,
(4) pheromone amplitudes and (5) relative pheromone amplitudes.

pheromone intensity is not significant. Concern-
ing center 4 of our current experiment, we only
focus on the material of the two dominant col-
ors: orange (color number 6) and blue (color
number 1).

(2) On center 4, the first graph — material
density — shows that the more attractive
colored materials are, in order, the orange col-
ored materials and then the blue colored mate-
rials. The predominance of the orange colored
material over the blue is corrected on the sec-
ond graph, which consists in dividing the col-
ored material number of each color by the
corresponding colored pheromone intensity. As
orange pheromone is greater than the blue one,
we could expect that this center will attract
more orange materials than blue ones. The
pheromone efficiency graph shows this, making
the orange and blue curves come closer.

(3) The second graph which is the pheromone
efficiency graph, only takes into account local
information about the center and not spatial

information. With the third graph which is
the spatial pheromone efficiency graph, we cor-
rect the importance of the pheromone inten-
sity of each color on a specific center with
respect to the same color pheromone inten-
sity of the neighboring centers. In Fig. 5, we
observe that the neighbors of center 4 are cen-
ters 1, 3 and 5. For these three centers, the
blue pheromone intensity is low. Moreover the
orange intensity is high at center 5. There-
fore, if we observe part (5) of Fig. 6, we can
see that the relative orange intensity becomes
lower than the relative blue pheromone inten-
sity. The last graph — relative pheromone effi-
ciency — shows a correction according to this
relative pheromone intensity. But, finally, this
graph shows that the orange material number
is still greater than the blue one. That is an
unpredictable event.

Of course, the complexity of simulation is not
completely predictable by nature and unpredictable
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phenomena appear as we finally observe in the
previous example. These phenomena are mainly due
to the complexity of spatial configuration and multi-
criteria characteristics. These unpredictable charac-
teristics of the result overtop our advanced analysis
which integrates a spatial interaction correction of
first order (e.g. only direct neighbors are considered
in this analysis).

2.3. Application to urban dynamics

The impressive increase of economical, technologi-
cal, social and environmental changes in our world
makes their management become a great challenge.
Implementing wrong policies to solve such prob-
lems can make it become worse or can generate new
ones. Many of the problems we have to face nowa-
days arise as nonpredictable side effects of our own
past actions. Most of these wrong policies are not
flexible or adaptive and we cannot change them in
order to achieve our goals within a dynamic solution
environment. In other words, solving such prob-
lems by studying a part of them without modeling
the complexity of the different parts can provide
an efficient solution for short term but a negative
one for long term, leading to nonreversible system
evolution.

Effective decision making and learning in a
world of growing dynamic complexity requires us
to search for new ways of system modeling and to
expand the boundaries of our mental models. We
have to develop tools in order to understand how
the structure of complex systems creates their own
behavior. Our purpose is to analyze organizations
or societies within their spatial complexity. Solv-
ing this problem in sustainable way, should start
by understanding how the individual behavior in
the organization affects the whole system behav-
ior. Observing complex self-organized systems in
nature (like social insects) and understanding them
leads to discovering concepts of emergence [Bertelle
et al., 2009]. The power of these systems does not
come from any central control but from their flexi-
ble interactions with themselves and with their envi-
ronment in an adaptive way. This problem involves
complex networks of location interactions, complex
networks of individual characteristics interaction
and even complex networks of multi-scale decision
making, that are the decision of individuals, the
decision of services managers and the decision of
society development planners.

The previous model has been applied to
cultural urban dynamics model in order to under-
stand how citizens are using a set of cultural cen-
ters according to the spatial configuration of this
system. For this application, a queen describes a
cultural center which emits attraction function. A
material represents a potential user whose charac-
teristics like age, gender, social level or educational
level, are represented by the characteristic color
table [Ghnemat, 2009].

The morphogenesis of complex systems, pre-
sented here, results from the decentralized pro-
cess of self-organization. Bioinspired models used
in these simulations, can be easily adapted to
various phenomena where spatial structural orga-
nization development is essential in the process.
Control of the system building is expressed glob-
aly with template functions, but each elementary
entity behavior has high-level of freedom degree and
is globaly controlled by the self-organization mecan-
ism. In the following section, we study another
stage of system complexity evolution: the sys-
tem is built and based on structures which are
described by complex networks. The objective is
then to model and study the control of such complex
structures.

3. Dynamical Control and
Synchronization of Complex
Networks — Concepts and
Application

In this section we are interested in the dynamics
of complex systems. We consider that the struc-
ture of the system is already established by the
process of morphogenesis described in the previ-
ous section. We study how this structure influences
the evolution of the system and the emergence of
global properties. The behavior of each entity is
described by a dynamical system and the interac-
tions between the entities form a complex network.
An important property characterizing complex sys-
tems is that they have less degrees of freedom than
the degrees of freedom of their components summed
up. It is important to know the influence of dif-
ferent parameters on the system in order to con-
trol it. Here, we show how a particular parameter,
the interaction strength between the entities, can
be used in order to synchronize a network and how
this parameter should be adjusted for networks of
different topologies.
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We are particularly interested in the emergence
of synchronization of the entities constituting
the system, a phenomenon of major importance
in many disciplines. Synchronization motion of
dynamical systems is of main interest in different
scientific domains. During the last two decades, syn-
chronization has attracted a great deal of attention
[Ott et al., 1990; Chen et al., 1998; Derivière & Aziz-
Alaoui, 2003; Aziz-Alaoui, 2006] since the seminal
papers by Yamada and Fujisaka [1983] and Pecora
and Carrol [1990]. Let us recall that synchroniza-
tion is a phenomenon characteristic of many pro-
cesses in natural systems and nonlinear science.
It remains the subject of intensive research and
is today considered as one of the basic nonlinear
phenomena studied in mathematics, physics, engi-
neering or life science. This word has a Greek root,
syn = common and chronos = time, which means
to share common time or to occur at the same time,
that is correlation or agreement in time of different
processes.

Synchronization of two dynamical systems gen-
erally means that one system somehow follows the
motion of another. A lot of research has been car-
ried out and, as a result, showed that even chaotic
systems could synchronize when they are coupled.
Many researchers have discussed the theory, the
design or applications of synchronized motion in
coupled chaotic systems.

There are different synchronization regimes,
some of which are: identical (or complete) syn-
chronization, which is defined as the coincidence
of states of interacting systems; generalized syn-
chronization, which extends the identical synchro-
nization phenomenon and implies the presence of
some functional relation between two coupled sys-
tems; phase synchronization, which means driving
of phases of chaotic oscillators, whereas their ampli-
tudes remain; or the burst synchronization, which
means that all the oscillators fire the same number
of bursts starting at the same moment.

In order to show the influence of the network
structure on the different types of synchronization,
we will use a model from the domain of neuro-
science, described in the next section.

3.1. Hindmarsh–Rose model

In 1952, a mathematical model that describes neu-
ron activity has been proposed by two neurophysiol-
ogists, Hodgkin and Huxley [1952]. Different neuron
models have been then developed and studied, see

for example [Izhikevich, 2007; Morris & Lecar, 1981]
and references therein cited. In this paper, we
consider one of them, the Hindmarsh–Rose model
(HR), which results from a simplification and a
generalization of the Hodgkin–Huxley model, see
[Hindmarsh & Rose, 1982, 1984]. As observed in
various biological systems, neuron activity presents
different time scales. This can be explicitly observed
in the HR model, which is a slow-fast autonomous
system of three ordinary differential equations. The
two first equations control the fast dynamics while
the third one controls the slow dynamics. The HR
model reads as follows,

(HR)




ẋ = y + ax2 − x3 − z + I

ẏ = 1 − dx2 − y

ż = ε(b(x − cx) − z)

(7)

Parameters a, b and d are experimentally deter-
mined, cx is the equilibrium x-coordinate of the
two-dimensional system given by the first two equa-
tions of (7) when I = 0 and z = 0 and parameter I
corresponds to the applied current. Finally, param-
eter ε represents the ratio of time scales between
fast and slow fluxes across the membrane of a
neuron. This HR neuron model can exhibit most
of biological neuron behavior, such as spiking or
bursting. With appropriate parameter settings, the
HR model exhibits periodic behavior characterized
by fast periods of spiking called bursts, followed
by slow quiescent inter-burst periods, as shown in
Fig. 7.

Hereafter, for all numerical experiments, we use
HR system with the following coordinate changes,
see [Belykh et al., 2005], y = 1 − y, z = 1 + I + z,
d = a+ α, c = −1− I − bxc. Applying this transfor-
mation, we obtain,



ẋ = ax2 − x3 − y − z

ẏ = (a + α)x2 − y

ż = ε(bx + c − z)

(8)

-1.5

-1

-0.5

0

0.5

1

1.5

1000 1500 2000 2500 3000

Fig. 7. Time series (t, x) of (8) when parameters are fixed
as in (11). For this set of parameter values, a HR system
exhibits a periodic bursting behavior.
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Nerve cells interact via synapses. A synapse is
the functional contact part which exists between
two neurons or between a neuron and another cell
(muscular cell, sensory receptor, etc.). It operates
the conversion of an action potential fired by the
presynaptic neuron into a signal in the postsynap-
tic cell. Usually, two different types of synapses
are discerned. Chemical synapses need some neuro-
transmitters to transmit information while through
electrical synapses, the signal is transmitted electri-
cally through gap-junctions. The size of the synap-
tic cleft is characteristic of one or the other kind
of synapses. In the case of electrical synapses, this
synaptic cleft is about two nanometers, while it
can reach from ten to forty nanometers in the case
of chemical synapses. Since the large majority of
synapses in the nervous system are chemical, we
focus our study on them. They can be modeled by
nonlinear coupling functions.

Let us consider a network composed by n HR
neurons. These neurons are coupled by their first
variable xi. A model of this network is given by,



ẋi = ax2
i − x3

i + yi − zi −
n∑

j=1

cijh(xi, xj)

ẏi = (a + α)x2
i − yi

żi = ε(bxi + c − zi)

(9)

for i = 1, . . . , n, where h is the coupling function
and {cij} is the network adjacency matrix. When
the neurons are chemically coupled, the coupling
function h is given by [Belykh et al., 2005] and
reads as,

h(xi, xj) = gsyn
(xi − V )

1 + exp(−λ(xj − Θ))
(10)

where gsyn is the coupling strength, Θ is the thresh-
old reached by every action potential for a neuron.
Parameter V is the reverse potential and must be
larger than xi(t) for all i and all t since synapses
are supposed excitatory. Throughout this paper,
parameters are fixed as follows,

a = 2.8, α = 1.6, c = 5,

b = 9, ε = 0.001
(11)

V = 2, λ = 10, Θ = −0.25 (12)

The parameter gsyn, the synaptic coupling strength
is not fixed and we study its influence on the global
network behavior as a function of the network topol-
ogy in the remainder of this section.

3.2. Complete synchronization and
associated constraints on the
network topology

We first focus on the complete synchronization phe-
nomenon within networks defined as in (9) with the
coupling function given in (10). In [Belykh et al.,
2005], it has been shown that the complete synchro-
nization phenomenon can only arise when all the
neurons of the network receive the same number of
signals from the other neurons. This condition seri-
ously limits the possible network topologies. For dif-
ferent networks satisfying this necessary condition,
such as rings, complete networks or k-regular net-
works (see Fig. 8) both oriented and non-oriented,

(a) (b) (c)

Fig. 8. (a) Ring topology network : each neuron is connected to its two closest neighbors. (b) Full topology network : each
neuron is connected to all the others. (c) k-regular topology network : each neuron is connected to its k nearest left and right
neighbors.
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we consider the minimal coupling strength needed
to obtain complete synchronization.

Our study points out that this coupling
strength follows a law given by Eq. (13).

gd
syn =

g�
syn

d
(13)

where g�
syn is the coupling strength needed to make

two bidirectionally coupled neurons synchronize
and d is the in-degree of the neurons (see also [Cor-
son & Aziz-Alaoui, 2009]). This law presents the
classical shape of power laws, often observed in com-
plex systems, as one can see in Fig. 9. This law is
followed whatever the network topology is, as far as
all the nodes have the same in-degree.

The simple expression of the coupling strength
given by (13) is possible only because the neces-
sary condition for complete synchronization leads to
quite simple and regular topologies. These topolo-
gies are unrealistic because as we have seen in the
previous section, the morphogenesis process leads
to complex interaction patterns and networks with
specific degree distributions and other properties.
That is why in the subsequent sections we are inter-
ested in a weaker synchronization phenomenon,
called burst synchronization. The conditions on the
network to make burst synchronization appear are
weaker than the ones needed to observe a complete
synchronization phenomena [Batista et al., 2010;
Han et al., 2009; Shi & Lu, 2009; Wang et al.,
2007; Zheng & Lu, 2008]. On the other hand, burst

0
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Fig. 9. Observed and predicted coupling strength for com-
plete synchronization in a full network as a function of the
network size. The results are similar for the other network
topologies studied.

synchronization is a more subtle phenomenon that
cannot be described by simple laws as (13).

3.3. Detection of burst
synchronization in complex
networks

We consider that a network of coupled neurons
presents a burst synchronization behavior if the
neurons fire bursts start all at the same time. Unlike
complete synchronization, burst synchronization is
not easy to detect numerically. Even the distinc-
tion between fast and slow periods could be difficult,
since the dynamics of single neurons could change
in unpredictable way when the coupling force is
slightly modified.

In this section we propose a general algorithm
of burst synchronization detection in networks of
coupled oscillators. Its application is not restricted
to HR neurons, it can be used to detect burst syn-
chronization in networks composed of any oscilla-
tors displaying burst behavior.

Our algorithm can be decomposed in four main
steps. In order to detect burst synchronization,
bursts of different neurons must be matched. To do
this, one needs to determine the start time of each
burst, and before detecting bursts, spikes must be
detected first.

3.3.1. Spike detection

The first step of our algorithm is the detection of
spikes. For our needs it suffices to find the local
maxima of xi(t) for each neuron i. Thus each spike
is associated to the time when the corresponding
local maximum occurs. Figure 10 shows an exam-
ple of time pattern of bursts in a network of five
neurons. Each spike is represented as a point on
the horizontal line corresponding to the neuron in
which the spike occurs.

3.3.2. Burst start detection

Once all spikes are localized, we need to determine
the first spike of each burst. Since each burst is
preceded by a quiescent period, the idea is to con-
sider the inter-spike distances. When the distance
between two consecutive spikes is large enough, the
second spike is considered as the first of a new burst.
It is not easy to determine a threshold beyond which
an inter-spike distance could be considered as “large
enough”. Indeed, the coupling force applied and the
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Fig. 10. Illustration of the burst synchronization detection algorithm. The four steps of the algorithm are represented in this
figure.

in-degrees of the network nodes change significantly
the form of the attractors of individual neurons
and a threshold applicable to a given combination
of these parameters could be completely inappro-
priate for another combination. To overcome this
difficulty, we use the k-means clustering method
[Macqueen, 1967] to separate the inter-spike dis-
tances in two groups. When applied to classify
one-dimensional observations into two groups, the
k-means clustering method is very simple. Suppose
that d1, . . . , dn are the distances between all pairs
of consecutive spikes of a given neuron sorted in
non-decreasing order. For fixed i, let µ1(i) be the
mean of d1, . . . , di and let µ2(i) be the mean of
di+1, . . . , dn. Let

i� = argmin
1≤i≤n




i∑
j=1

(dj −µ1(i))2 +
n∑

j=i+1

(dj −µ2(i))2




Then di∗+1, . . . , dn are considered as inter-burst dis-
tances. Figure 10 shows the bursts detected by our
algorithm as segments below the spike patterns.

For certain coupling force values and network
topologies, the behavior of individual neurons can
change from bursting to spiking. An indicator allow-
ing to distinguish between these two behaviors is
the ratio between the smallest inter-burst distance
and the largest inter-spike distance, di∗+1

di∗
. This ratio

close to one indicates spiking behavior. With our
parameter settings, this ratio is about 4.2 for a sin-
gle noncoupled neuron.

3.3.3. Burst matching

The next step of our algorithm is to match the
bursts fired by different neurons. We define the dis-
tance between two bursts as the absolute value of
the difference of their starting times determined at
the previous step. Let b1 be a burst emitted by a

neuron and b2 be a burst emitted by another one.
We say that b1 and b2 match if b1 is the burst of
the first neuron closest to b2 and b2 is the burst of
the second neuron closest to b1. We say that bursts
b1, . . . , bn fired by n different neurons match if each
pair of them match. Figure 10 represents groups
of matching bursts by dots at the beginning of the
burst segments.

A necessary condition for burst synchronization
is that almost all bursts belong to n-tuples of match-
ing bursts. This condition is measured by the ratio
of the number of bursts belonging to matching n-
tuples and the total number of bursts in the net-
work, over a long time period.

3.3.4. Burst synchronization

Another condition for burst synchronization is that
all the bursts within a matching group start in a
small time interval. We measure the largest dis-
tance between two bursts in each n-tuple of match-
ing bursts and we take the mean of this distance
over all n-tuples in the observed period. The dis-
tances are visualized by grey vertical lines in Fig. 10.
If this average is below a given threshold, then the
oscillators are said to exhibit burst synchronization.
The thresholds used in the numerical experiments
are discussed in the next section.

To recapitulate, there are three conditions for
burst synchronization:

• The oscillators must have bursting behavior, or
the ratio di∗+1

di∗
must be above a given threshold

for all oscillators in the network.
• The ratio between the number of matching bursts

and the total number of bursts must be close to
one.

• The average span of the bursts within each
matching group must be below a given threshold.
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The algorithm presented in this section is
applied on networks of different topologies. The
results are discussed in the next section.

3.4. Burst synchronization in
complex network of different
topologies

In this section, we study how the network struc-
ture influences the values of the synaptic cou-
pling strength gsyn for which burst synchronization
appears. The numerical results are obtained using
a Java code implementing the Runge–Kutta 4 inte-
gration method. GraphStream library [Dutot et al.,
2007] is used for generation and manipulation of
networks. First of all, let us see on what types of net-
work topology we can expect burst synchronization.

A necessary condition for synchronization of
two network nodes is that either one of them must
be influenced by the other or both of them must
be influenced by a third node. At network level this
implies the existence of at least one “root” node
from which all nodes can be reached.

We impose a second condition, the absence of
cycles in the network. The reason for this condition
is that cycles could significantly modify the indi-
vidual neuron behavior. In the presence of cycles,
the bursting phenomenon could even disappear
for certain coupling strength values. To illustrate
this fact, let us consider the simplest cycle case,

two neurons with bidirectional coupling. Figure 11
shows that when the coupling strength grows the
bursting is progressively transformed in spiking.
From the moment when complete synchronization
is observed, bursting behavior comes back but in
different form and disappears again for very big
coupling forces. In the presence of longer cycles,
the individual behavior could be even more per-
turbed. Our experiments show that in acyclic net-
works bursting is more stable.

When the network is acyclic, there exists
exactly one root node which receives no signal and
such that there exists a path from it to any other
node. Intuitively, nodes which are closer to the root
will need smaller coupling strength to synchronize
with it. To check this hypothesis, we use a simple
chain network in which each node receives a signal
from the previous (see Fig. 12). Figure 13 shows the
values of the three burst synchronization indicators
defined in Sec. 3.3 as functions of the network diam-
eter and the coupling strength. For each indicator
there is clearly expressed phase transition leading to
separated zones between “small” and “big” values.
The boundaries between these zones are shown as
green lines in Fig. 13. When we put the three bound-
aries together, we obtain the result shown in Fig. 14.
One can see that the first indicator dominates the
other two. In other words, if all network nodes emit
clearly separated bursts, these bursts are synchro-
nized. Another observation is that in the case of
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Fig. 11. Times series (t, x) of a neuron (7) within a network with cycles for an increasing coupling strength (from left to right
and from top to bottom) 0.1, 0.5, 1.0, 1.3 and 3.0. For certain values of the coupling strength, the bursting behavior is lost.

1250025-16



March 10, 2012 11:31 WSPC/S0218-1274 1250025

Modeling the Dynamics of Complex Interaction Systems

4321 8765   109

Fig. 12. Example of chain network of size 10.

(a)

(b)

(c)

Fig. 13. Burst synchronization indicators as functions of
the network diameter and the coupling strength for chain
networks. (a) Ratio between the shortest inter-burst and
the longest inter-spike distances. (b) Proportion of match-
ing bursts. (c) Average span of burst starts within matching
groups.
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Fig. 14. Thresholds of the burst synchronization indicators.
Burst synchronization occurs in the zone above indicator 1
(ratio between the shortest inter-burst and the longest inter-
spike distances). The straight line “sync threshold” is a linear
approximation of indicator 1.

chain network the minimal coupling force needed
to obtain burst synchronization is roughly a linear
function of the network diameter.

We obtain exactly the same results for tree-like
topology, because in this kind of networks each path
from the root to another node synchronizes exactly
like a chain.

In chain and tree networks each node except
the root receives a signal from exactly one node.
To check if the synchronization threshold depends
also on the in-degrees of the network nodes, we gen-
erate special kind of networks which we call level
networks. We start from a random tree with given
number of nodes and given height. Then we ran-
domly add extra arcs only between nodes of con-
secutive levels. In this way we do not change the
diameter of the network and keep it acyclic. Each
edge added increments the in-degree of some node.
We will study the influence of a parameter called
density, which is the ratio between the number of
added arcs and the number of possible arcs between
nodes of consecutive levels. In this way a network
of density 0 is a tree and in a network of density
1 all arcs between adjacent levels are present. An
example of level network is given in Fig. 15.

As in the case of chain networks, the three burst
synchronization indicators exhibit phase transition
for level networks. Once again, the first indicator
dominates the other two. The coupling strength
needed to obtain burst synchronization is roughly
a linear function of the network diameter, as shown
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Fig. 15. Example of level networks with 50 nodes and diameter 10. Only nodes from adjacent levels are connected by arcs.
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Fig. 16. Coupling strength needed for burst synchronization
for level graphs of different density.

in Fig. 16. But the slope of the line depends on the
density of the network. When the density increases,
the slope tends to zero.

The experimental results presented in this sec-
tion show that the coupling strength needed to syn-
chronize a network of coupled oscillators depends
on its structure. We have identified two network
parameters influencing the synchronization thresh-
old, the network diameter and the network density.
Nodes close to the root are easier to synchronize
than distant nodes. On the other hand, long dis-
tances can be compensated by high link density.

4. Conclusion

In this paper, we proposed two different approaches
to study complex systems. The common feature
of these approaches is that they are based on

structural properties. This paper aims to contribute
to the formalization of complexity in dynamical
organizations. These organizations are studied here
in terms of structures and topologies. How does the
network behavior induce modifications of the net-
work topology? How does the topology influence the
network behavior? Some elements of answers are
presented based on examples from the domains of
geography and biology. In the first one, emergence
of organizations through a reconstruction process, is
observed. In the second one, emergence of synchro-
nization is exhibited, based on parameter control.
Our purpose is to highlight that self-organization
and system control are two facets of the complex-
ity of dynamical systems. This paper contributes
to propose engineering methods to manipulate such
concepts which have been observed for a long time
in various natural and artificial systems, difficult to
formalize and understand, because of the lack of
practical tools to model or analyze the emergent
processes.
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