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Abstract
We study mixed mode oscillations (MMOs) in systems of two weakly coupled
slow/fast oscillators. We focus on the existence and properties of a folded sin-
gularity, called folded saddle node of type II (FSN II), that allows the emergence
of MMOs in the presence of a suitable global return mechanism. As FSN II
corresponds to a transcritical bifurcation for a desingularized reduced system,
we prove that, under certain non-degeneracy conditions, such a transcritical bi-
furcation exists. We then apply this result to the case of two coupled systems of
FitzHugh–Nagumo type. This leads to a non-trivial condition on the coupling
that enables the existence of MMOs.
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Mathematics Subject Classification: 34C15, 34D15, 34K18
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1. Introduction

The Canard phenomenon, known also as the canard explosion is a transition from a small,
Hopf type oscillation to a relaxation oscillation, occurring upon variation of a parameter.
This transition was first found in the context of the van der Pol equation [2], and soon after
in numerous models of phenomena occurring in engineering and in chemical reactions [4].
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A common feature of all these models is the presence of time scale separation (one slow, one
fast variable). A particular feature of canard explosion is that it takes place in a very small
parameter interval. For the van der Pol system, where the ratio of the timescales is given by
a small parameter ε, the width of this parameter interval can be estimated by O(exp(−c/ε),
where c > 0 is a fixed positive constant3. The transition occurs through a sequence of canard
cycles, whose striking feature is that they contain segments following closely a stable slow
manifold and subsequently an unstable slow manifold.

The work on canard explosion led to investigations of slow/fast systems in three
dimensions, with two slow and one fast variables. In the context of these systems, the concept
of a canard solution or simply canard has been introduced as a solution passing from a stable
to an unstable slow manifold [1, 10, 13]. Canards arise near so called folded singularities, of
which the best known is folded node [1,13] and [15]. Unlike in systems with one slow variable,
canards occur robustly (in O(1) parameter regions) in systems with two slow variables. Related
to canards are mixed mode oscillations (MMOs), which are trajectories that combine small
oscillations and large oscillations of relaxation type, both recurring in an alternating manner.
Recently, there has been a lot of interest in MMOs that arise due to the presence of canards,
starting with the work of Milik et al [10]. The small oscillations arise during the passage of the
trajectories near a folded node or a related folded singularity. The dynamics near the folded
singularity is transient, yet recurrent: the trajectories return to the neighbourhood of the folded
singularity by way of a global return mechanism [3].

The setting of a folded node combined with a global return mechanism, elucidated
in [3], has led to the explanations of MMO dynamics found in applications [7, 11, 12, 14].
A shortcoming of the folded node setting is the lack of connection to a Hopf bifurcation,
which seems to play a prominent role in many MMOs. This led to the interest in another, more
degenerate, folded singularity, known as folded saddle node of type II (FSN II), originally
introduced in [10] and recently analyzed in some detail by Krupa and Wechselberger [9].
Guckenheimer [8] studied a very similar problem in the parameter regime, which was yet
closer to the Hopf bifurcation, calling it singular Hopf bifurcation. The transition between the
two settings was studied in [5]. Another interesting singularity, which was mentioned in [9]
and can lead to rich families of MMOs, is the folded saddle node of type I (FSN I). In the
case of this bifurcation, small oscillations seem to be related to the presence of a delayed Hopf
bifurcation rather than a true Hopf bifurcation. For a more comprehensive overview we refer
the reader to the recent review paper [6]. The theory of two slow and one fast variables has
recently been generalized by Wechselberger [17] to arbitrary finite dimensions.

In this paper, we study systems of two weakly coupled slow/fast oscillators. We assume
that in the absence of the coupling one of the oscillators is undergoing a canard explosion
and the other is in general position. We show that turning on the weak coupling leads to the
occurrence of MMOs. We focus on the very interesting case of FSN II, which, in the uncoupled
case, corresponds to one of the oscillators undergoing a canard explosion while the other is at
a stable equilibrium. As elaborated in [3], canard induced MMOs arise through a combined
presence of a folded singularity and suitable return mechanism. In this paper we focus on the
existence and properties of a folded singularity, leaving the study of the return mechanism for
future investigations.

This paper is organized as follows. We start with a background section, section 2, in which
we explain the very standard case of MMOs in the context of two slow and one fast variables
and, subsequently, the case of two slow and two fast variables with a simple fold curve. This

3 Strictly speaking, if one defines canard explosion transition between small canards and canard cycles with a large
head, then the width of the parameter interval where the transition takes place is given by O(exp(−c/ε).
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material is included for completeness and presented in such a way that the coupled oscillator
case becomes a simple corollary. In section 3, we treat the general case of coupled oscillators
and in section 4, we consider the example of two coupled FitzHugh–Nagumo systems.

2. Background

2.1. The basic case of one fast and two slow variables

We consider a system of the form

εẋ = f (x, y, ε), (1)

ẏ = g(x, y, ε), x ∈ R, y = (y1, y2) ∈ R
2, g = (g1, g2). (2)

The associated reduced system is

0 = f (x, y, 0), (3)

ẏ = g(x, y, 0), x ∈ R, y = (y1, y2) ∈ R
2. (4)

Let S0 denote the surface defined by 0 = f (x, y, 0). Non-hyperbolic points correspond to the
points on S0, for which fx = 0 (we use the notation fξ = ∂f/∂ξ ). At such points, the equation
0 = f (x, y, 0) cannot be solved for x as a function of y. Suppose (0, 0) is a non-hyperbolic
point. We make a non-degeneracy assumption fxx(0) �= 0. In order to obtain an explicit
equation for the slow flow, we try to solve 0 = f (x, y, 0) for y1 or y2. It is convenient to
first change the variables to simplify the process of finding such a solution. We begin with a
change of variables of the form x → x + η(y), η(0, 0) = 0, where ν satisfies fx(ν(y), y) = 0.
In the new variables, with additional scaling, f (x, y, 0) has the form

f (x, y1, y2) = f (0, y, 0) + x2 + O(x2|y|, x3).

In this last equation, and in the following, we do not write the variable ε in the function f ,
which is always equal to 0; that is, we write f (x, y1, y2) for f (x, y1, y2, 0). We make a non-
degeneracy assumption fy(0, 0) �= (0, 0). Without lost of generality (WLOG), we can assume
that fy1(0, 0) �= 0. We can now introduce a new coordinate ỹ1 = −f (0, y) and immediately
drop the tilde to simplify the notation. In the new coordinates, f has the form

f (x, y1, y2) = −y1 + x2 + O(x2|y|, x3).

The transformations we made may be just valid locally; that is, only in a small neighbourhood
of the non-hyperbolic point. Now S0 is (locally) represented as a graph:

y1 = x2(1 + O(y2, x)). (5)

and the fold is the straight line x = y1 = 0.
We now transform (3)–(4), first removing the constraint f (x, y) = 0 and subsequently

desingularising the resulting equation. Differentiating (5) we get

ẏ1 = 2x(1 + O(y2, x))ẋ + O(x2). (6)

Substituting (6) into (4) we get

2x(1 + O(y2, x))ẋ = g1(x, x2(1 + O(y2, x)), y2) + O(x2) (7)

ẏ2 = g2(x, x2(1 + O(y2, x)), y2). (8)

Now it is clear that (7) is singular at the fold as long as g1(0, 0, y2) �= 0. Points on the fold
line for which g1(0, 0, y2) = 0 are called folded singularities. We would like to understand
the flow near such points better and to this end we apply a singular time rescaling to (7)–(8)
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by multiplying the right-hand side (rhs) by the factor 2x(1 + O(y2, x)) and cancelling it in (7).
This leads to the following system:

ẋ = g1(x, x2(1 + O(y2, x)), y2) + O(x2) (9)

ẏ2 = 2x(1 + O(y2, x))g2(x, x2(1 + O(y2, x)), y2). (10)

We refer to (9)–(10) as the desingularized system. Note that folded singularities correspond
to equilibria of (9)–(10) with x = 0. Further note that the trajectories of (7)–(8) and (9)–(10)
restricted to the half plane x > 0 differ only by time parametrization but are the same as sets.
The trajectories in the half-plane x < 0, on the attracting part of the critical manifold, are
the same as sets but have the opposite direction of time. The flow near folded singularities
is determined by the linearization of (9)–(10) at folded singularities, which is given by the
Jacobian matrix:(

g1,x(0, 0, y2) g1,y2(0, 0, y2)

2g2(0, 0, y2) 0

)
. (11)

Folded singularities are classified according to the type of the corresponding equilibrium
of (9)–(10). Canards arise near folded saddles, and folded nodes and small oscillations are
associated with folded nodes, see the work of Benoı̂t [1], and Szmolyan and Wechselberger [13].
A folded node, which is the only generic folded singularity whose dynamics is accompanied
by small oscillations, occurs when the corresponding equilibrium of (9)–(10) has two real
positive eigenvalues (recall that we have changed the direction of the flow on the attracting
side of the critical manifold).

2.2. Folded singularities

We now consider the case when (f, g) (the rhs of (1)–(2)) depends on a regular parameter
and g2(0, 0, y2) passes through 0 when this parameter is varied. Suppose that the equation
g2(0, 0, y2) = 0 admits a unique solution ȳ2. If we assume that g1,y2(0, 0, y2) �= 0 for y2 in a
neighborhood of ȳ2 and ∂

∂y2
g2(0, 0, ȳ2) �= 0, then this passage corresponds to a change of sign

of the determinant of the Jacobian (11), from negative to positive, or vice versa. We make the
assumption that g1,x > 0, which guarantees that the flow of (7)–(8), on the stable part of the
critical manifold is towards the fold. This, in turn, means that the eigenvalues change from one
positive and one negative (negative determinant) to two positive (positive determinant); that is,
from saddle to node. It follows that this transition corresponds to the onset of small oscillations.
Hence, the onset of small oscillations is a consequence of the passage of g2(0, 0, y2) through
0. This transition is called FSN II.

Since finding FSN II in coupled oscillator systems is the focus of this paper, we review
some of the features of this bifurcation, referring the reader to [9] for details. An important
feature of FSN II is that it corresponds to the passage of a true equilibrium of (3)–(4) through the
fold line. We assume WLOG that FSN II corresponds to the point (x, y, λ) = (0, 0, 0), where
λ is the regular parameter. Suppose that FSN II is non-degenerate, that is (x, y, λ) = (0, 0, 0)

corresponds to a transcritical bifurcation of (9)–(10). Then, for λ = 0, there is a folded
singularity satisfying g2(0, 0, 0) = 0 and, for λ �= 0 but close to 0, there is a point close to the
origin, such that g1(x, x2 +O(x3), y2) = g2(x, x2 +O(x3), y2) = 0; that is, a true equilibrium
of (3)–(4) near the fold line. For the original system (1)–(2) one can prove that this corresponds
to a so called singular Hopf bifurcation [8], and, in a different regime of the parameter λ, to a
delayed Hopf bifurcation [9]. These two bifurcations lead to the existence of small oscillations
and thus enable the existence of MMOs. We note here that the interesting case of FSN II is
when the equilibrium is stable on the stable slow manifold and a saddle on the unstable slow
manifold.
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For folded nodes, which are not close to either FSN II or to FSN I, defined by g1,y2 = 0,
small oscillations are extremely small, which means that they cannot be seen, except with very
detailed numerics, see [3]. Hence, the most interesting cases occur near FSN I or FSN II.

2.3. Canonical system in two fast and two slow dimensions

We consider a system with two fast and two slow variables

εẋ = f (x, y, ε), (12)

ẏ = g(x, y, ε), x = (x1, x2) ∈ R
2, y = (y1, y2) ∈ R

2, (13)

f = (f1, f2), g = (g1, g2). Recall that in the fast formulation (12)–(13) has the form

x ′ = f (x, y, ε), (14)

y ′ = εg(x, y, ε). (15)

Recall also that the reduced problem has the form

0 = f (x, y, 0), (16)

ẏ = g(x, y, 0). (17)

and the layer problem has the form

x ′ = f (x, y, 0), (18)

y ′ = 0. (19)

Let � : R
4 → R

3 be the map defined by

�(x, y) =

 f1(x, y)

f2(x, y)

det(fx)(x, y)


 . (20)

The fold curve is defined by the condition � = 0. We consider a point on the fold curve
(WLOG we assume that this point is the origin (0, 0)). We now state a few conditions which
assure that the fold curve is simple; naturally the first condition is that the linearization of layer
system has a simple eigenvalue 0. More specifically, our first assumption is as follows:

fx(0, 0) has one simple 0 eigenvalue and one simple eigenvalue in the left half-plane. (21)

Recall that in section 2.1 we made additional assumptions, namely fxx(0, 0) �= 0 and
fy(0, 0) �= (0, 0). Here, we generalize these conditions in the following way. Let (v1, v2)

denote the null vector (the eigenvector of 0). Our additional non-degeneracy conditions is as
follows:

D�(0, 0) has full rank and κ = (det(fx))x(0, 0) · (v1, v2) �= 0. (22)

We have the following lemma.

Lemma 1. Hypothesis (22) implies that either �(x1,x2,y1)(0, 0) or �(x1,x2,y2)(0, 0) is invertible.

Proof. Let (w1, w2) be the eigenvector of the negative eigenvalue. Note that either fy1(0, 0)

or fy2(0, 0) must be linearly independent of (w1, w2), otherwise D�(0, 0)R4 would be in
the span of (w1, w2, 0) and (0, 0, 1). WLOG we assume that fy1(0, 0) is independent of
(w1, w2) and let M = �(x1,x2,y1)(0, 0). Note that M(v1, v2, 0) = (0, 0, κ) and that the first two
coordinates of M(w1, w2, 0) are a multiple of (w1, w2). Note also that the first two coordinates
of M(0, 0, 1) are equal to fy1(0, 0). Since fy1(0, 0) is independent of (w1, w2), the vectors
M(v1, v2, 0), M(w1, w2, 0) and M(0, 0, 1) are linearly independent.
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We now have the following proposition.

Proposition 1. We assume that (0, 0) is on the fold curve (i.e. �(0, 0) = 0) and that conditions
(21)–(22) are satisfied. Then, there exists a neighbourhood U = V × W of (0, 0) ∈ R

4, and
a unique function ψ : V ⊂ R → R

3, such that:

{(x, y) ∈ U ; � = 0} = {(x, y1) ∈ R
3; (x, y1) = ψ(y2), y2 ∈ V }.

Proof. By lemma (1) the matrix M = �(x1,x2,y1)(0, 0) is non singular. Hence, the equation
� = 0 can be solved by the implicit function theorem, giving (x1, x2, y1) as a function of y2.

In the remainder of this section we will assume that the fold curve has been transformed
to the coordinate line (0, 0, 0, y2) and that the fast system has been diagonalized. More
specifically, we assume that f satisfies the following conditions

f (0, 0, 0, y2, 0) = 0,
∂f1

∂x1
(0, 0, 0, y2, 0) = 0,

∂f2

∂x2
(0, 0, 0, y2, 0) = λ(y2) < 0, (23)

∂f1

∂x2
(0, 0, 0, y2, 0) = ∂f2

∂x1
(0, 0, 0, y2, 0) = 0. (24)

Note that the non-degeneracy condition (22) reduces to

∂f1

∂y1
(0, 0, 0, y2, 0) �= 0,

∂2f1

∂x2
1

(0, 0, 0, y2, 0) �= 0. (25)

WLOG we assume
∂f1

∂y1
(0, 0, 0, y2, 0) = −1,

∂2f1

∂x2
1

(0, 0, 0, y2, 0) = 2.

We can now expand f in Taylor series:

f (x, y, ε) =
(−y1 + x2

1 + O(x1x2, x
2
2 , x1y1, x2y1, y

2
1 ) + O(||(x, y)||3) + O(ε)

λ(y)x2 + O(y1, ‖x‖2) + O(ε).

)
. (26)

The defining conditions of the slow manifold are f (x, y, 0) = 0, or

0 = − y1 + x2
1 + O(x1x2, x

2
2 , x1y1, x2y1, y

2
1 ) + O(||(x, y)||3), (27)

0 = λ(y)x2 + O(y1, ‖x‖2). (28)

From (28) we get, by the implicit function theorem, x2 = p(x1, y), with p(x1, y) = O(y1, x
2
1 ).

Plugging into (27) we get the usual condition y1 = x2
1 + O(x3

1). Following the approach of
section 2.1 we substitute y1 = x2

1 + O(x3
1) into (17) getting

(2x1 + O(x2
1 ))ẋ1 = g1(x1, p(x1, x

2
1 + O(x3

1), y2), x
2
1 + O(x3

1), y2, 0), (29)

ẏ2 = g2(x1, p(x1, x
2
1 + O(x3

1), y2), x
2
1 + O(x3

1), y2, 0). (30)

Finally, we get the desingularized equation as follows:

ẋ1 = g1(x1, p(x1, x
2
1 + O(x3

1), y2), x
2
1 + O(x3

1), y2, 0), (31)

ẏ2 = g2(x1, p(x1, x
2
1 + O(x3

1), y2), x
2
1 + O(x3

1), y2, 0)(2x1 + O(x2
1 )). (32)

Folded singularities are points (0, y2) with y2 satisfying g1(0, 0, 0, y2, 0) = 0, or, equivalently,
equilibrium points of (31)–(32) on the fold line; that is, satisfying x1 = 0. The type of folded
singularity is determined by the Jacobian of(

g1,x1(0, 0, 0, y2) g1,y2(0, 0, 0, y2)

2g2(0, 0, 0, y2) 0

)
. (33)

Folded saddle nodes (FSN I and FSN II) can arise in the context of systems with two slow and
two fast dimensions in an analogous way as described in section 2.2 for systems with two slow
and one fast dimensions, and, in the same manner, correspond to the onset of MMOs.
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Remark 1. We want to emphasize here the link between the background presented in
section 2.1, which deals with 3d system and the computations done above, for the 4D system.
Since we have assumed in (23) that λ(y2) < 0, we are able to write x2 as a function of O(x2

1 ) by
using the implicit function theorem in (27)–(28). By this way, we can obtain a desingularized
system in the 4D case that is analogue to the one obtained in the 3D case. This operation can
be made in the same way in a system with N fast variables if we assume sufficiently hypothesis
on eigenvalues of the Jacobian matrix of the fast subsystem on the fold line.

3. Coupled oscillator system

3.1. Introduction of the system

We consider a system of coupled oscillators in the following form:

εẋ1 = − y1 + F1(x1) + νH
f

1 (x, y) (34)

εẋ2 = − y2 + F2(x2) + νH
f

2 (x, y) (35)

ẏ1 = G1(x1, y1, c1) + νHs
1 (x, y) (36)

ẏ2 = G2(x2, y2, c2) + νHs
2 (x, y) x = (x1, x2) ∈ R

2, y = (y1, y2) ∈ R
2. (37)

The parameters ε and ν are the singular parameter and the coupling parameter, respectively,
and are considered to be small. The parameters c1, c2 control the state of the uncoupled
oscillators (moves the nullclines). The coupling functions Hf : R

4 → R
2, Hs : R

4 → R
2

and F : R
2 → R

2 are defined by Hf = (H
f

1 , H
f

2 ), by Hs = (H s
1 , H s

2 ) and F = (F1, F2),
respectively. We assume that yj = Fj (x) are S shaped curves. Written on the fast time scale
(34)–(37) has the form:

x ′
1 = −y1 + F1(x1) + νH

f

1 (x, y) (38)

x ′
2 = −y2 + F2(x2) + νH

f

2 (x, y) (39)

y ′
1 = εG1(x1, y1, c1) + ενHs

1 (x, y) (40)

y ′
2 = εG2(x2, y2, c2) + ενHs

2 (x, y). (41)

We now find the conditions for the existence of a simple fold curve, as in section 2.3. Let �

be defined as in section 2.3. First note that the critical manifold of (34)–(37), is defined by

− yj + Fj (x) + νH
f

j (x, y) = 0, j = 1, 2. (42)

The linearization of the rhs of (34)–(35) is given by(
F ′

1(x1) + νH
f

1,x1
νH

f

1,x2

νH
f

2,x1
F ′

2(x2) + νH
f

2,x2

)
, (43)

where we assume that (x, y) is on the critical manifold; that is, satisfies (42). The determinant
of the matrix in (43) is as follows:

F ′
1(x1)F

′
2(x2) + ν(F ′

1(x1)H
f

2,x2
+ F ′

2(x2)H
f

1,x1
) + ν2 det Hf

x . (44)

Proposition 2. Let (x0, y0) satisfy �(x0, y0) = 0 for ν = 0. We assume that

F ′
1(x0,1) = 0 and F ′

2(x0,2) < 0 as already specified in (23),

and that,

F ′′
1 (x0,1) �= 0.
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Then, there exists a neighbourhood U = V × W of (x0, y0) ∈ R
4, and a unique function

ψ : V ⊂ R → R
3, such that:

{(x, y) ∈ U ; � = 0} = {(x, y1) ∈ R
3; (x, y1) = ψ(y2), y2 ∈ V },

with ψ(y2,0) = (x1,0, x2,0, y1,0). In addition, the parametrization of the fold curve depends
smoothly on the parameters ν.

Proof. We can apply proposition 1 but we give here a direct proof by application of the implicit
function theorem. Let M = �(x1,x2,y1)|x=0,y=0,ν=0; then, det M = F ′′(x10)(F

′(x20))
2 �= 0.

Note that, because the fast system does not depend on parameters c1, c2, neither does the fold
curve.

3.2. Folded singularities and their nature

Letx∗
1 = ψ1(y2, ν), x∗

2 = ψ2(y2, ν) andy∗
1 = ψ3(y2, ν). We transform the fold curve to the line

(0, 0, 0, y2), using the following change of variables: x̃1 = x1−x∗
1 , x̃2 = x2−x∗

2 , ỹ1 = y1−y∗
1 .

We omit the tilde to simplify the notation. System (34)–(37) becomes

εẋ1 = −y1 + f1(x1, y2) + νh
f

1 (x, y) + O(ε) (45)

εẋ2 = f2(x2, y2) + νh
f

2 (x, y) + O(ε) (46)

ẏ1 = G1(x1 + x∗
1 , y1 + y∗

1 , c1) + νHs
1 (x + x∗, y1 + y∗

1 , y2)

−dy∗
1

dy2
(G2(x2 + x∗

2 , y2, c2) + νHs
2 (x + x∗, y1 + y∗

1 , y2)) (47)

ẏ2 = G2(x2 + x∗
2 , y2, c2) + νHs

2 (x + x∗, y1 + y∗
1 , y2), (48)

where,

f1(x1, y2) = F ′
1(x

∗
1 )x1 + F ′′

1 (x∗
1 )

1

2
x2

1 + O(x3
1),

f2(x2, y2) = F ′
2(x

∗
2 )x2 + F ′′

2 (x∗
2 )

1

2
x2

2 + O(x3
2),

and,

h
f

1 (x, y) = H
f

1,x1
(x∗, y∗

1 , y2)x1 + H
f

1,x2
(x∗, y∗

1 , y2)x2 + H
f

1,y1
(x∗, y∗

1 , y2)y1 + O(||(x, y1)||2)

h
f

2 (x, y) = H
f

2,x1
(x∗, y∗

1 , y2)x1 + H
f

2,x2
(x∗, y∗

1 , y2)x2 + H
f

2,y1
(x∗, y∗

1 , y2)y1 + O(||(x, y1)||2).

Our goal is to arrive at the desingularized system (31)–(32). The first step is to diagonalize the
linear part of the fast subsystem (45)–(46). More precisely, we change coordinates so that the
rhs of (45)–(48) is transformed to the form (26). Let(

1
v(y2)

)
and

(
w(y2)

1

)
(49)

be the eigenvectors of the Jacobian (43) at the points (0, 0, 0, y2) on the fold line, corresponding
to the eigenvalues 0 and λ(y2) < 0, respectively. The diagonalizing transformation has the
form

x̃ = P(y)−1x,
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where the columns of the matrix P are the eigenvectors (49). In the new variables system
(45)–(48) becomes (tilde is omitted)

εẋ1 = 1

1 − vw

( − y1 +
K

2
x2

1 + ν(O(y1)) + O(x1x2, x
2
2 ) + O(ε)

)
(50)

εẋ2 = λ(y2)x2 + ν(O(y1)) + O(||x||2) + O(ε) (51)

ẏ1 = G1(x1 + x2w(y2) + x∗
1 , y1 + y∗

1 , c1) + νHs
1 (P (y2)x + x∗, y1 + y∗

1 , y2)

−dy∗
1

dy2

(
G2(x2 + x1v(y2) + x∗

2 , y2, c2) + νHs
2 (P (y2)x + x∗, y1 + y∗

1 , y2)
)

(52)

ẏ2 = G2(x2 + x1v(y2) + x∗
2 , y2, c2) + νHs

2 (P (y2)x + x∗, y1 + y∗
1 , y2), (53)

where,

K = F ′′
1 (x∗

1 ) + O(ν). (54)

WLOG, in the remaining of this section, we will assume that F ′′
1 (x∗

1 ) > 0. Note that the
fast subsystem (50)–(51) is now as specified in (26). By applying the procedure described in
section 2.3 we obtain the reduced system

(Kx1 + O(x2
1 ))ẋ1 = g1(x1, y2, c1, c2), (55)

ẏ2 = g2(x1, y2, c2), (56)

where,

g1(x1, y2, c1, c2) = G1(x
∗
1 + x1 + w(y2)O(x2

1 ), y∗
1 + O(x2

1 ), c1)

+νHs
1 (x∗

1 + x1 + w(y2)O(x2
1 ), x∗

2 + v(y2)x1 + O(x2
1 ), y∗

1 + O(x2
1 ), y2)

−dy∗
1

dy2

(
G2(x

∗
2 + v(y2)x1 + O(x2

1 )) + νHs
2 (x∗

1 + x1 + w(y2)O(x2
1 ),

x∗
2 + v(y2)x1 + O(x2

1 ), y∗
1 + O(x2

1 ), y2)
)

(57)

g2(x1, y2, c2) = G2(x
∗
2 + v(y2)x1 + O(x2

1 )) + νHs
2 (x∗

1 + x1 + w(y2)O(x2
1 ),

x∗
2 + v(y2)x1 + O(x2

1 ), y∗
1 + O(x2

1 ), y2), (58)

and the desingularized system

ẋ1 = g1(x1, y2, c1, c2), (59)

ẏ2 = g2(x1, y2, c2)(2Kx1 + O(x2
1 )). (60)

3.3. Folded singularities of type FSN II and the existence of MMOs

As discussed in section 2.2, a well known mechanism of transition to MMOs is FSN II,
see [9, 16]. This is a codimension one transition, corresponding to the passage of the system
from a parameter region with an excitable equilibrium to a parameter region of MMO dynamics.
This can be described as follows in the context of system (55)–(56): as the regular parameter
is varied a stable equilibrium of (55)–(56) approaches the fold, and, for the critical value of
the regular parameter, satisfies the conditions:

g1(0, y2, c1, c2) = 0 (61)

g2(0, y2, c2) = 0. (62)

On the other side of criticality there are MMOs as well as an equilibrium, which are now
unstable.

In the following, we assume that the parameter c2 is fixed. Note that for ν = 0, y∗
1

does not depend on y2 and thus dy∗
1/dy2 = O(ν). We assume that, for ν = 0, the equation
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Figure 1. The ν = 0 limit configurations. (a) The uncoupled system (38)–(40) admits
a unique repulsive stationary point near the fold. (b) The uncoupled system (39)–(41)
admits a unique attractive stationary point on the stable manifold.

G2(x
∗
2 , y2, c2) = 0 has a unique solution x∗

2 = ψ2(y2, c2), which is a stable equilibrium of
the uncoupled (x2, y2) subsystem, and that G2,y2 �= 0 at this point. By the implicit function
theorem, this gives a unique solution y2 for the equation (62), for ν small enough. Recall
that, by hypothesis, in the case ν = 0 we assume that, each uncoupled subsystem (38)–(40)
and (39)–(41) admits a unique stationary point, one attractive on the stable manifold and one
repulsive near the fold. This corresponds to the nullcline configuration shown in figure 1. Let
us denote this particular value ȳ2. It follows that this value ȳ2 determines particular values of
(x∗

1 , y∗
1 , x∗

2 ) = (x̄∗
1 , ȳ∗

1 , x̄∗
2 ). We assume that solving equation (61) with these values gives a

unique value of c1 = c̄1.
Recall from the discussion in section 2.2 that a non-degenerate FSN II singularity

corresponds to a transcritical bifurcation for system (59)–(60).
The following proposition establishes the existence of a transcritical bifurcation for (59)–

(60) and the existence of FSN II.

Proposition 3. Let us assume that, for system (59)–(60):

dg1

dy2
�= 0 and

dG1

dx1

dG2

dy2
�= 0. (63)

Then, for c1 in a neighbourhood of c1 = c̄1 and ν small enough, there exists two stationary
points for system (59)–(60): (x1,e, y2,e) and (0, y2,fold). Furthermore, if we assume that

dg1

dy2

dg2(0, y2,fold(c1))

dc1
< 0, G1,x1 > 0 and G2,y2

dx1,e

dc1
< 0, (64)

then, for ν sufficiently small, there is a transcritical bifurcation. As the parameter c1 increases
from left to right, the folded stationary point passes from a folded saddle to a repulsive folded
node, whereas the ordinary stationary point passes from a repulsive node to a saddle. It follows
that (0, ȳ2), is an FSN II point.

Proof. The folded stationary point, (0, y2,fold) is obtained by solving the equation
g1(0, y2, c1, c2) = 0, i.e., g1 = 0, x1 = 0. For this, we apply the implicit function
theorem to g1(0, y2, c1, c2) as a function of y2 and c1. For y2 = ȳ2 and c1 = c̄1, we
have g1 = 0. From hypothesis (63), it follows that dg1

dy2
(0, ȳ2, c̄1, c2) �= 0, then the implicit

function theorem gives the existence of a stationary point (x1 = 0, y2 = y2,fold) for c1 in
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a neighbourhood of c̄1. The second stationary point, (x1,e, y2,e), is obtained by solving the
equation g1(x1, y2, c1) = 0, g2(x1, y2) = 0. Note that this second stationary point corresponds
to a true stationary point of system (34)–(37). For ν = 0, we know that these equations admit
a unique solution. Using hypothesis (64), we can apply the implicit function theorem in a
neighbourhood of ν = 0. This gives the existence of a unique stationary point for ν sufficiently
small. For the first stationary point, the folded one (0, y2,fold) the Jacobian is given by

J1 =

G1,x1 + O(ν)

dg1

dy2

2Kg2 0


 . (65)

This gives:

det J1 = −
(

dg1

dy2

)
2Kg2.

For the second stationary point, the ordinary one, the Jacobian is given by:

J2 =

G1,x1 + O(ν) + O(x1)

dg1

dy2

KG2,x1x1 + O(x2
1 ) KG2,y2x1 + O(x2

1 )


 . (66)

This gives:

det J2 = KG1,x1G2,y2x1 + O(x1ν).

From hypothesis (64), it follows that, as c1 crosses the value c̄1, det J1 crosses the value
0 from negative to positive whereas det J2 crosses the value 0 from positive to negative.
Subsequently the stationary point (0, y2,fold) bifurcates from a saddle to a repulsive node
whereas the stationary point (x1,e, y2,e) bifurcates from a repulsive node to a saddle. Then,
it follows that the system (59)–(60) admits a transcritical bifurcation at point (0, ȳ2) when c1

crosses the value c̄1, and (0, ȳ2) is a FSN II.

4. Example—coupled FitzHugh–Nagumo systems

4.1. Simple fold line

We consider the following system


εẋ1 = F(x1) − y1 + α1(x2 − x1)

εẋ2 = F(x2) − y2 + α2(x1 − x2)

ẏ1 = x1 − c1 + β1(y2 − y1)

ẏ2 = x2 − c2 + β2(y1 − y2)

(67)

with

F(z) = −z3 + 3z.

We define

l(x1, y1, x2, y2) =
{
F(x1) − y1 + α1(x2 − x1)

F (x2) − y2 + α2(x1 − x2).
(68)

Points on the fold line are defined by the condition


det(Dl(x, y)) = 0
l1(x, y) = 0
l2(x, y) = 0

(69)
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which, for system (67), is given by


(F ′(x1) − α1)(F
′(x2) − α2) − α1α2 = 0

y1 = F(x1) + α1(x2 − x1)

y2 = F(x2) + α2(x1 − x2).

Thanks to proposition 2, the existence of a simple fold line follows from F ′(x1) = 0,
F ′(x2) �= 0 and F ′′(x1) �= 0 (the alternative choice would be F ′(x2) = 0, F ′(x1) �= 0 and
F ′′(x2) �= 0). We obtain a solution of system (4.1) with (x1, x2, y1) given as function of y2. We
denote this solution by (x∗

1 , x∗
2 , y∗

1 ) = (ϕ1(y2), ϕ2(y2), ϕ3(y2)). Note that we have obtained a
curve in R

4 parametrized by y2, see section 2 for a general statement.

4.2. Folded singularities and their nature

System (45)–(48) in context of (67) becomes


εẋ1 = −y1 + f1(x1, y2) + α1(x2 − x1) + O(ε)

εẋ2 = f2(x2, y2) + α2(x1 − x2) + O(ε)

ẏ1 = x∗
1 + x1 − c1 + β1(y2 − (y∗

1 + y1))

−dy∗
1

dy2
(x∗

2 + x2 − c2 + β2(y
∗
1 + y1 − y2))

ẏ2 = x∗
2 + x2 − c2 + β2(y

∗
1 + y1 − y2)

(70)

where

f1(x1) = F ′(x∗
1 )x1 + F ′′(x∗

1 )
x2

1

2
− x3

1

and

f2(x2) = F ′(x∗
2 )x2 + F ′′(x∗

2 )
x2

2

2
− x3

2 .

As in section 3.2, we diagonalize the linear part of the fast system. The eigenvalues of
Df (x∗

1 , x∗
2 ) are:

0 and λ(y2) = F ′(x∗
1 ) + F ′(x∗

2 ) − α1 − α2.

As explained in section 3.3, we focus on the dynamics described by configuration in figure 1,
thus F ′(x∗

2 ) < 0. The associated eigenvectors are, respectively,

P1 =
(

1
α2

α2−F ′(x∗
2 )

)
and P2 =

(
α1

F ′(x∗
2 )−α2

1

)
.

We now diagonalize the fast subsystem using the transformation

X = PX̃ with X =
(

x1

x2

)

where P is the matrix whose columns are the eigenvectors. We introduce the following
notations:

w = α1

F ′(x∗
2 ) − α2

, v = α2

α2 − F ′(x∗
2 )

d = 1

1 − vw
.
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After some transformations , system (70) becomes:


εẋ1 = d((F ′′(x∗
1 )

(x1 + wx2)
2

2
− (x1 + wx2)

3 − y1)

−w(F ′′(x∗
2 )

(vx1 + x2)
2

2
− (vx1 + x2)

3)) + O(ε)

εẋ2 = λ(y2)x2 + d(−v(F ′′(x∗
1 )

(x1 + wx2)
2

2
− (x1 + wx2)

3 − y1)

+F ′′(x∗
2 )

(vx1 + x2)
2

2
− (vx1 + x2)

3) + O(ε)

ẏ1 = x∗
1 + x1 + wx2 − c1 + β1(y2 − (y∗

1 + y1))

−dy∗
1

dy2
(x∗

2 + vx1 + x2 − c2 + β2(y
∗
1 + y1 − y2))

ẏ2 = x∗
2 + vx1 + x2 − c2 + β2(y

∗
1 + y1 − y2).

Hence, the reduced equation is given by

0 = d((F ′′(x∗
1 )

(x1 + wx2)
2

2
− (x1 + wx2)

3 − y1) (71)

−w(F ′′(x∗
2 )

(vx1 + x2)
2

2
− (vx1 + x2)

3))

0 = λ(y2)x2 + d(−v(F ′′(x∗
1 )

(x1 + wx2)
2

2
− (x1 + wx2)

3 − y1) (72)

+F ′′(x∗
2 )

(vx1 + x2)
2

2
− (vx1 + x2)

3)

ẏ1 = x∗
1 + x1 + wx2 − c1 + β1(y2 − (y∗

1 + y1)) (73)

−dy∗
1

dy2
(x∗

2 + x2 − c2 + β2(y
∗
1 + y1 − y2))

ẏ2 = x∗
2 + vx1 + x2 − c2 + β2(y

∗
1 + y1 − y2). (74)

Now, using equation (72) and the implicit function theorem in (73), as λ(y2) < 0, one can
obtain x2 as a function of x1, y2 wich leads to,

x2 = O(x2
1 ).

Now, (72) can be rewritten in the form

y1 = K

2
x2

1 + O(x3
1) (75)

with

K = F ′′(x∗
1 ) − wv2F ′′(x∗

2 )

= F ′′(x∗
1 ) + O(ν3),

where 0 � ν � max(α1, β1, α2, β2). Subsequently, we derivate (75), and plug into (73) and
(74). We obtain,

(Kx1 + O(x2
1 ))ẋ1 = x∗

1 + x1 − c1 + β1(y2 − y∗
1 )

−dy∗
1

dy2
(x∗

2 + bx1 − c2 + β2(y
∗
1 − y2)) + O(x2

1 )

ẏ2 = x∗
2 + bx1 − c2 + β2(y

∗
1 − y2) + O(x2

1 ).
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This gives the following desingularized system:

ẋ1 = x∗
1 + x1 − c1 + β1(y2 − y∗

1 ) − dy∗
1

dy2
(x∗

2 + vx1 − c2 + β2(y
∗
1 − y2)) + O(x2

1 ) (76)

ẏ2 = (x∗
2 + vx1 − c2 + β2(y

∗
1 − y2) + O(x2

1 ))(Kx1 + O(x2
1 )). (77)

(78)

Hence, using notations of section 3.3, we have:

g1(x1, y2) = x∗
1 + x1 − c1 + β1(y2 − y∗

1 ) − ∂y∗
1

∂y2
(x∗

2 + vx1 − c2 + β2(y
∗
1 − y2)) + O(x2

1 )

and

g2(x1, y2) = x∗
2 + vx1 − c2 + β2(y

∗
1 − y2) + O(x2

1 ).

Proposition 4. Let us assume c2 < −1 and β1− α1

9(1−c2
2)

2 > 0. For α1, α2, β1, β2 small enough,

let ȳ2 be the solution of g2(0, y2) = 0 and define c̄1 = x∗
1 +β1(ȳ2 −y∗

1 ). Then, for α1, α2, β1, β2

in a small neighbourhood of zero, the system (76)–(77), admits a transcritical bifurcation at
point x1 = 0, y2 = ȳ2, c1 = c̄1. As the parameter c1 crosses the value c̄1 from left to right,
the folded stationary point passes from a folded saddle to a repulsive folded node, whereas the
ordinary stationary point passes from a repulsive node to a saddle.

Proof. This proposition is a specific case of proposition (3). We will verify that:

dg1

dy2
(0, ȳ2, c̄1) > 0, (79)

dG1

dx1
> 0, (80)

dG2

dy2
< 0, (81)

dx1,e

dc1
> 0, (82)

dg2(0, ȳ2,fold(c1))

dc1
< 0. (83)

We start with hypothesis (79). After some computation, we find that this hypothesis reads as,

β1 − α1

9(1 − x̄∗2
2 )2

+ O(ν2) > 0.

This holds since x̄∗
2 = c2 + O(ν). Hypothesis (80), is verified since ∂G1

∂x1
= 1.

Now, we deal with (81). Here, it reads:

dx∗
2

dy2
< 0. (84)

This holds since dx∗
2

dy2
= 1

F ′(x2)
+ O(ν) < 0 for ν sufficiently small. Hypothesis (82) is verified

since we have dx1,e

dc1
= 1 + O(ν) > 0.

Finally, we come to hypothesis (83). From (79), we know that dg1

dy2
(0, y2) > 0. It follows

that y2,fold

dc1
> 0. Furthermore, we have that dg2

dy2
(0, y2) < 0. We conclude that dg2(0,ȳ2,fold(c1))

dc1
< 0.
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Figure 2. This figure corresponds to the simulation of system (67) for a value of
parameter c1 = −0.953. In (a) we show the time evolution of x1 in the interval [0,500].
In (b) we show the behaviour of the system in the (x1, y1) phase-plane. For this value
of the parameter c1 the system evolves asymptotically to this stationary state.

4.3. Numerical simulations

We have performed numerical integration of system (67) on time interval [0, 500], using a
fourth-order Runge–Kutta method with time step of 0.0001. The parameter values are the
following: ε = 0.01, α1 = β1 = α2 = β2 = 0.05, c2 = −1.5. As explained in proposition 4,
we obtain the critical value of parameter c̄1 by solving the following equations:

g2(0, y2) = 0

c1 = x∗
1 + β1(y2 − y∗

1 ).

In our case, we find:

c̄1 � −0.95266.

Then, we vary the parameter c1 in a small neighbourhood around the value of c̄1. If
c1 < c̄1, then the system goes to a stationary state. As c1 crosses the value c̄1, we can observe
the appearance of MMOs. Below, we illustrate the simulation of system (67) for two values of
c1: for c1 = −0.953, which corresponds to a case where the system goes to the stationary state,
and for c1 = −0.952, which corresponds to a case where we observe MMOs. Furthermore, we
can approximate, for the folded stationary point, the eigenvalues of the Jacobian of (76)–(77).
For c1 = −0.953, we find:

λ1 � 0.998, λ2 � −0.02.

And for c1 = −0.952, we find:

λ1 � 1.004, λ2 � 0.004.

Following [3, 16], this gives an approximate theoretical number of small oscillations:

s =
[

1

2
+

λ1

λ2

]
� 135.

In figure 2, we have illustrated the results of the simulation, for the parameter value c1 =
−0.953. It shows that in this case the system evolves asymptotically towards the stationary
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Figure 3. This figure corresponds to the simulation of system (67) for a value of
parameter c1 = −0.952. In (a) we show the time evolution of x1, for t in the interval
[400,450]. In (b) we show the behaviour of the system in the (x1, y1) phase-plane.
For this value of the parameter c1, the MMOs appear. But the amplitude of the small
oscillations is very small compared to that of the large oscillations, and a zoom in is
necessary to distinguish them.

-1.1

-1.05

-1

-0.95

-0.9

 400  410  420  430  440  450

x1

t

(a)

-2.05

-2.045

-2.04

-2.035

-2.03

-2.025

-2.02

-2.015

-2.01

-2.005

-2

-1.1 -1.05 -1 -0.95 -0.9

y1

x1

(b)

Figure 4. This figure corresponds to the simulation of system (67) for a value of
parameter c1 = −0.952. It is the same simulation as the one represented in figure 3, but
with a zoom on the zone of small oscillations. In (a) we show the time evolution of x1,
for t in the interval [400,450] and x1 in the interval [−1.1, −0.9]. In (b) we show the
behaviour of the system in the (x1, y1) phase-plane, for x1 in the interval [−1.1, −0.9]
and y1 in the interval [−2.05, −2]. We can see, the trajectory on the attractive manifold,
then the small oscillations, resulting from the intersection of attractive and repulsive
manifolds, and finally, the trajectory along the repulsive manifold before the evolution
towards the fast direction.

state. The other figures illustrate the simulation results for c1 = −0.952. In figure 3(a), we
show the time evolution of the fast variable x1, whereas in figure 3(b) we show the behaviour
in the (x1, y1) phase-plane. Here, the MMOs appear but the small oscillations are hardly
distinguishable because of their tiny amplitude in comparison with the relaxation oscillations.
So, in figures 4 and 5 we show a zoom of the previous illustration. In figure 4(a), we show
the time evolution of the fast variable x1, whereas in figure 4(b), we show the behaviour in the
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Figure 5. This figure corresponds to the simulation of system (67) for a value of
parameter c1 = −0.952. It is the same simulation as the one represented in figure 3,
but with a zoom on the area of small oscillations. We show the behaviour of the system
in the (x1, y2, y1) phase-plane, for x1 in the interval [−1.1, −0.9] and y1 in the interval
[−2.026, −2.016]. Here, we can easily distinguish the behaviour described below. The
small oscillations occur when the trajectories originating in the attracting manifold in
one side of the strong canard are trapped by the repelling one and have to return to the
attracting manifold. On the other side of the folded node, the trajectories follow the fast
direction, see [3].
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Figure 6. This figure shows the simulation of system (67) for parameter c1 = −0.952.
We can see the critical manifold defined by equations: (x1, y2 = F(x2)+α2(x1−x2), y1 =
F(x1) + α1(x2 − x1) and the behaviour of the system in the (x1, y2, y1) phase-space
(green curve). It shows the trajectory along the attractive critical manifold, then the
evolution near the fold curve, the evolution along the fast direction and the global return
mechanism.

(x1, y1) phase-plane. In panel (a) we can easily distinguish the small oscillations. In panel (b)
we can see the trajectory on the attractive manifold, then the small oscillations, resulting
from the intersection of attractive and repulsive manifolds, and finally, the trajectory along
the repulsive manifold before the evolution toward the fast direction. Figure 5 is interesting
as it clearly illustrates, in the (x1, y2, y1) phase plane, the MMOs in the case of folded node
singularity. The trajectories of system close to the singular funnel enter a region near the
fold where they rotate around the weak canard: the trajectories originating in the attracting
manifold in one side of the strong canard are trapped by the repelling one and have to return
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Figure 7. This figure shows the simulation of system (67) for parameter c1 = −0.952.
We can see the critical manifold defined by equations: (x1, y2 = F(x2)+α2(x1−x2), y1 =
F(x1) + α1(x2 − x1)) and the behaviour of the system in the (x1, y2, y1) phase-space
(green curve). It shows the trajectory along the attractive critical manifold, then the
evolution near the fold curve and finally the evolution along the fast direction.

Figure 8. This figure shows the simulation of system (67) for parameter c1 = −0.952.
We can see the critical manifold defined by equations: (x1, y2 = F(x2)+α2(x1−x2), y1 =
F(x1) + α1(x2 − x1)) and the behaviour of the system in the (x1, y2, y1) phase-space
(green curve). It shows the small oscillations occurring when the trajectory oscillates
around the weak canard. The amplitude of oscillations when entering in the funnel
region start to decrease before increasing until they cross the folded node and follow the
fast direction.

to the attracting manifold, see [3] for further detail. Finally, figures 6, 7 and 8, also show
the MMOs in the space (x1, y2, y1). In figure 6, we show the critical manifold defined by
(x1, y2 = F(x2) + α2(x1 − x2), y1 = F(x1) + α1(x2 − x1)), and the trajectory of the system
in the (x1, y2, y1) phase-space. We can see the small oscillations near the fold, the trajectory
along the fast direction and the global return mechanism. The figure 7 is the same as the
figure 6, but with a zoom on area of the fold. The same is done, in figure 8 but with a greater
zoom in the area of small oscillations.
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5. An alternative approach to the analysis of coupled oscillator systems

In this section we outline an alternative approach that was pointed out to us by an anonymous
referee. The modification consists of defining the reduced flow of (67) by means of the
fast variables x1 and x2. Differentiating the equation l(x1, x2, y1, y2) = 0 (see (68) for the
definition) we obtain(

ẏ1

ẏ2

)
=

(
F ′(x1) − α1 α1

α2 F ′(x2) − α2

) (
ẋ1

ẋ2

)
. (85)

Hence, the reduced equation can be written in the form:(
F ′(x1) − α1 α1

α2 F ′(x2) − α2

) (
ẋ1

ẋ2

)
(86)

=
(

x1 − c1 + β1(F (x2) − F(x1) − (α1 + α2)(x2 − x1))

x2 − c2 + β2(F (x2) − F(x1) − (α1 + α2)(x2 − x1))

)
.

We multiply both sides of (86) by the cofactor matrix(
F ′(x2) − α2 −α1

−α2 F ′(x1) − α1

)
, (87)

which yields

((F ′(x1) − α1)(F
′(x2) − α2) − α1α2)

(
ẋ1

ẋ2

)
(88)

=
(

F ′(x2) − α2 −α1

−α2 F ′(x1) − α1

) (
x1 − c1 + β1(F (x2) − F(x1) − (α1 + α2)(x2 − x1))

x2 − c2 + β2(F (x2) − F(x1) − (α1 + α2)(x2 − x1))

)
.

Now we can desingularize by cancelling the factor (F ′(x1)−α1)(F
′(x2)−α2)−α1α2, which

results in the following desingularized system(
ẋ1

ẋ2

)
= (89)(
F ′(x2) − α2 −α1

−α2 F ′(x1) − α1

) (
x1 − c1 + β1(F (x2) − F(x1) − (α1 + α2)(x2 − x1))

x2 − c2 + β2(F (x2) − F(x1) − (α1 + α2)(x2 − x1))

)
.

This is equivalent to the desingularization that takes (7)–(8) to (9)–(10). In the context of (89)
folded singularities are equilibria on the fold line defined by ((F ′(x1) − α1)(F

′(x2) − α2) −
α1α2) = 0. Note that, such equilibria exist robustly since the cofactor matrix is singular along
the fold line. To verify that we have a FSN II, we have to find a transcritical bifurcation, with
one equilibrium crossing the fold line and the other one staying on it.

This approach seems viable and may have computational advantages over the one we have
used. It is suited to the context of coupled oscillators, but relies on the fact that there are at
least as many fast variables as there are slow variables.

6. Conclusion

In this paper, we have studied a system of two coupled slow–fast oscillators. We showed that
coupling them leads to the occurrence of MMOs. The main observation was that coupling
the two systems have rise to an FSN II point, which is known to imply the existence of small
amplitude oscillations in the fold region. Our study has been the first attempt to understand
canards and MMOs in systems of coupled oscillators. Our future goal is to extend our
work to the context of large systems of oscillators. As coupled oscillators systems arise
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as discretizations of reaction diffusion equations, we hope to use the insights of this and future
work to understand MMOs in the context of reaction diffusion equations. Since numerous
models in biology and neuroscience are constructed as networks of oscillators and reaction
diffusion equations, this research has to be done with deep interactions with applications.
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