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ABSTRACT

With the rapid development of personal communica-
tions and the Internet, information security has become an
increasingly important issue of telecommunication indus-
try. Recently, there has been tremendous worldwide inter-
est in exploiting chaos in communication systems, which
has applications in the encryption of information for se-
cure communications. Chaotic synchronization of trans-
mitters and receivers has been studied during the last decade,
and still remains an interesting research topic. In this pa-
per we give a rapide survey on this subject, focusing on
identical synchronization which is the best way to explain
chaos synchornization,

1. INTRODUCTION

Synchronization is a ubiquitous phenomenon characteris-
tic of many processes in natural systems and (nonlinear)
science, it has permanently remained an objectif of inten-
sive research and is today considered as one of the basic
nonlinear phenomena studied in mathematics, physics, cn-
gineering or life science. Synchronization of two dynam-
ical systems generally means that one system somehow
fraces the motion of another. Indeed, it is well known
that many coupled oscillators have the ability to adjust
some common relation that they have between them due
lo weak interaction, which yields to a situation in which a
synchronization-like phenomenon takes place, see 1],
Since this discovery, periodic synchronization has found

numerous applications in various domains, for instance in
biological systems and living nature where synchroniza-
tion is encountered on differents levels, Examples range
from the modeling of the heart to the investigation of the
circardian rhythm, phase locking of respiration with a me-
chanical ventilator, synchronization of oscillations of hu-
man insulin secretion and glucose infusion, neuronal infor-
mation processing within a brain area and communication
between different brain areas. Also synchronization plays
an important role in several neurological diseases such as
epilepsies and pathological tremors, or in differents forms
of cooperative behavior of insects, animals or humans, For
more details, see [9].
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This process may also be encountered in other areas,
celestical mechanics or radio engineering and acoustics.

But, even though original notion and theory of syn-
chronization implies periodicity of oscillators, during the
last decades, the notion of synchronization has been gen-
cralized to the case of interacting chaotic oscillators.

Roughly speaking, a system is chaotic if it is deter-
ministic, has a long-term aperiodic behavior, and exhibits
sensitive dependence on initial conditions on a closed in-
variant set,
Despite the instability and the limited predictability in time
of chaotic oscillators, in the two last decades, the scarch
for synchronization has moved to chaotic systems. A ot
of research has been done and, as a result, researchers
showed that two chaotic systems could be synchronized
by coupling them : synchronization of chaos is actual and
chaos could then be expoitable, see [7], and for a review
see [1]. Ever since, many researchers have discussed the
theory, the design or applications of synchronized motion
in coupled chaotic systems. A broad variety of applica-
tions have emerged, for example to increase the power
of lasers, to synchronize the output of clectronic circuits,
to control oscillations in chemical reactions or to encode
clectronic messages for secure communications. More-
over, in the topics of coupled chaotic systems, many dif-
ferent phenomena, which are usually referred to as syn-
chronization, exist and have been studied now for over a
decade,

2. SYNCHRONIZATION AND STABILITY

2.1. Definitions

For the basic master-slave con figuration where an autonomous

chaotic system (the master) -

ﬂ'/‘—
FTi F(X), XeR" (h
drives another system (the slave) :
d
d_‘; =G(X,Y), YeR™ @)

synchronization takes place when ¥ asymptotically copies,
in a certain manner, a subset Xp of X. That s, there exists
a relation between the two coupled systems, which could



be a smooth invertible function 1, the last carries trajecto-
rics on the attractor of a first system on the attractor of a
sccond system, In other words, if we know, after a tran-
sient regime, the state of the first system, it allows us to
predict the state of the second : Y (t) = ¥(X (t)). Gener-
ally, it is assumed n > m, however, for the sake of easy
readability, we will reduce, even if this is not a necessary
restriction, to the case n = m, and thus X, = X. Hence-
forth, if we denote the difference ¥ — (X)) by X, in
order to arrive at a synchronized motion, it is expected to
have :

[|X1]]| — 0, as t — +o0. (K))]

[f 1 is the identity function, the process is called identical
synchronization (1S hereafter).

Definition of 1S. System (2) synchronizes with system
(1),iftheset M = {(X,Y) € R" xR™,Y = X}isanat-
tracting set with a basin of attraction B (M C B) such that
limy—. 0o|| X (£) = Y (1)]| = 0, forall (X (0),Y(0)) € B.

Thus, this regime corresponds to the situation where
all the variables of two (or more) coupled chaotic systems
converge.

If 4 is not the identity function, the phenomenon is
more general and is referred to as generalized synchroniza-
tion (GS).

Definition of GS. System (2) synchronizes with system
(1), in the generalized sense, if there exists a transforma-
tion R" —+ R™, a manifold M = {(X,Y) €
R™™ ¥ = (X))} and a subset B (M C B), such that
for all (X,,Y,) € B, the trajectory based on the initial
conditions (X,, Y,) approaches M as time goes to infin-
ity.

Henceforth, in the case of identical synchronization,
equation (3) above means that a certain hyperplane M,
called synchronization manifold, within R?", is asymp-
totically stable. Consequently, for the sake of synchrony
motion, we have to prove that the origin of the transverse
system X | = Y — X is asymptotically stable. That is,
to prove that the motion transversal to the synchron ization
manifold dies out.

The Lyapunov exponents associated with the variational
equation corresponding to the tranverse system X,

d
_‘;‘;* = DF(X)X,
il

4)
where D F(X) is the Jacobian of the vector field evaluated
onto the driving trajectory X, are referred to as transverse
or conditional Lyapunov exponents (CLE hercafter).

In the case of IS it appears that the condition | P
0, is sufficient to insure synchronization, where Tty 18
the largest CLE. Indeed, Equation (4) gives the dynamics
of the motion transverse to the synchronization manifold,
therefore CLE will tell us if this motion die out or not, and
hence, whether the synchronization state is stable or not.
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Conscquently, if L .. is negative, it will insure the stabil-
ity of the synchronized state. This will be best explained
using two cxamples below.

2.2. Identical synchronization

Thet simplest form of chaos synchronization and the best
way to explain it, is identical synchronization (18), also
referred to as Conventional or Complete synchronization
(see [2]). Tt is also the most typical form of chaotic syn-
chronization often observable in two identical systems.
There are various processes leading to synchroniza-
tion, depending on the used particular coupling configu-
ration they could be very different. So, one has to distin-
guish between the two following main situations, even if
they are, in some scnse, similar : the uni-directional and
the bi-directional coupling. Indeed, synchronization of
chaotic systems is often studicd for schemes of the form :

X _ pX)+kN(X -Y)
fl!. (5}
% — GY)+kM(X-Y)

where F and G act in R™, (X,Y) € (R™)2, k is a scalar
and M and N are coupling matrices belonging to REN:
If ' = G the two subsystems X and Y are identical.
Morcover, when both matrices are nonzero then the cou-
pling is called bi-directional, while it is referred to as uni-
directional if one is the zero matrix, and the other being
nonzero.

Other names were given in the litterature of this type
of synchronization, such as one-way diffusive coupling,
drive-response coupling, master-slave coupling or nega-
tive feedback control.

System (5) above with ' = G and N = 0 becomes
uni-directionlly coupled, and reads :

& _ )

s
- = FYY+EM(X-Y

2 (¥) + kM(X —Y)

M is then a matrix that determines the linear combination
of X components that will be used in the difference, and k
determines the strength of the coupling.

In uni-directional synchronization, the evolution of the
first system (the drive) is unaltered by the coupling, the
sccond system (the response) is then constrained to copy
the dynamics of the first.

In contrast to the uni-directional coupling, for the bi-
directionally (also called mutual or two-way) coupling, both
drive and response systems are connected in such a way
that they mutually influence each other’s behavior. Many
biological or physical systems consist of bi-directionally
interacting clements or componenis, examples range from
cardiac and respiratory systems to coupled lasers with feed-
back.



In the following, we give an example, and for the sake
of simplicity, let us develop the idea on the following 3-
dimensional simple autonomous system, which belongs to
the class of dynamical systems called generalized Lorenz
systems, see [5] and references therein -

T = —0r-0y
¥y = —1Tn—y—uz (7)
2 = —zduay.

The signs used differentiate system (7) from the well-known

Lorenz system :
; S . 8
r=-=10x+10y, j=28r—y—zx2, = ——52+:ny‘

From previous observations, it was shown that system (7)
oscillate chaotically, its Lyapunov exponents are -+0.601,
0.000 and — 16,470, it exhibits the chaotic attractor of lig-
ure 1, with a 3D feature very similar to that of Lorenz at-
tractor.

m

{
N

Figure 1. The chaotic attractor of system (7) : 2y and
xz-plane projections,

Unidirectional identical synchronization
Let us consider an example with two copies of system
(7), and for

1 00
M=|0 0 0 (8)
00 0

that is, by adding a damping term to the first equation of
the response system, we get a following uni-directionally
coupled system, coupled through a linear term & > 0 ac-
cording to variables x, 2

i€ -9 — Oy

o= =1Tey -y — a2

2 = 2y +a ©)
Ty = -Omp ~ Oy — k(xg —2y)

U = —17E2 - ya — 2229

3 = —zp+ mappn

For & = 0 the two subsystems are uncoupled, for k& > 0
both subsystems are uni-directionally coupled. _Our nu-
merical computations yield the optimal value & for the
synchronization, we found that for > k = 4.999 both
subsystems of (9) synchronize. That is, starting from ran-
dom mitial conditions, and after some transient time, sys-
tem (9) generates the same attractor as for system (7), see
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figure 1, Consequently, all the variables of the coupled
chaotic subsystems converge, that are z- converges to z,
Y2 0y and z3 to 2y, see figure 2. Thus, the second system
(the response) is locked to the first one (the drive). One
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Figure 2. Time series for x;(t), yi(t) and 2(1) in system
9), (2 = 1,2), for the coupling constant k = 5.0, that is
beyond the threshold necessary for synchronization. Af-
ter transients die down, the two subsystems synchronize
perfectly.
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Figure 3. Regular behavior emerges from chaotic behay-
iors. The plot of amplitudes 1, against y,, after transicnts
die down, shows a diagonal line, which also indicates that
the receiver and the transmitter arc maintaining synchro-
nization. The plot of z; against 2 shows a similar figure.

also could give correlation plots that are the amplitudes
against va, yy against ¥y and z, against zy, and observe
diagonal lines, meaning also that the system synchronizes.

Foran example of bidirectional identical synchroniza-
tion, see [1].

3. APPLICATION TO TRANSMISSION SYSTEMS
AND SECURE COMMUNICATION

Synchronization principles work in practical applications
as those pointed out in the introduction, and the use of
chaotic signals to transmit information has been a very ac-
tive research topic in the last decade. Thus, it has been
established that chaotic circuits may be used to transmit




« information by synchronization. As a result, several pro-
posals for secure communications schemes have been ad-
vanced, see for instance [4]. The first laboratory demon-
stration of a secure communication system which uses a
chaotic signal for masking purposes, and which exploits
the chaotic synchronization techniques to recover the sig-
nal, has been reported in [6].

The work described here doesn’t pretend to be com-
plete, there are many competing methods that are well-
established and tested.

The main idea of the communication shemes is to cn-
code a message by means of a chaotic dynamical system
(the transmitter), and to decode it using a second dynam-
ical system (the receiver) that synchronizes with the first.
In general, secure communication applications assume ad-
ditionally that the used coupled systems are identical.

Different methods can be used to hide the useful in-
formation, for example chaotic masking, chaotic switch-
ing or direct chaotic modulation, see (Hasler, 1998). For
nstance, in the chaotic masking method, an analog infor-
mation carrying signal s(t) is added to the output y(1) of
the chaotic system in the transmitter. The receiver tries to
synchronize with component y(t) of the transmitted signal
s(t)+y(t). If synchronization takes place, the information
signal can be retrieved by substraction, see figure 4. It is

( . ) ) ! A

s(t) itte 1 3 s(t

: | transmitter y(v) ek ( )

infnnnminuL (Ghaotic) - |/ o nsmiticd retrieved
signl " gignal -~ information

. signal
{chaotic) ¢

Figure 4. A typical communication setup

interesting to note that, in all proposed schemes for secure
communications using the idea of synchronization (exper-
imental realization or computer simulation), there is an in-
evitable noise degrading the fidelity of the original mes-
sage. Robustness to parameter mismatch was addressed
by many authors, see [1] for references.

Furtheremore, different implementations of chaotic se-
cure communication have been proposed during the last
decades, as well as methods for cracking this encoding.
The methods used to crack such a chaotic encoding, make
use of the low dimensionality of the chaotic attractors. In-
deed, since the properties of low dimensional chaotic sys-
tems, with one positive Lyapunov exponent, can be recon-
struted by analysis of the signal, such as through the delay
time reconstruction methods, it seems unlikely that these
systems might provide a sccure encryption method. The
hidden message can often be retrieved easily by an eaves-
dropper without having to have the receiver. But, chaotic
masking and encoding are difficult to break, using the state
of the art analysis tools, if sufficiently high dimensional
chaos generators, with multiple positive Lyapunov expo-
nents, that are hyperchaotic systems, are used, sec refer-
ences within [8].
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