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Models for the transmission of the chikungunya virus to human population are discussed. The chikungu-
nya virus is an alpha arbovirus, first identified in 1953. It is transmitted by Aedes mosquitoes and is
responsible for a little documented uncommon acute tropical disease. Models describing the mosquito
population dynamics and the virus transmission to the human population are discussed. Global analysis
of equilibria are given, which use on the one hand Lyapunov functions and on the other hand results of
the theory of competitive systems and stability of periodic orbits.
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1. Introduction can cause viremia. The dynamics of arboviral diseases like dengue or
An unprecedented chikungunya epidemic has appeared on the
Reunion Island (775,000 inhabitants) with over 244,000 reported
and 205 deaths (directly or indirectly linked) as of April 2006.
Aedes albopictus [1], long present on the island, is the main vector
of this disease. Aedes aegypti [2], which is also known to transmit
dengue fever, is the other vector of chikungunya. After the Grande
Comore Island epidemic, first cases were reported in the Reunion
Island in March 2005. It was the first time that a chikungunya epi-
demic was described in this part of the world.

The Asian tiger mosquito or forest day mosquito (Aedes albopic-
tus), from the mosquito family Culicidae, is characterized by its
black and white striped legs, small black and white body. It is
native of the tropical and subtropical areas of Southeast Asia. In
the past couple of decades this specie has invaded many countries
throughout the world, through the increasing transport of goods
and international travels. It has recently appeared in Europe, like
in France [3], in the USA and in Australia.

The chikungunya is an arthropod-borne viral disease (arbovi-
rus). The name is derived from the Makonde word meaning ‘‘that
which bends up’’ in reference to the stooped posture developed
as a result of the arthritic symptoms of the disease. It was first de-
scribed by Marion Robinson and Lumsden [4,5], following an out-
break in 1952 on the Makonde Plateau, in Tanzania [5].

Some arboviruses are able to cause emergent diseases and trans-
mit the virus upon biting, allowing it to enter the bloodstream which
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é du Havre, 25 rue Philippe

. Moulay).
chikungunya are influenced by many factors such as humans, the
mosquito vector, the virus itself, as well as the environment which
affects all the present mechanisms directly or indirectly.

Through the 20th century, mathematical models have been
established as major tools for epidemiological models (see [6–8]
and references therein), and in particular the study of vector-borne
infections [9–12].

In [13,14], the authors study a SI-SIR model in which the total
human population size is constant. Models with a variable human
population are studied in [15,16]. In [15] the authors use a non
classical contact rate among humans that depend on the total vec-
tor population size. Such models do not take into account the
dynamics of the vector.

In [17,18], mathematical models describing the dynamics of vec-
tor-borne diseases taking into account the controlling mechanisms
applied on the vector population are developed. In [17], the human
population is supposed to be constant and the incidence rate among
humans depends on the total vector population size. Moreover, only
the local stability of equilibria was studied analytically.

This paper deals with two models involving differential equa-
tions for the mosquito population and virus transmission to the
human population. Following [15], we consider a model which
takes into account the dynamics of the vector with a non-constant
population size and a contact rate that depends on the vector pop-
ulation size.

The local and global stability of equilibria are studied. This work
can be seen as a complement to the study of [17,18]. The conclu-
sion discusses the use of a contact rate among humans that de-
pends on the vector population size.

This paper is organized as follows. In the second section we give
the biological explanation of the problem and address the vector
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life cycle (embryonic, larvae, pupae and adult stages), the repro-
duction and oviposition habitat selection, and finally the transmis-
sion of the virus phenomenon.

The third section deals with the formulation of dynamical mod-
els, first of all for the population growth that is the Aedes albopictus
mosquito, and secondly for the virus transmission to the human
population. The first model uses a stage structure model; the sec-
ond uses SI and SIR type models.

The fourth section is devoted to the mathematical analysis of
both models, focusing on the boundedness and the positivity of
the solutions, and on local or global stability of equilibria.

For the first system we use the Lyapunov theory to establish the
global stability of the endemic equilibrium, while for the second
we use the general theory of competitive systems and compound
matrices. As usual in mathematical epidemiological studies, we
also found two thresholds parameters that determine the global
dynamical behavior.
2. Biological problem

2.1. Vector life cycle

The life of the vector, consists of four stages: embryonic stage
(eggs), larvae stage, pupae stage and adult stage. The first three
stages need water for their development while the last one needs
only air. In this paper we will not distinguish the larvae stage
and the pupae stage: these two stages are called the immature
stage. The lifespan of each stage depends on several factors, such
as temperature or the availability of food and water [19].

2.2. Oviposition habitat selection

Mosquitoes have developed various approaches to avoid preda-
tion. Many species breed in areas where predators are rare or ab-
sent. The oviposition habitat selection is made to make sure that
the mosquito larvae can develop relatively unmolested. That is
the case of the Asian tiger mosquito or Aedes albopictus mosquito
which is a container-inhabiting species and which lays its eggs in
any water-containing receptacle in urban, suburban, rural and for-
est areas. The primary immature habitats of this species are artifi-
cial containers [20,21].

These habitats are largely devoid of predators, thus offering a
relatively secure refuge for larval development. Most female can
lay their eggs not only on moist substrate but on dry substrate that
is subject to flooding with rains or tides. They breed in small, often
ephemeral, pools such as those in tree holes, bamboo pots and leaf
axils. This strategy does have a negative side for mosquito: the
development depends on the availability of water and they must
be able to develop quickly before the water dries. Mosquitoes lay
their eggs on the water or any moist surface, but they can also
breed in natural habitats like vegetation or near rivers . . .

2.3. The embryonic stage

The eggs need 48–72 hours to become mature [22]. They need
water to hatch, but they are desiccation-resistant and cold-resis-
tant and they have the capacity to cling to the inner side of any po-
tential containers. Moreover, eggs are capable of winter diapause
and mature eggs can wait until two years to hatch if the hydration
conditions are not sufficient for the development of larvae [23,24].

2.4. The larvae and pupae stages

Depending on temperature and availability of food, Aedes albopic-
tus can complete larval development (four stages) between five to
ten days; the pupae stage needs two days to develop [25]. An in-
crease in larval density or a decrease in food (for example, a decrease
in water due to evaporation) can cause more mortality and reduction
in the number of adult subjects. Though limited food is the primary
cause of death, parasites and predators may exert substantial influ-
ence on the population size. The amount of water in the containers
also plays an important role in determining mosquito density.
Although the overall population in containers appears greater, it is
actually decreasing as resources decline and intra-specific competi-
tion increases [26,27], resulting in greater larval mortality and the
production of small-sized adults. Moreover, it has been observed
that the larvae of Aedes albopictus are cannibal, they are able to eat
earlier-stage larva under certain conditions.

2.5. The adult stage

The exit of the pupae stage normally happens very early in the
morning, perhaps in order to escape numerous predators whose
main activity takes place during daytime [21,28]. Before any activ-
ity, male and female need to have a meal of sugar and water [29].
The flight range of adults is limited (from one to two hundred me-
ters), they have not been observed to fly in strong winds [30,31]. Its
major means of dispersal is through the transport of used and
waste tires. The move of other water-holding containers could also
play a role in expanding its range. The life expectancy for males is
fifteen days whereas it is from two to four weeks for females [22]
and can reach ten weeks under labs conditions.

2.6. Reproduction

Aedes albopictus is very aggressive during the daytime [32] with
biting generally occurring during early morning and late afternoon
[30]. Females require blood to produce their eggs. They feed on a
number of hosts including human (indoors and outdoors), domes-
tic and wild animals and birds. Their generalized feeding behavior
contributes to their being potential vectors.

Females lay eggs one by one above the water level or on the
sides of a variety of containers which serve as breeding habitat.
They rely on rainfalls to raise water level in containers and inun-
date the eggs for hatching. Females lay from one hundred to three
hundred eggs per oviposition and have from one to four oviposi-
tions during their life.

2.7. Transmission of the virus

A vector is infected after biting an infected human. There is a
delay (from seven to twelve days) or incubation period when
mosquitoes are incurring the disease but still unable to transmit
it. Recent research have shown, that a genetic mutation in the
chikungunya virus identified in Réunion Island, has facilitated the
transmission by Aedes albopictus. Indeed, the extrinsic incubation
period was reduced to two days [33]. Mosquitoes remain infective
until death. Vertical transmission in the vector has not yet been
observed until today.

A human is infected after being bitten by an infected vector,
after a delay of four to seven days (incubation period), the human
is able to transmit the virus. This period, which can go on five to
seven days, is the viraemia period. After this time, human recovers.
3. Vector population and virus transmission modeling

3.1. Formulation of a dynamical model for vector population growth

To describe the Aedes albopictus population dynamics we use a
stage structured model, which consists of three main stages (see
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Fig. 1): embryonic (E), larvae (L, which consists here of the larvae
and pupae populations) and adult (A, which consists only of adults
females). Even if eggs and immature stages are both aquatic, we
dissociate them because these two populations respond differently
to control measures. Indeed, eggs can cling and are desiccation-
resistant and hence, drying the breeding sites does not kill eggs,
but only larvae and pupae. Moreover, chemical interventions on
the breeding sites has impact on the larvae population, but not
on the eggs.

We assume that the number of laid eggs is proportional to the
number of females.

The above hypotheses lead to the following equations.

dE
dt ðtÞ ¼ bAðtÞ � sEðtÞ � dEðtÞ;
dL
dt ðtÞ ¼ sEðtÞ � sLLðtÞ � dLLðtÞ;
dA
dt ðtÞ ¼ sLLðtÞ � dmAðtÞ:

8><>: ð1Þ

Moreover, as we said in Sections 2.2 and 2.4, it has been observed
that mosquitoes are able to detect the best breeding site for the eggs
development. Indeed if there are too much eggs in the oviposition
habitat or too few nutrients and water resources, then females laid
less eggs or choose another site. It seems reasonable to express this
biological phenomenon with a mathematical model which explic-
itly incorporates the idea of limited carrying capacity resources.
This model should take into account the availability of nutrients
and the occupation by eggs or larvae of the available breeder sites.
That is why we assume that,

� per capita oviposition rate is given by,
Fig. 1.
for eggs
system
to A tra
b 1� EðtÞ
KE

� �
AðtÞ;
where KE is the availability of nutrients and space, b represents
the rate at which the population would grow if they were unen-
cumbered by environmental degradation,
� the transition rate from class E to class L is s but when the avail-

ability of food is not sufficient for the class L, then the larvae can
eat the young larvae to complete its developement and we sup-
pose that the death rate due to the lack of food is proportional
to the young larvae sE and to the coefficent L/KL that represent
the availability of food for each larvae. At the end, the number of
eggs that hatch and survive is given by,
s 1� LðtÞ
KL

� �
EðtÞ:
β

Then system (1) reads as follows,

dE
dt ðtÞ ¼ b 1� EðtÞ

KE

� �
AðtÞ � sEðtÞ � dEðtÞ;

dL
dt ðtÞ ¼ s 1� LðtÞ

KL

� �
EðtÞ � sLLðtÞ � dLLðtÞ;

dA
dt ðtÞ ¼ sLLðtÞ � dmAðtÞ:

8>>><>>>: ð2Þ
A stage structured model for Aedes albopictus population dynamics. E states
, L for larvae and pupae, A for female adult. s, sL, b, d, dL, dm are nonnegative
parameters. In the diagram, b = eggs laying rate, s = E to L transfer rate, sL = L
nsfer rates, d, dL, dm = mortality rates of eggs, larvae and adult population.
This system is mathematically well defined over the whole R3. Nev-
ertheless, the region of biological interest is D which is given by,

D ¼ ðE; L;AÞj
0 6 E 6 KE

0 6 L 6 KL

0 6 A 6 sL
dm

KL

8><>:
9>=>;; ð3Þ

which its interior, denoted int(D), is given by

intðDÞ ¼ ðE; L;AÞj
0 < E < KE

0 < L < KL

0 < A < sL
dm

KL

8><>:
9>=>;: ð4Þ

We will see in Lemma 4.3 that D is a positive invariant set for sys-
tem (2).

3.2. A compartmental model for the virus transmission to human
population

Let us denote by NH the human population size for which we as-
sume an exponential growth. Then, its dynamics is described by,

dNH

dt
ðtÞ ¼ ðbH � dHÞNHðtÞ; ð5Þ

where bH and dH are, respectively, the human birth and natural
death rates.

Let SH; IH and RH denote the total number of respectively suscep-
tible, infective, and immune in the human population and Sm; Im be
the total number of susceptible and infective mosquitoes. The im-
mune class in the vector population does not exist, since mosqui-
toes carry the infection throughout their life. The model is
schematically represented in Fig. 2.

The effective contact rate bH is the average number of contacts
per day which would result in infection if the vector is infectious
and, as in [15,34], we can assume that it is constant. The effective
contact rate bm is the average number of contacts per day that
effectively transmit the infection to vectors. These hypotheses lead
to the following equations,

dSH
dt ðtÞ ¼ bHðSHðtÞ þ IHðtÞ þ RHðtÞÞ � bH

ImðtÞ
AðtÞ SHðtÞ � dHSHðtÞ;

dIH
dt ðtÞ ¼ bH

ImðtÞ
AðtÞ SHðtÞ � cIHðtÞ � dHIHðtÞ;

dRH
dt ðtÞ ¼ cIHðtÞ � dHRHðtÞ;

dSm
dt ðtÞ ¼ sLLðtÞ � dmSmðtÞ � bm

IHðtÞ
NHðtÞ

SmðtÞ;
dIm
dt ðtÞ ¼ bm

IH ðtÞ
NHðtÞ

SmðtÞ � dmImðtÞ:

8>>>>>>>>>><>>>>>>>>>>:
ð6Þ
γ

β

Fig. 2. A compartmental model for the chikungunya virus transmission with the
nonnegative parameters: bm = effective contact rate between susceptible vectors
and humans, bH = effective contact rate between susceptible humans and vectors,
c = recovery rate of infected humans, dH = mortality rate of human population,
dm = mortality rate of vector population.
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All parameters in this model are positive.
Introducing the proportions SH ¼ SH=NH; IH ¼ IH=NH;RH ¼

RH=NH; Sm ¼ Sm=A; Im ¼ Im=A in system (6) and by using relations
SH þ IH þ RH ¼ NH and Sm þ Im ¼ A, the adult mosquito population
is assumed to be described by the third equation of system (2),
we obtain the following system that describes the dynamics of
the proportion of individuals in each class, with the notation
u0ðtÞ ¼ du

dt ðtÞ,

E0ðtÞ ¼ bAðtÞ 1� EðtÞ
KE

� �
� ðsþ dÞEðtÞ;

L0ðtÞ ¼ sEðtÞ 1� LðtÞ
KL

� �
� ðsL þ dLÞLðtÞ;

A0ðtÞ ¼ sLLðtÞ � dmAðtÞ;

8>>><>>>: ðaÞ

S0HðtÞ ¼ �ðbH þ bHImðtÞÞSHðtÞ þ bH;

I0HðtÞ ¼ bHImðtÞSHðtÞ � ðcþ bHÞIHðtÞ;

I0mðtÞ ¼ � sL
LðtÞ
AðtÞ þ bmIHðtÞ

� �
ImðtÞ þ bmIHðtÞ:

8>><>>: ðbÞ

8>>>>>>>>>>>><>>>>>>>>>>>>:
ð7Þ
Remark 1. Obviously, this system has two different time scales, the
one of mosquitoes of the order of weeks and the human lifespan of
order of decades. Moreover, whether bH – dH or bH = dH, when we
consider the proportions, just above given, simple computations
lead to the same system (7). Indeed, it suffices to note that

S0H ¼ ð1=N2
HÞðS0HNH � SHN0HÞ; I

0
H ¼ ð1=N2

HÞðI0HNH � IHN0HÞ and SH + IH +

RH = 1, similarly I0m ¼ ð1=A2ÞðI0mA� ImA0Þ and Sm + Im = 1, where N0H is
given by (5) and S0H; I

0
H; Im are given in system (6).

This system, as we will see in Section 5.2, is defined on the
bounded subset of R6, which is the region of biological interest,
D �X, where D is given by Eq. 3 and,

X ¼ ðSH; IH; ImÞ 2 R3
þj

0 6 SH þ IH 6 1
0 6 Im 6 1

� �
ð8Þ

and which its interior, denoted int(X), is given by

intðXÞ ¼ ðSH; IH; ImÞ 2 R3
þj

0 < SH þ IH < 1
0 < Im < 1

� �
: ð9Þ

Obviously, this model may be enhanced by taking into account the
delay between the transfer to mosquitoes and the transmission to
humans (from five to six days), see [35]. One can also use a SEI type
model for the vector, see [12], although, if we consider a huge mos-
quito population, the number of mosquitoes in state E (exposed)
can be neglected in comparison to the whole population.
Fig. 3. Phase portraits of system (2) with parameters: b = 5, s = 0.2, d = 0.6,
KE = 1000, sL = 0.3, dL = 0.6, KL = 500, dm = 0.7. In this case r = 0.595238, then all
trajectories tend to the mosquito-free equilibrium X�0.
4. Analysis of the population dynamics models

We investigate the asymptotic behavior of orbits starting in the
non-negative cone,

R3
þ ¼ fðx; y; zÞ 2 R=x P 0; y P 0; z P 0g:

Let us also denote,

R�3þ ¼ fðx; y; zÞ 2 R=x > 0; y > 0; z > 0g:

Obviously, system (2) which is a C1 differential system, admits a
unique maximal solution for any associated Cauchy problem. We
shall use the following threshold parameter,

r ¼ b
sþ d

� �
s

sL þ dL

� �
sL

dm

� �
; ð10Þ

which arises in an obvious manner, when computing equilibria. It is
easy to prove the following result.
Proposition 4.1. System (2) always has the mosquito-free equilib-
rium X�0 ¼ ð0;0;0Þ.

� If r 6 1, then system (2) has no other equilibrium.
� If r > 1, there is an unique endemic equilibrium,
X� ¼ 1� 1
r

� �
KE

cE
;
KL

cL
;

sL

dm

KL

cL

� �
¼ E�; L�;A�ð Þ;
where,
cE ¼ 1þ ðsþ dÞdmKE

bsLKL
and cL ¼ 1þ ðsL þ dLÞKL

sKE
:



(a)

(b)

(c)

Fig. 4. Phase portraits of system (2) with parameters: b = 6, s = 0.5, d = 0.2,
KE = 1000, sL = 0.5, dL = 0.25, KL = 500, dm = 0.25. In this case r = 11.428571, then all
trajectories tend to the endemic equilibrium X*.
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4.1. Non-negativity and boundedness of solutions

Lemma 4.2. Let ðt0;X0 ¼ ðE0; L0;A0ÞÞ 2 Rþ � R3
þ and ([t0,T[,X = (E,L,

A))(T2]t0, +1]) be the maximal solution of the Cauchy problem
associated to (2) with the initial condition (t0, X0). Then,

8t P t0;XðtÞ 2 R3
þ:
Proof. Let ðt0;X0 ¼ ðE0; L0;A0ÞÞ 2 Rþ � R3
þ and ([t0,T[,X = (E,L,A)) be

the maximal solution of the Cauchy problem associated to (2) with
the initial condition (t0, X0). Let us assume that this solution
becomes negative, i.e. ~t1 > t0 exists such that Xð~t1Þ R R3

þ. Let us
define, t1 ¼ infft;XðtÞ R R3

þg, i.e.
t0 6 t < t1;XðtÞ 2 R3
þ

and e > 0 exists such that

8t1 < t 6 t1 þ e;XðtÞ R R3
þ: ð11Þ

Since N�0 ¼ ð0;0;0Þ is an equilibrium, the uniqueness of the solu-
tions implies X(t1) – (0,0,0). For t = t1, six cases are possible.

1. X(t1) = (0,L (t1),A(t1)) with ðLðt1Þ;Aðt1ÞÞ 2 ðR�þÞ
2. Then, taking t1

as an initial time, E0(t1) = bA (t1) > 0. Since,
EðtÞ ¼ E0ðt1Þðt � t1Þ þ �
t!t1
ðt � t1Þ

¼ bAðt1Þðt � t1Þ þ �
t!t1
ðt � t1Þ;
thus, ~e > 0 exists such that, 8t1 < t 6 t1 þ ~e we have E(t) > 0. Be-
sides L(t1) and A(t1) are positive for all t 2 ½t1; t1 þ ~~e�, therefore
8t 2 ½t1; t1 þminf~e; ~~eg�,
XðtÞ 2 R3
þ;
which is a contradiction.
2. Let X(t1) = (0,0,A(t1)) with A(t1) > 0. We can show as above that

~e > 0 exists such that 8t1 < t 6 t1 þ ~e; EðtÞ > 0. Now from the
second equation of (2), since L(t1) = 0, L0(t1) = 0 and L00

(t1) = sE0(t1) = sbA(t1) > 0, then
LðtÞ ¼ L00ðt1Þ
ðt � t1Þ2

2
þ �

t!t1
ððt � t1Þ2Þ

¼ sbAðt1Þ
ðt � t1Þ2

2
þ �

t!t1
ððt � t1Þ2Þ;
thus, ~~e > 0 exists such that 8t1 < t 6 t1 þ ~~e, we have L(t) > 0. Be-
sides A(t1) > 0, is positive forall t 2 ½t1; t1 þ ~~e�, therefore
8t 2 ½t1; t1 þminf~e; ~~eg�
XðtÞ 2 R3
þ;
which is a contradiction.

Similar proof can easily be done for the other cases that are
X(t) = (E(t1),0,A (t1)) or X(t) = (E (t1),L(t1),0) or X(t) = (E(t1),0,0) or X
(t) = (0,L(t1),0). h
Lemma 4.3. The set

D ¼ ðE; L;AÞj
0 6 E 6 KE

0 6 L 6 KL

0 6 A 6 sL
dm

KL

8><>:
9>=>;

is an invariant region under the flow induced by (2).
Proof. Let ðt0;X0 ¼ ðE0; L0;A0ÞÞ 2 Rþ � R3
þ and ([t0,T, [X = (E,L,A)) be

the maximal solution of the Cauchy problem associated to system
(2) with the initial condition (t0,X0),T2] t0, +1]. Let t1 2 [t0,T[. We
only have to show that,

1. if E(t1) 6 KE then " t1 6 t < T, E (t) 6 KE

2. if L(t1) 6 KL then " t1 6 t < T,L(t) 6 KL

3. if Aðt1Þ 6 sL
dm

KL then 8t1 6 t < T;AðtÞ 6 sL
dm

KL

since we have already shown that solutions are nonnegative, Lem-
ma 4.2.

1. Assume that e1 > 0 exists such that E (t1 + e1) > KE. Let,
t�1 ¼ infft P t1j EðtÞ > KEg:
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Since, Eðt�1Þ ¼ KE, then,
EðtÞ ¼ KE þ E0ðt�1Þðt � t�1Þ þ �t!t�1
ðt � t�1Þ:
Moreover, from the first equation of system (2), E0ðt�1Þ ¼
�ðsþ dÞKE < 0, then there exists ~e > 0 such that 8t�1 6 t < t�1þ
~e; EðtÞ < KE which is a contradiction. As a result, "t 2 [t0,T[, E(t) 6 KE.
2. Assume that e1 > 0 exists such that L (t1 + e1) > KL. Let,
t�1 ¼ infft P t1j LðtÞ > KLg:
Since Lðt�1Þ ¼ KL, then,
LðtÞ ¼ KL þ L0ðt�1Þðt � t�1Þ þ �t!t�1
ðt � t�1Þ:
Moreover from the second equation of system (2), L0ðt�1Þ ¼
�ðsL þ dLÞKL < 0; ~e > 0 exists such that 8t�1 6 t < t�1 þ ~e; LðtÞ < KL

which is a contradiction. As a result, "t 2 [t0,T[, L(t) 6 KL.
3. Assume that e1 > 0 exists such that Aðt1 þ e1Þ > sL

dm
KL. Let,
t�1 ¼ infft P t1j AðtÞ > sL

dm
KLg:
Since Aðt�1Þ ¼
sL
dm

KL, then,
� If Lðt�1Þ < KL, then, A0ðt�1Þ < 0.
AðtÞ ¼ sL

dm
KL þ A0ðt�1Þðt � t�1Þ þ �t!t�1

ðt � t�1Þ
with
A0ðt�1Þ ¼ sL Lðt�1Þ � KL
� 	

:

� If Lðt�1Þ ¼ KL then, A0ðt�1Þ ¼ 0 and

AðtÞ ¼ sL

dm
KL þ A00ðt�1Þ

ðt � t�1Þ
2

2
þ �

t!t�1
ðt � t�1Þ

2
� �

with A00ðt�1Þ ¼ sLL0ðt�1Þ ¼ �sLðsL þ dLÞKL < 0:
In both cases, there exists ~e > 0 such that 8t�1 < t 6 t�1þ

~e;AðtÞ < sL
dm

KLwhich is a contradiction. As a result 8t 2 ½t0;

T½;AðtÞ 6 sL
dm

KL. To conclude, D is invariant under the flow induced
by (2). h
Proposition 4.4. All non-negative solutions (i.e. solutions initiating in
R3
þ) eventually enter the set D.
Proof. Let ðt0;X0 ¼ ðE0; L0;A0ÞÞ 2 Rþ � R3
þ such that (E0,L0, A0) R D

(since D is invariant) and ([t0,T[,X = (E, L,A)) be the maximal solu-
tion of the Cauchy problem associated to system (2) with the initial
condition (t0,X0).

We know that D is an invariant region (Lemma 4.3).
It is then sufficient to show that there exists t P t0 such that

X(t) 2D.

� Assume that for all t 2 [t0, +1[,E(t) > KE. Then, due to the first
equation of system (2), for all t 2 [t0, +1[,E0 (t) < � (s + d)KE.
Then, by comparison, "t 2 [t0, +1[, we have,
EðtÞ 6 E0 � ðsþ dÞKEðt � t0Þ:
For t1 ¼ t0 þ E0�KE
ðsþdÞKE

, we obtain E (t) 6 KE which is a contradiction.
Therefore, for all t > t1,E (t) 6 KE.

� If L(t1) 6 KL, then the solution L(t) belongs to D which is invari-
ant. Otherwise, let assume on the contrary that for all
t 2 [t1, +1[, t1 given above, L(t) > KL. Then "t 2 [t1, +1[, due
to the second equation of system (2), L0 (t) < � (sL + dL)KL. Then,
by comparison "t 2 [t1, +1[ we have,
LðtÞ 6 Lðt1Þ � ðsL þ dLÞKLðt � t1Þ:
For t2 ¼ t1 þ Lðt1Þ�KL
ðsLþdLÞKL

, we obtain L (t2) 6 KL which is a contradic-
tion. Thus, there exists t2 > t1 such that L(t2) 6 KL.
LðtÞ 6 KL:
� If Aðt2Þ 6 sL
dm

KL, the solution A (t) is within D which is invariant.
Otherwise, let assume on the contrary that for all
t 2 ½t2;þ1½;AðtÞ > sL

dm
KL. Then, due to the third equation of sys-

tem (2), " t 2 [t2, +1[,
A0ðtÞ < sLðLðtÞ � KLÞ < 0:
Then, there exists c > 0 such that A0(t) 6 c, since L (t) is now
bounded. By comparison, we have " t 2 [t2,T[,
AðtÞ 6 Aðt2Þ � cðt � t2Þ:
For t3 ¼ t2 þ
Aðt2Þ�

sL
dm

KL

c , we have AðtÞ 6 sL
dm

KL which is a contradic-
tion. To conclude, for t P max(t1, t2, t3), (E(t),L(t),A(t)) 2 D. h

4.2. Stability of the equilibria

Proposition 4.5. The mosquito-free equilibrium X�0 ¼ ð0;0;0Þ is
locally asymptotically stable iff r < 1.
Proof. The local stability of the mosquito-free equilibrium X�0 is
given by the Jacobian matrix of the system (2) evaluated at this
point, DFðX�0Þ,

DFðX�0Þ ¼
�ðsþ dÞ 0 b

s �ðsL þ dLÞ 0
0 sL �dm

0B@
1CA: ð12Þ

The characteristic equation of (12) is given by,

k3 þ a1k
2 þ a2kþ a3;

where,

a1 ¼ ðsþ dÞ þ ðsL þ dLÞ þ dm;

a2 ¼ ðsþ dÞðsL þ dLÞ þ ðsþ dÞdm þ ðsL þ dLÞdm;

a3 ¼ dmðsþ dÞðsL þ dLÞð1� rÞ:

We apply the Routh-Hurwitz criterion. Clearly a1 > 0, a2 > 0 and
D1 = a1a2 � a3 > 0 since,

D1 ¼ a1a2 � a3

¼ ððsþ dÞ þ ðsL þ dLÞ þ dmÞðsþ dÞððsL þ dLÞ þ dmÞ
þ dmðsL þ dLÞðrðsþ dÞ þ ðsL þ dLÞ þ dmÞ > 0:

If r < 1 then a3 > 0, thus using the Routh-Hurwitz criterion all eigen-
values of DFðX�0Þ have negative real part, thus X�0 is locally asymptot-
ically stable for (2). If r P 1 then a3 < 0 and we show that DFðX�0Þ has
at least one eigenvalue with non-negative real part consequently X�0
is not asymptotically stable. h
Remark 2. Moreover, we can easily prove that X�0 is globally
asymptotically stable for r 6 1 using quadratic Lyapunov function
(the proof is similar to the one given below in Proposition 4.7 for
X*, see also Fig. 3).
Proposition 4.6. If r > 1,X* is locally asymptotically stable.
Proof. The local stability of the endemic equilibrium X* is given by
the Jacobian matrix of the system (2) evaluated at this point,

DFðX�Þ ¼
�d1 0 d2

d3 �d4 0
0 d5 �d6

0B@
1CA ð13Þ
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with

d1 ¼
bsL

dmcL

KL

KE
1� 1

r

� �
þ ðsþ dÞ;

d2 ¼ ðsþ dÞ dmcLKE

sLcEKL
;

d3 ¼
ðsL þ dLÞcEKL

cLKE
;

d4 ¼
sKE

cEKL
1� 1

r

� �
þ ðsL þ dLÞ;

d5 ¼ sL;

d6 ¼ dm:

The characteristic equation of (12) is given by,

vX� ðkÞ ¼ k3 þ a1k
2 þ a2kþ a3;

where

a1 ¼ d1 þ d4 þ d6;

a2 ¼ d1d4 þ d1d6 þ d6d4;

a3 ¼ d1d4d6 � d2d3d5

¼ dm 1� 1
r

� �
bssL

dmcLcE

�
1� 1

r

� �
þ ðsþ dÞ sKE

cEKL

þ ðsL þ dLÞ
bsL

dmcL

KL

KE

�
:

If r > 1, then a1 > 0,a2 > 0 and a3 > 0 and,

D1 ¼ a1a2 � a3

¼ a1 �
bsL

dmcL

KL

KE
1� 1

r

� �
þ ðsþ dÞ

� �
� sKE

cEKL
1� 1

r

� ��
þ sL þ dLÞ þ dmð Þ þ dm

sKE

cEKL
1� 1

r

� �� �
sKE

cEKL
1� 1

r

� ��
þ sL þ dLÞ þ dmð Þ þ dmðsL þ dLÞ

sKE

cEKL
1� 1

r

� ��
þ ðsþ dÞ þ ðsL þ dLÞ þ dm

�
> 0:

Then, thanks to the Routh-Hurwitz criterion all eigenvalues of
DF(X*) have negative real part. Consequently X* is locally asymptot-
ically stable (see also Fig. 4). h
Proposition 4.7. If r > 1 the endemic equilibrium X* is globally
asymptotically stable in int(D) (D is given by Lemma 4.3).
Proof. Assume r > 1. Let X* (E*,L*, A*) = (x*, y*,z*). To prove the glo-
bal stability of X*, we use the Lyapunov function V1 : R3 ! R

defined by,

V1ðx; y; zÞ ¼
1
2

a1ðx� x�Þ2 þ a2ðy� y�Þ2 þ a3ðz� z�Þ2
� �

;

where a ¼ ða1; a2; a3ÞT 2 ðR�þÞ
3 is a positive constant vector. Note

that since r > 1, then x*,y* and z* are positive. We have,

V1ðX�Þ ¼ 0 and 8ðx; y; zÞ 2 R3 þ nfX�g;V1ðx; y; zÞ > 0:

Hence, V1 is well defined. The orbital derivative, that is the deriva-
tive of V1 along solutions of system (2) is,

_V1ðx; y; zÞ ¼ a1ðx� x�Þ bz 1� x
KE

� �
� ðsþ dÞx

� �
þ a2ðy� y�Þ sx 1� y

KL

� �
� ðsL þ dLÞy

� �
þ a3ðz� z�ÞðsLy� dmzÞ: ð14Þ
Let ~x ¼ x� x�; ~y ¼ y� y�;~z ¼ z� z� and ~X ¼ ð~x; ~y;~zÞT .
Then

_V1ðx; y; zÞ ¼ eXT

�a1ðsþ dÞ 0 a1b 1� x�
KE

� �
a2s 1� y�

KL

� �
�a2ðsL þ dLÞ 0

0 a3sL �a3dm

0BBB@
1CCCA~X

� a1b
KE

~x2z� a2s
KL

~y2x:

Let A1 = � D + R1 with,

D ¼
a1ðsþ dÞ 0 0
0 a2ðsL þ dLÞ 0
0 0 a3dm

0B@
1CA

and

R1 ¼
0 0 a1b 1� x�

KE

� �
a2s 1� y�

KL

� �
0 0

0 a3sL 0

0BBB@
1CCCA:

Let us denote by h�, �i the scalar product in R3. Then the orbital deriv-
ative reads as,

_V1ðx; y; zÞ ¼ A1
~X; ~X

D E
� a1b

KE
~x2z� a2s

KL
~y2x:

The symetric matrix S1 defined by,

S1 ¼ �Dþ 1
2
ðRT

1 þ R1Þ

is given using simple algebraic computations by

S1 ¼
�a1ðsþ dÞ a2

2 ðsL þ dLÞ y�

x�
a1
2 ðsþ dÞ x�

z�

a2
2 ðsL þ dLÞ y�

x� �a2ðsL þ dLÞ a3sL
2

a1
2 ðsþ dÞ x�

z�
a3sL

2 �a3dm

0B@
1CA:

Therefore, we have,

A1
~X; ~X

D E
¼ S1

~X; ~X
D E

:

The characteristic polynomial of S1 is,

vS1
ðkÞ ¼ k3 þ a1k

2 þ a2kþ a3;

where,

a1 ¼ a1ðsþ dÞ þ a2ðsL þ dLÞ þ a3dm;

a2 ¼
1
4

a1ðsþ dÞb1 þ
1
4

a2ðsL þ dLÞb2 þ
1
4

a3b3 þ
3
4
ða1a3dmðsþ dÞ

þ a1a2ðsþ dÞðsL þ dLÞ þ a2a3dmðsL þ dLÞÞ

with

b1 ¼ a3dm � a1ðsþ dÞ x�

z�

� �2
 !

;

b2 ¼ a1ðsþ dÞ � a2ðsL þ dLÞ
y�

x�

� �2
 !

;

b3 ¼ a2dmðsL þ dLÞ � a3s2
L

� 	
and

a3 ¼
1
4

a1a2ðsþ dÞðsL þ dLÞb1 þ a2a3dmðsL þ dLÞb2 þ a1a3ðsþ dÞb3ð Þ:
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Let us choose a1, a2, and a3 satisfying,

a1 ¼
1

sþ d
y�

x�

� �2

> 0;

a2 ¼
sþ d

sL þ dL

x�

y�

� �2

a1;

a3 ¼
dmðsþ dÞ

s2
L

x�

y�

� �2

a1 ¼ a1
sþ d
dm

x�

z�

� �2

with such a choice, one can easily verify that b1 = b2 = b3 = 0. Thus
a1 > 0, a2 > 0 and a3 = 0, therefore the characteristic polynomial
reads as,

vS1
ðkÞ ¼ kðk2 þ a1kþ a2Þ:

Then,

S1 ¼

� y�

x�
� 	2 y�

2x�
dmy�

2sLx�

y�

2x� �1 dm
2sL

dmy�

2sLx�
dm
2sL

� d2
m

s2
L
;

0BBB@
1CCCA

since S1 has one zero eigenvalue and two negatives eigenvalues. The
matrix S1 satisfies 8~X 2 R3

þ,

hS1
~X; ~Xi 6 0:

Note that if ~X R KerðS1Þ then hS1
~X; ~Xi < 0.

Then "(x,y, z) 2 Dn{X*},

~X R KerðS1Þ ) _V1ðx; y; zÞ ¼ A1
~X; ~X

D E
� a1b

KE
~x2zþ a2s

KL
~y2x

� �
6 A1

~X; ~X
D E

< 0:

If ~X 2 KerðS1Þ, it is sufficient to verify that

a1b
KE

~x2zþ a2s
KL

~y2x
� �

> 0:

Note that

a1b
KE

~x2zþ a2s
KL

~y2x
� �

¼ 0

()
x ¼ 0 and z ¼ 0

or x ¼ x� and y ¼ y�

or z ¼ 0 and y ¼ y�

8><>:
()

~x ¼ �x� and ~z ¼ �z�

or ~x ¼ 0 and ~y ¼ 0
or ~z ¼ �z� and ~y ¼ 0:

8><>:
Let

a1 ¼ ðsLþdLÞ2
sþd

y�

x�
� 	2

;

a2 ¼ sL þ dL;

a3 ¼ sLþdL
sL

� �2
dm;

we have

S1 ¼ ðsL þ dLÞ2
� y�

x�
� 	2 y�

2x�
dmy�

2sLx�

y�

2x� �1 dm
2sL

dmy�

2sLx�
dm
2sL

� d2
m

s2
L

0BBB@
1CCCA

and then

KerðS1Þ ¼ z

x�
z�

y�

z�

1

0B@
1CA; z 2 R

8><>:
9>=>;:
Finally, we easily see that

ðx; y; zÞ 2 R3
ð~x; ~y;~zÞ 2 KerðS1Þ
and a1b

KE
~x2zþ a2s

KL
~y2x

� �
¼ 0

,( )
¼ X�0; X�

 �

:

Consequently "(x,y, z) 2 Dn{X*},

_V1ðx; y; zÞ < 0;

i.e. V1 is a strict Lyapunov function and X* is globally asymptotically
stable in D. h
5. Dynamics analysis of the virus transmission model

This section addresses the existence and global stability of equi-
librium points of (7) by showing the persistence of the system and
using the theory of competitive systems. We will focus on the case
r > 1,r given by (10) which is the condition of survival of all popu-
lations as we studied in the previous section.

For this aim, we shall use the following reproduction number
[7,8], which is defined as the average number of secondary infec-
tions produced by an infected individual in a completely suscepti-
ble population

R0 ¼
bmbH

dmðcþ bHÞ
¼ bmbH

sL
L�

A� ðcþ bHÞ
; ð15Þ

which arises by computing the steady state.

5.1. Existence of equilibria

Proposition 5.1. We assume that r > 1. System (7) always has the
disease free equilibrium N�0 ¼ ðE

�; L�;A�;1;0;0Þ. Moreover, if R0 > 1,
it has an unique endemic equilibrium with disease N� ¼
ðE�; L�;A�; S�H; I

�
H; I
�
mÞ defined on D � X, the last are done by (3) and

(8), where

S�H ¼
bH

bH þ bH
þ bH

ðbH þ bHÞR0
;

I�H ¼
dmbH

bmðbH þ bHÞ
ðR0 � 1Þ; ð16Þ

I�m ¼
bH

bH þ bHR0
ðR0 � 1Þ

and (E*, L*, A*) is the endemic equilibrium of the independent system
(2) given by Proposition 4.1.
Proof. Obviously, as R0 > 1, both equilibria are non-negative.
Besides, one can easily see that (1,0,0) is an equilibrium of the sub-
system of (7) given by the three last equations, then it is clear that
N�0 is an equilibrium of (7), belonging to D �X.

It is also easy to check that N* is an equilibrium of (7), thus we
only have to show that ðS�H; I

�
H; I
�
mÞ belongs to X, since we know that

(E*,L*,A*) is in D.
Since R0 > 1, then,

I�m ¼
R0 � 1
R0 þ bH

bH

6 1

and

I�H ¼
R0 � 1

R0

1

1þ c
bH

� �
1þ bH

bH

� � 6 1:



58 D. Moulay et al. / Mathematical Biosciences 229 (2011) 50–63
Moreover,

S�H þ I�H ¼
bH

bH þ bH
þ bH

ðbH þ bHÞR0
þ R0 � 1

R0

1

1þ c
bH

� �
1þ bH

bH

� �
¼ 1

bH þ bH
bH 1þ bH

bH þ c

� �
þ bH

R0
1� bH

bH þ c

� �� �
;

which is less than 1, since R0 > 1 and hence,

bH þ
c
R0
< bH þ c() bH

bH þc
þ 1

R0
1� bH

bH þ c

� �
< 1

() bHbH

bH þc
þbH

R0
1� bH

bH þc

� �
< bH

() bH 1þ bH

bH þ c

� �
þbH

R0
1� bH

bH þ c

� �
< bH þbH

() 1
bH þbH

bH 1þ bH

bH þ c

� �
þbH

R0
1� bH

bH þ c

� �� �
< 1: �
Proposition 5.2. The equilibrium N�0 ¼ ðE
�; L�;A�;1;0;0Þ is globally

asymptotically stable in X iff R0 6 1.
Proof. Similar to proof of Proposition 4.7, using the Lyapunov
function V1 : R6 ! R defined by,

V1ðx1; x2; x3; x4; x5; x6Þ ¼
1
2

a1ðx� E�Þ2 þ a2ðy� L�Þ2 þ a3ðz� A�Þ2
� �
þ 1

2
ða4ðx4 � 1Þ2 þ a5x2

5 þ a6x2
6Þ;

where,

a1 ¼
ðsL þ dLÞ2

sþ d
L�

E�

� �2

; a2 ¼ sL þ dL;

a3 ¼
sL þ dL

sL

� �2

dm; a4 ¼
bH

ðcþ bHÞ
;

a5 ¼
b2

H

dmðcþ bHÞ
; a6 ¼ R2

0: �

System (7) is the coupling of the two subsystems (7a) and (7b),
for which the coupling term is the function sL

LðtÞ
AðtÞ ImðtÞ, that is sys-

tem (7a) drives system (7b). Therefore, since the previous section
was devoted to the study of the subsystem (7a) corresponding to
the population dynamics we only have to analyze the subsystem
(7b),

S0HðtÞ ¼ � bH þ bHImðtÞð ÞSHðtÞ þ bH;

I0HðtÞ ¼ bHImðtÞSHðtÞ � ðcþ bHÞIHðtÞ;

I0mðtÞ ¼ � sL
LðtÞ
AðtÞ þ bmIHðtÞ

� �
ImðtÞ þ bmIHðtÞ:

8>><>>:

5.2. Global stability of the endemic equilibrium with disease

First of all, for the reader convenience, let us recall some useful
preliminaries, see [36] and [37] in which a similar analysis has
been done.

Definition 5.3. Consider the following systems,

x0 ¼ f ðt; xÞ; ð17Þ

y0 ¼ gðyÞ; ð18Þ

where f and g are continuous and locally Lipschitz in x 2 Rn, thus
the solutions exist for all positive time. System (17) is called asymp-
totically autonomous with limit system (18) if f(t,x) ? g(x) as t ?1
uniformly for x 2 Rn.
Lemma 5.4 [36]. Let e be a locally asymptotically stable equilibrium
of (18) and x be the x-limit set of a forward bounded solution x (t) of
(17). If x contains a point y0 such that the solution of (18), with
y(0) = y0 converges to e as t ?1, then x = e, i.e., x(t) ? e as t ?1.
Corollary 1 [36]. If the solutions of system (17) are bounded and the
equilibrium e of the limit system (18) is globally asymptotically stable,
then every solution x(t) of the system (17) satisfies x(t) ? e as t ?1.

Let us apply this result to our subsystem (7b).
Since X* = (E*, L*,A*), the endemic equilibrium of subsystem

(7a), is globally asymptotically stable for r > 1 (Proposition 4.7),
then LðtÞ

AðtÞ ! L�

A� ast ! þ1 uniformly. Therefore, thanks to the results
above, system (7b) is a three-dimensional asymptotically autono-
mous differential system with limit system,

S0HðtÞ ¼ � bH þ bHImðtÞð ÞSHðtÞ þ bH;

I0HðtÞ ¼ bHImðtÞSHðtÞ � ðcþ bHÞIHðtÞ;
I0mðtÞ ¼ � sL

L�

A� þ bmIHðtÞ
� 	

ImðtÞ þ bmIHðtÞ:

8><>: ð19Þ

The equilibrium of which are L�0 ¼ ð1; 0;0Þ and L� ¼ ðS�H; I
�
H; I
�
mÞ if

R0 > 1.
First of all, note that the region of biological interest X given by

(8) is positively invariant under the flow induced by (19), as the
vector field on the boundary does not point to the outside of X
which is obvious (similar proof is done for Lemma 4.3).

Theorem 5.5. If R0 > 1, the endemic equilibrium with disease L� of
system (19) is globally asymptotically stable in int(X).

To prove this theorem we shall use some preliminary results
about competitive systems, see [38–40] and stability of periodic
orbits, which we recall here for the reader convenience.

Let D 	 Rn be an open set, and x#f ðxÞ 2 Rn be a C1 function de-
fined in D. We consider the autonomous system in Rn given by,

x0 ¼ f ðxÞ: ð20Þ

System (20) is competitive in D, if, for some diagonal matrix H = diag
(e1, . . ., en), where ei, (i = 1. . .,n), is either 1 or �1, the matrix
H(DF(x))H has non-positive off-diagonal elements for x 2 D, where
DF(x) is the Jacobian matrix of (20), see [39,40]. It is shown in
[39] that, if D is convex, the flow of such a system preserves, for
t < 0, the partial order in Rn defined by the orthant

K ¼ fðx1; . . . ; xnÞ 2 Rn : eixi P 0g:
Looking at the Jacobian matrix of system (19) and choosing the ma-
trix H such as

H ¼
�1 0 0
0 1 0
0 0 �1

0B@
1CA;

we can see that system (19) is competitive in X, with respect to the
partial order defined by the orthant

K ¼ fðSH; IH; ImÞ 2 R3 : SH 6 0; IH P 0; Im 6 0g:
We recall additional definitions that we will use later [41] and also
[38,13,15]. Suppose that (20) has a periodic solution x = p(t) with
minimal period x > 0 and orbit c = {p(t):0 6 t 6x}. This orbit is orb-
itally stable iff, for each e > 0, there exists a d > 0 such that any solu-
tion x(t), for which the distance of x(0) from c is less than d, remains
at a distance less than e from c, for all t P 0. It is asymptotically orb-
itally stable, if the distance of x(t) from c also tends to zero as t goes
to infinity. This orbit c is asymptotically orbitally stable with asymp-
totic phase if it is asymptotically orbitally stable and there is b > 0
such that, any solution x (t), for which the distance of x(0) from c
is less than b, satisfies jx (t) � p(t � s)j? 0 as t ? +1 for some s
which may depend on x(0) [41].
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System (20) is persistent in the sense described in [42], i.e. iff
each solution x (t) starting in int(X), has the property that lim
inft? +1 x(t) is at a positive distance from the boundary of X.

Definition 5.6. We say that system (20) has the property of stability
of periodic orbits, iff the orbit of any periodic solution c(t), if it
exists, is asymptotically orbitally stable.

The following theorem is the main tool to prove the global sta-
bility of the endemic equilibrium with disease.

Theorem 5.7 ([13,41]). Assume that n = 3, D convex and bounded.
Suppose that (20) is competitive, persistent and has the property of
stability of periodic orbits. If x0 is the only equilibrium in int (D), and if
it is locally asymptotically stable, then it is globally asymptotically
stable in int (D).

Now, let us go back and apply those results to the global asymp-
totic stability study of ðS�H; I

�
H; I
�
mÞ. The proof of this theorem is sim-

ilar to the one in [38]. In order to prove the persistence of system
(19), we shall prove the following proposition.

Proposition 5.8. On the boundary of X, system (19) has only one
x � limit point which is the equilibrium L�0. Moreover for R0 > 1;L�0
cannot be the x-limit of any orbit in int(X).
Proof. The vector field is transversal to the boundary of X, except
in the SH-axis which is invariant with respect to (19). On the SH-
axis we have

S0H ¼ bHð1� SHÞ:

which implies that SH (t) ? 1 as t ?1. Therefore, L�0 is the only
x � limit point on the boundary of X.

To prove the second part of the proposition, we consider the
functional

V ¼ Im þ dm
1þ R0

2
1
bH

IH; ð21Þ

the derivative of which along solutions is given by,

_V ¼ _Im þ dm
1þ R0

2

� �
1
bH

_IH

¼ �sL
L�

A�
Im þ bmð1� ImÞIH

þ dm
1þ R0

2

� �
1
bH

bHImðtÞSHðtÞ � ðcþ bHÞIHðtÞ½ �

¼ �dmIm þ bmð1� ImÞIH þ dm
1þ R0

2

� �
ImSH

� dm
1þ R0

2

� �
ðcþ bHÞ

bH
IH

¼ bmð1� ImÞ � dm
1þ R0

2
ðcþ bHÞ

bH

� 
IH þ dm

1þ R0

2
SH � dm

� 
Im

¼ ð1� ImÞ �
1þ R0

2

� �
dmðcþ bHÞ

bHbm

� 
bmIH

þ 1þ R0

2

� �
SH � 1

� 
dmIm

¼ ð1� ImÞ �
1þ R0

2

� �
1
R0

� 
bmIH þ

1þ R0

2

� �
SH � 1

� 
dmIm

¼ ð1� ImÞ �
1
2

1
R0
þ 1

� �� 
bmIH

þ SH �
2

1þ R0

� �� 
dm

1þ R0

2

� �
Im:
Since R0 > 1, then 1
2 ð1=R0 þ 1Þ < 1 and 2/(1 + R0) < 1. Therefore, there

exists a neighborhood U of L�0 such that for (SH, IH, Im) 2 U [ int(X)
the expression inside of the brackets are positives. In this neighbor-
hood, we have _V > 0 unless IH = Im = 0. Moreover, the level sets of V
are the planes

Im þ dm
1þ R0

2

� �
1
bH

IH ¼ c;

which go away from the SH-axis as c increases. Since V increases
along the orbits starting in U [ int(X), we conclude that they go
away from L�0.

This proves the proposition, and therefore, the persistence of
system, (19) when R0 > 1. h
Theorem 5.9. The trajectory of any nonconstant periodic solution to
(19), if it exists, is asymptotically orbitally stable with asymptotic
phase.

To prove this we used the following results.

Theorem 5.10 [43]. A sufficient condition for a periodic orbit
c = {p(t):0 6 t 6x} of (20) to be asymptotically orbitally stable with
asymptotic phase is that the linear non-autonomous system,

y0ðtÞ ¼ @f ½2�

@x
ðpðtÞÞyðtÞ is asymptotically stable: ð22Þ

Eq. (22) is called the second compound equation of (20) and @ f[2]/
@x is the second compound matrix [38,43] of the Jacobian matrix
@f[2]/@x of f. Generally speaking, for a n � n matrix A and an integer
1 6 k 6 n, the kth additive compound matrix of A is denoted by A[k].
This is a N � N matrix, N ¼ ðnk Þ, defined by

A½k� ¼ DþðI þ hAÞðkÞjh¼0;

where B(k) is the kth exterior power of a n � n matrix B and D+ de-
notes the right-hand derivative. For example, if n = 3 with the
notations,

A ¼
a1;1 a1;2 a1;3

a2;1 a2;2 a2;3

a3;1 a3;2 a3;3

0B@
1CA:

We have,

A½1� ¼ A;

A½2� ¼
a1;1 þ a2;2 a2;3 �a1;3

a3;2 a1;1 þ a3;3 a1;2

�a3;1 a2;1 a2;2 þ a3;3

0B@
1CA;

A½3� ¼ trðAÞ:
Proof. of Theorem 5.10 The Jacobian matrix of (19) is given by

DF ¼
�ðbH þ bHImÞ 0 �bHSH

bHIm �ðcþ bHÞ bHSH

0 bmð1� ImÞ �ðsL
L�

A� þ bmIHÞ

0B@
1CA:

For the solution c(t), (22) becomes

X0 ¼ �ð2bH þ bHIm þ cÞX þ bHSHY þ bHSHZ;
Y 0 ¼ bmð1� ImÞX � ðbH þ bHIm þ sL

L�

A� þ bmIHÞY ;
Z0 ¼ bHImY � ðsL

L�

A� þ bmIH þ cþ bHÞZ:

8><>: ð23Þ

In order to prove that (23) is asymptotically stable, we consider the
following Lyapunov function, where k.kis the norm in R3 by

kðX;Y; ZÞk ¼ supfjXj; jY j þ jZjg
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with

VðtÞ ¼ VðXðtÞ;YðtÞ; ZðtÞ; SHðtÞ; IHðtÞ; ImðtÞÞ

¼

1 0 0
0 IHðtÞ

ImðtÞ 0

0 0 IHðtÞ
ImðtÞ

0BB@
1CCA

X

Y

Z

0B@
1CA

��������
�������� ¼ sup jXj; IH

Im
ðjYj þ jZjÞ

� �
:

Suppose that the solution p(t) = (SH(t),IH (t),Im(t)) is periodic of min-
imal period x. Then Proposition 5.8 implies that the orbit c of p(t)
remains at a positive distance of the boundary of X. Therefore

IHðtÞP e and ImðtÞP e with 0 6 e 6 1:

Hence, the function V is well defined along p(t) and there exists a
constant c > 0 such that,

VðX;Y; Z; SH; IH; ImÞP cjðX;Y; ZÞj ð24Þ

for all ðX;Y; ZÞ 2 R3 and (SH, IH, Im) 2 c.
The right-hand derivative of V(t) exists and its calculation is

described in [44] and [45]. In fact direct computation yields,

DþjXðtÞj 6 �ð2bH þ bHIm þ cÞjXðtÞj þ bHSHðjYðtÞj þ jZðtÞjÞ

6 �ð2bH þ bHIm þ cÞjXðtÞj þ bHSH
Im

IH

IH

Im
ðjYðtÞj þ jZðtÞjÞ

� �
and

DþjYðtÞj 6 bmð1� ImÞjXðtÞj � bH þ bHIm þ sL
L�

A�
þ bmIH

� �
jYðtÞj;

ð25Þ

DþjZðtÞj 6 bHImjYðtÞj � sL
L�

A�
þ bmIH þ cþ bH

� �
jZðtÞj: ð26Þ

Thus,

Dþ
IH

Im
ðjYðtÞj þ jZðtÞjÞ

� 
¼ I0H

IH
� I0m

Im

� �
IH

Im
ðjYðtÞj þ jZðtÞjÞ þ IH

Im
DþðjYðtÞj

þ jZðtÞjÞ 6 I0H
IH
� I0m

Im

� �
IH

Im
ðjYðtÞj þ jZðtÞjÞ

þ IH

Im
bmð1� ImÞjXðtÞj � ðbH þ sL

L�

A�

�
þ bmIHÞðjYðtÞj þ jZðtÞjÞ�

6
I0H
IH
� I0m

Im
� bH � sL

L�

A�
� bmIH

� �
ðjYðtÞj

þ jZðtÞjÞ IH

Im
þ IH

Im
bmð1� ImÞjXðtÞj:

Then we can obtain

DþVðtÞ 6 supfg1ðtÞ; g2ðtÞgVðtÞ; ð27Þ

where

g1ðtÞ ¼ �ð2bH þ bHIm þ cÞ þ bHSHðtÞ
ImðtÞ
IHðtÞ

;

g2ðtÞ ¼
IH

Im
bmð1� ImÞ þ

I0H
IH
� I0m

Im
� bH � sL

L�

A�
� bmIH:

Rewriting the last two equations of (19) as:

I0H
IH
þ ðcþ bHÞ ¼ bH

Im

IH
SH;

I0m
Im
þ sL

L�

A�
¼ bm

IH

Im
ð1� ImÞ;

then

g1ðtÞ ¼ �ð2bH þ bHIm þ cÞ þ I0H
IH
þ ðcþ bHÞ ¼

I0H
IH
� ðbH þ bHImÞ;
g2ðtÞ ¼
IH

Im
bmð1� ImÞ þ

I0H
IH
� I0m

Im
� bH � bm

IH

Im
ð1� ImÞ � bmIH

¼ I0H
IH
� bH � bmIH;

we obtain

supfg1ðtÞ; g2ðtÞg ¼ sup
I0H
IH
� ðbH þ bHImÞ;

I0H
IH
� bH � bmIH

� �
6 �bH þ

I0H
IH

and thus, from Eq. (27) and Gronwall’s inequality, we obtain

VðtÞ 6 Vð0ÞIHðtÞe�bHt
6 Vð0Þe�bHt ;

since 0 < IH < 1 in int(X), which implies that V(t) ? 0 as t ?1. By
(24), it turns out that

ðXðtÞ;YðtÞ; ZðtÞÞ ! 0 as t !1:

Therefore, system (23) is asymptotically stable and Theorem 5.9
holds. h
Theorem 5.11. Consider system (19). If R0 > 1, then
X � {(SH,0,0):0 6 SH 6 1} is an asymptotic stability region for the
endemic equilibrium with disease L�. Moreover all trajectories starting
in the SH � axis approach the disease-free equilibrium L�0.
Proof. The first part of the theorem follows from the transversality
of the vector field of (19) on X � {(SH,0,0): 0 6 SH 6 1} and theo-
rem (5.5).The second part is proved by Proposition 5.8. h

The graphs shown, Fig. 5(a)-(b)–Fig. 6(a)-(b), were obtained
after the numerical integration of system (7). In the numerical sim-
ulations bH happen to be very small with respect to the other
parameters, since the average expected life in humans is about
60 years, whereas the length of the infected period is a few days
and the vector life expectancy is about 4–10 weeks.

Theorem 5.12. Assume R0 > 1 an bH
 1, then the solutions of system
(19) oscillate to the endemic equilibrium with disease.
Proof. The existence of oscillations around the equilibrium L�
depends on whether the characteristic equation, defined by the
Jacobian matrix (5.2),

PðkÞ ¼ k3 þ Ak2 þ Bkþ C;

where

A ¼ ðbH þ bHI�mÞ þ ðcþ bHÞ þ ðdm þ bmI�HÞ;
B ¼ ðbH þ bHI�mÞðcþ bHÞ þ ðbH þ bHI�mÞðdm þ bmI�HÞ

þ ðcþ bHÞðdm þ bmI�HÞ � bHS�Hbmð1� I�mÞ
¼ ðbH þ bHI�mÞðcþ bHÞ þ ðbH þ bHI�mÞðdm þ bmI�HÞ
þ ðcþ bHÞbmI�H;

C ¼ ðbH þ bHI�mÞðcþ bHÞðdm þ bmI�HÞ þ bHS�HbHI�mbmð1� I�mÞ
� ðbH þ bHI�mÞbHS�Hbmð1� I�mÞ

¼ ðcþ bHÞ ðbH þ bHI�mÞbmI�H þ bHdmI�m
� 	

:

has eigenvalues with imaginary part different from zero. Recall that
a polynomial of degree three has eigenvalues with imaginary part
different from zero if the discriminant

D ¼ 1
4

q2 þ 1
27

p3 ð28Þ

is bigger than zero, where



Fig. 5. Numerical solutions of model (7) (b)). The graphs (a) ans (b) show the
proportion of infective humans and infective vectors versus time and the phase
portrait in the (SH, Im) plan. The parameters in the simulation are: dm = 0.25,
bH = 0.0000457, bM = 0.5, bH = 0.75, cH = 0.1428 and then R0 = 10.500841.
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Fig. 6. (a) proportion of susceptible humans versus time (in days). (b) bifurcation
diagram for equilibria of model (19) with respect to R0. For R0 > 1 we plot the
proportion of infective humans I�H given in Eq. (16), and we fix the parameters
bH = 0.0000457, bM = 0.9, bH = 0.9, cH = 0.1428, dm = 0.25.
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q ¼ 2
27

A3 � AB
3
þ C; p ¼ B� A2

3
:

We substitute I�H; I
�
m and R0 in the coefficients A, B and C and expand

them in Taylor series around bH = 0. After some computations we
obtain the following approximations,

A ¼ cþ dm þ 1þ bmbH

dmc
þ bm

c
� dm

bH

� �
bH þOðb2

HÞ;

B ¼ ðcþ dmÞ
bmbH

dmc
þ bm �

dmc
bH

� �
bH þOðb2

HÞ;

C ¼ bHbm � dmcÞð ÞbH þOðb2
HÞ:

On the other hand, in terms of the coefficients A,B and C in Eq. (28),
and collecting terms Oðb2

HÞ, we get,

D ¼ 1
27
ðcþ dmÞ3ðbHbm � cdmÞbH þOðb2

HÞ:

The term bHbm � cdm is positive since R0 > 1, therefore

lim
bH!0

D
bH

> 0;

which implies that for bH sufficiently small and positive, D > 0. This
prove the theorem (this result is similar to that one given in [13]). h
Next, we analyze the asymptotic behavior of the total popula-
tion NH(t), and the total number of individuals in the epidemiolog-
ical classes SH; IH and RH . For this we introduce the following
parameters

R ¼ bHbm

dmðcþ dHÞ

and

R1 ¼ R:S�Hð1� I�mÞ ¼
R; if R0 6 1;
cþbH
cþdH

; if R0 > 1:

(
First we study the dynamics of solutions whose initial conditions
are outside the subspace IH ¼ Im ¼ 0. For R0 – 1 we have the follow-
ing results.

Proposition 5.13. For bH > dH, ðSHðtÞ; IHðtÞ;RHðtÞÞ tend, as t !1, to
(1,0,0) if R < 1 and to (1,1,1) if (R0 6 1 and R > 1) or (R0 > 1).
Proof. Since I0m ! 0 and sL
L
A! dm as t ?1, in the limit, the pro-

portion of infectious mosquitoes is related to the proportion of
infected humans as

Im ¼
bm

dm
IHð1� ImÞ;
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thus, the limit form of the equation for IHðtÞ is given in system (6) by

I0H ¼
bmbH

dm
SHð1� ImÞ � ðcþ dHÞ

� �
IH ¼ ðcþ dHÞðR1 � 1ÞIH;

which implies that IHðtÞ declines exponentially if R1 < 1, and grows
exponentially if R1 > 1. Moreover,

R1 < 1() R < 1

and

R1 > 1() ðR0 6 1 and R > 1Þ or ðR0 > 1Þ:

The solution RHðtÞ is given by

RHðtÞ ¼ RH0 ðtÞe�dHt þ e�dHtc
Z t

0
IHðsÞedHsds:

From the exponential nature of IHðtÞ, it follows that RHðtÞ declines
exponentially if R < 1, and grows exponentially if R1 > 1. h
6. Conclusion

We have proposed models to describe the vector (Aedes albopic-
tus mosquito) population dynamics and the chikungunya virus
transmission to human population.

First of all, we have proposed model (2) to describe the vector
population dynamics which takes into account auto-regulation
phenomena of eggs and larvae stages. We have shown that this
model is well defined. For this model we found that,

r ¼ b
sþ d

� �
s

sL þ dL

� �
sL

dm

� �
is the threshold condition for the existence of the endemic state,
where ð b

sþdÞ; ð s
sLþdL
Þ and ð sL

dm
Þ are respectively eggs, larvae and adults

growth rates. For r > 1, we proved, using a Lyapunov functional, that
the endemic equilibrium is globally asymptotically stable.

Moreover, following [15], we have proposed model (7) to de-
scribe the virus transmission to the human population. This is a
model with variable human population and the contact rate among
humans depends on the vector population.

In the case r > 1 (the biological interesting case) we found the
following threshold parameters:

R0 ¼
bmbH

dmðcþ bHÞ
;

R ¼ bmbH

dmðcþ dHÞ

and

R1 ¼
R; if R0 6 1;
cþbH
cþdH

; if R0 > 1:

(

On the one hand, parameter R0 is the threshold condition for the
existence of endemic proportions of infected humans and infected
mosquitoes. On the other hand, the basic reproduction number R1

controls the asymptotic behavior of the number of infected humans.
For bH = dH, we have R0 = R and hence, ðSHðtÞ; IHðtÞ;RHðtÞÞ tend, as

t ? +1, to (NH(0),0,0) if R < 1 and to NH:ðS�H; I
�
H;R

�
HÞ if R > 1, and this

work complete [17] (global stability of the disease-free equilibrium
and the endemic equilibrium with disease).

For bH > dH,ðSHðtÞ; IHðtÞ;RHðtÞÞ tend, as t ? +1, to (+1,0,0) if
R < 1 and to (1,1,1) if R1 > 1.

Before concluding about the possible actions to take to eradi-
cate the disease, we formulate some remarks about proposed
models.
� The infective proportion IH and the total number of infective
humans IH may have different behaviors. Thus, IH may tend to
zero and �IH would grow exponentially (case R0 < 1 < R).
� For proposed models, the dynamics of the vector does not

depend directly on parameters KE and KL. We have already
pointed out that drying the breeding sites, and then reducing
the carrying capacity KL, has an impact on the parameters dL

and s. However, the size of the vector population depends on
the carrying capacity, but the threshold parameter r does not
and the proportion L�

A� (whose expression is reduced to dm) does
not either. Otherwise, it would be the same for threshold
parameters R0 and R1.
� The use of the non classical incidence rate among humans leads

to some simplifications on the threshold parameter R0 (we
obtain A�

A� instead of A�

N�H
). That is another reason of its non-

dependence on r,KL and KE.
� Our proposed models include models considering classical inci-

dence rate with a constant human population. More precisely,
for bH = dH, the model with a classical incidence rate among

human population ðbHSHIm
NH
Þ leads to the system (7) where bH have

to be replaced by bH
AðtÞ
NH

. As A(t) tends to A* for t ? +1, exactly

the same calculations can be made (by substituting bH by
bH

A�

NH
) and we obtain the following threshold parameter
R0 ¼
bmbH

dmðcþ bHÞ
A�

NH
ð¼ RÞ

¼ bmbH

dmðcþ bHÞ
1

Nh
1� 1

r

� �
sKEsLKL

dm sKE þ ðsL þ dLÞKLð Þ ;
which controls the global stability of equilibria. The same ap-
proach can be applied to show the global stability of the endemic
equilibrium with disease for models in [18] if we consider no
influence of the disease on the death rate for vector population.

Following these models and the previous remarks, the eradica-
tion of the disease can be achieved if the mosquito population is
eradicated or if parameter R is lowered below unity.

Threshold parameter r may provide conditions in order to con-
trol the proliferation of the mosquito population. Indeed, even if
there is no chikungunya epidemic, we need to be vigilant since
in less than 20 years Aedes albopictus has developed capabilities
to adapt to non tropical regions. That is why several measures have
been applied in Europe in order to control the mosquito prolifera-
tion. One of the possible interventions to reduce the impact of the
epidemic would be to reduce the number of mosquitoes. In this
aim we have to focus on some parameters that human intervention
can easily control. For instance chemical intervention can reduce
the threshold parameter r: chemical alduticide increases the mor-
tality rate of mosquitoes dm and chemical larvicide increases the
death rate of the larvae dL. Nevertheless, such intervention has fatal
consequences, in particular on the environment. Moreover, the
vector can develop a resistance to some insecticides that reduce
the impact of chemical interventions. That is why, other method
of control must be considered. For instance, the reduction of the
number of breeding sites, by drying them, has a double impact.
First, it reduces the transfer rate s between the eggs compartment
and the immature stage: if there is no water, eggs cannot hatch.
Second, it increases the death rate dL of the immature stage: water
is necessary for the development of the immature stage. Note that
drying the breeding sites has little impact on d, the death rate of
eggs, because they are resistant to desiccation. Another example
is the introduction of sterile male mosquitoes in the population
(see [46]) that has an incidence on the egg-laying. These interven-
tions allow reducing the birth rate b and then the threshold r, and
thus control the mosquitoes proliferation.
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In case of an epidemic, we have to reduce the parameter R.
Clearly, chemical adulticide can be used to increase the death rate
dm of the vector with its bad consequences on the environment.
Moreover, all efforts made by the human population, like the use
of mosquito nets or repulsive against mosquitoes bites, wearing
appropriate clothes, or isolating infected patients in hospitals, will
reduce the contact rates bh and bm without the disadvantages of
the chemical alduticide. All these efforts and interventions can be
formulated in terms of an optimal control problem [47].

However, if we want to eradicate the disease just by controlling
the vector population, models with non-classical incidence rate
lead necessary to eradicate the vector population while models
with a classical incidence rate require only to reduce it. In the case
of a classical incidence rate, all measures cited previously (drying
the breeding sites, larvicide) impact on KE, KL,s,dL and hence R.
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