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Abstract

We consider in this paper the dynamics of the self-sustained electromechanical system with multiple functions, consist-
ing of an electrical Rayleigh–Duffing oscillator, magnetically coupled with linear mechanical oscillators. The averaging and
the harmonic balance method are used to find the amplitudes of the oscillatory states respectively in the autonomous and
nonautonomous cases, and analyze the condition in which the quenching of self-sustained oscillations appears. The influ-
ence of system parameters as well as the number of linear mechanical oscillators on the bifurcations in the response of this
electromechanical system is investigated. Various bifurcation structures, the stability chart and the variation of the Lyapu-
nov exponent are obtained, using numerical simulations of the equations of motion.
� 2006 Published by Elsevier B.V.
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1. Introduction

The dynamics of self-excited coupled systems (including Van der Pol and Rayleigh equation) has received
much attention over the last years [1–7]. This is due to the fact that such systems serve as a basic model of self-
excited oscillation in physics, electronics, biology, neurology and many other disciplines.

Considering the forced coupled systems, our recent contributions are focussed to the dynamics of a non-
linear electromechanical system with multiple functions in series, consisting of the Duffing electrical oscillator
magnetically coupled with linear mechanical oscillators [5,6]. The method of the harmonic balance has used to
find the amplitude of the harmonic oscillatory states. The stability boundaries of the harmonic oscillations
have also analyzed using the Floquet theory and the hysteresis effect. The effects of the number of linear
mechanical oscillators on the behavior of the model have discussed and it appears that for some set of physical
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parameters, the undesired behaviors disappear with the increase of the number of the linear mechanical oscil-
lators. Some bifurcation structures and the variation of the corresponding Lyapunov exponent have obtained.
Transitions from a regular behavior to chaotic orbits are seen to occur for large amplitudes of the external
excitation.

In the context of self-excited coupled systems, we studied recently the dynamics of the self-sustained
electromechanical system (including the Rayleigh–Duffing equation) [7], consisting of an electrical
Rayleigh–Duffing oscillator coupled magnetically and parametrically to a linear mechanical oscillator. Using
the well-known analytical method, the behavior of the model has analyzed without discontinuous parameters
before taking into account the effects of the discontinuous parameters. Various types of bifurcation structures
were reported using numerical simulations of the equations of motion. An adaptive Lyapunov control strategy
has enabled us to drive the system from the chaotic states to a targeting periodic orbit. In this paper, we extend
our study by considering the dynamics of the self-sustained electromechanical system with multiple functions,
but without discontinuous parameters, which consist of an electrical Rayleigh–Duffing oscillator coupled mag-
netically to n linear mechanical oscillators.

In this paper, we undertake an investigation of the dynamics of the self-sustained electromechanical system
with multiple functions. We first analyze the behavior of the autonomous model before taking into account the
effects of the external excitation. The paper is organized as follows. After presenting the physical model and
giving the equations of motion in Section 2, we consider in Section 3 the behavior of the autonomous self-sus-
tained model. The amplitudes of the oscillatory states and their stability are derived using the Averaging
method [8,9], and we analyze its behavior when the parameters of the system vary. In Section 4, we consider
the forced self-sustained electromechanical system and analyze the interaction of the external excitation with
the amplitude of the limit cycle solution. We use the harmonic balance method [8,9] to derive the amplitudes of
the harmonic oscillatory states and illustrate the effects of the number of mechanical oscillators. The phase
difference between the linear mechanical oscillators is analyzed. We also analyze the bifurcation structures
which appear in the model, and provide a stability chart, using numerical simulations based on the equations
of motion. We note that all the numerical simulations are used the Runge–Kutta algorithm. The conclusion is
given in Section 5.

2. Description and equations of motion

The model shown in Fig. 1 is the self-sustained electromechanical system with multiple functions, consisting
of interacting electrical part (Rayleigh–Duffing oscillator) and mechanical part (linear oscillators). Both parts
are coupled by the electromagnetic force developed by a permanent magnet. As a result, the Laplace force acts
on the mechanical part, and the electromotive Lorenz force occurs in the electrical circuit. The electrical part
of the system consists of a nonlinear resistor R, a nonlinear condenser C and an inductor L, all connected in
series. One can consider the electromechanical model with the nonlinear electrical part obeying to the Ray-
leigh–Duffing equation. For this purpose, one makes use of two types of nonlinear components. The first type
is the nonlinear capacitor with plate voltage Vc depending cubically on the charge q as
V c ¼
1

C0

qþ a3q3; ð1Þ
where C0 is the linear part of the capacitive characteristic and the parameter a3 defines nonlinearity of the
capacitor and depends on its type. This is typical of nonlinear reactance components such as varactor diodes
widely used in many areas of electrical engineering to design, for instance, parametric amplifiers, up-convert-
ers, mixers, low-power microwave oscillators, etc. [10]. In the second type, the current voltage characteristic of
a resistor [11] is also defined as
V R0
¼ R0i0 �

i
i0

� �
þ i

i0

� �3
( )

; ð2Þ
where R0 and i0 are, respectively, the normalization resistance and current. i is the value of current correspond-
ing to the limit resistor voltage. In this case, the model has the property to exhibit self-excited oscillations. This



Fig. 1. Schema of the self-sustained electromechanical system with multiple functions.
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is due to the presence of a nonlinear resistor where current–voltage characteristic curve shows a negative slope,
and to the fact that the model incorporates through its nonlinear resistance a dissipative mechanism to damp
oscillations that grow too large and a source of energy to pump up those that become small. Because of this
particular behavior, we can qualify our model as a self-sustained electromechanical model. This nonlinear
resistor can be realized using a block consisting of two transistors [12]. The mechanical part is composed
of mobile beams which can move respectively along the~zi (i = 1, . . . ,n) axis on both sides. The rods Ti are
bounded to mobile beams with springs of constants ki. The electromechanical system with multiple functions
obeys to the following n + 1 differential equations
L
d2q
ds2
� R0 1� 1

i2
0

dq
ds

� �2
( )

dq
ds
þ q

C0

þ a3q3 þ
Xn

i¼1

lBi
dz
ds
¼ 0;

m
d2z1

ds2
þ k1 dz1

ds
þ k1z1 � lB1

dq
ds
¼ 0;

..

.

m
d2zi

ds2
þ ki dzi

ds
þ kizi � lBi

dq
ds
¼ 0;

..

.

m
d2zn

ds2
þ kn dzn

ds
þ knzn � lBn

dq
ds
¼ 0;

ð3Þ
where L is an inductance in the electrical part, l is the length of the section of interaction of the magnetic field
of intensity Bi with n moving rods to which a body of each mass mi is attached, ki is the coefficient of spring
elastic stiffness, ki is the viscous friction coefficient, and _q is the current in the electrical circuit. Considering Q0

as the reference charge of the condenser, and the following dimensionless variables
q ¼ xQ0; zi ¼ lxi; t ¼ wes; w2
e ¼

1

LC0

; b ¼ a3Q3
0

Lw2
e

; w2
im ¼

ki

mi
; wi ¼

wm

we
; l ¼ R0

Lwe
;

ki ¼
l2Bi

LQ0we
; ki1 ¼

BiQ0

miwe
; ci ¼

ki

miwe
; a0 ¼

Q2
0w2

e

i2
0
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the n + 1 differential equations yield to the following nondimensional equations:
€x� lð1� a0 _x2Þ _xþ xþ bx3 þ
Xn

i¼1

ki _xi ¼ 0;

€x1 þ c1 _x1 þ w2
1x1 � k11 _x ¼ 0;

..

.

€xi þ ci _xi þ w2
i xi � ki1 _x ¼ 0;

..

.

€xn þ cn _xn þ w2
nxn � kn1 _x ¼ 0:

ð4Þ
where x and xi are respectively, the dimensionless electric charge in the condenser and the displacement of each
mobile beam. a0 is the positive coefficient. For mathematical convenience, we set a0 = 1 in the rest of the pa-
per. Thus, the equations of motion of the self-sustained electromechanical system with multiple functions con-
sist of an electrical Rayleigh–Duffing oscillator coupled to linear mechanical oscillators.

The model shown in Fig. 1 is widely encountered in electromechanical engineering. In particular, in its lin-
ear version, it describes the well-known electrodynamic loudspeaker [13]. In this case, the sinusoidal signal e(s)
represents an incoming pure message. Because of the recent advances in the theory of nonlinear phenomena, it
is interesting to consider such an electrodynamic system containing one or various nonlinear components or in
the state where one or a number of its components react nonlinearly. One such state occurs in the electrody-
namic loudspeaker due to the nonlinear character of the diaphragm suspension system resulting in signal dis-
tortion and subharmonic generation [13]. Moreover, the model can serve as a servo-command mechanism
which can be used for various applications. Here one would like to take advantage of nonlinear responses
of the model in manufacturing processes.

3. The resonant oscillatory states

3.1. The resonant oscillatory states and quenching phenomena

The amplitudes of the resonant oscillatory states of Eq. (4) can be found using the averaging method [8,9].
Following this method, we find that the amplitudes A and Ai of x and xi, and the phase wi = /i � / between x

and xi satisfy the following set of first-order differential equations:
_A ¼ � 1

2
lA 1� 3

4
A2

� �
þ 1

2

Xn

i¼1

kiwiAi cos wi;

_A1 ¼ �
1

2
c1A1 þ

k11A
2w1

cos w1;

..

.

_Ai ¼ �
1

2
ciAn þ

ki1A
2wi

cos wi;

..

.

_An ¼ �
1

2
cnAn þ

kn1A
2wn

cos wn;

_w1 ¼ �
3

8
bA2 þ k11A

2w1A1

� k1w1A1

2A

� �
sin w1;

..

.



Fig. 2
b = 0.5
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_wi ¼ �
3

8
bA2 þ ki1A

2wiAi
� kiwiAi

2A

� �
sin wi;

..

.

_wn ¼ �
3

8
bA2 þ kn1A

2wnAn
� knwnAn

2A

� �
sin wn: ð5Þ
In the stationary state, the amplitudes A and Ai satisfy the following nonlinear equations:
lAas 1� 3

4
A2

as

� �
¼
Xn

i¼1

kiwiAiðasÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

9b2w2
i A2

iðasÞA
4
as

16 ki1A2
as � kiw2

i A2
iðasÞ

� �2

vuuut ;

A2
iðasÞ ¼ MiA

2
asð4� 3A2

asÞ;

Mi ¼
lki1

4nc1kiw2
i
:

ð6Þ
where Aas and Ai(as) are the amplitudes of the stationary oscillatory state solutions. When the n linear mechan-
ical oscillators are identical, Eq. (6) become
l2A2
asð1� 3

4
A2

asÞ
n2k2

1w2
1A2

1ðasÞ
þ

9
16

b2w2
1A6

asA
2
1ðasÞ

k11A2
as � k1w2

1A2
1ðasÞ

� �2
� 1 ¼ 0;

A2
iðasÞ ¼ MiA

2
asð4� 3A2

asÞ:

ð7Þ
Eq. (7) can be solved using the Newton–Raphson algorithm or Mathematica code with the chosen set of
parameters: k11 = 0.4; k1 :¼ 0.08; l = 0.1; b = 0.5; w1 = 1.0. Fig. 2 shows the analytical and numerical re-
sponse-curves when the damping coefficient c1 is varied. It appears a small disagreement between the results
obtained from the analytical method and those obtained from the numerical method, this is due to the fact
that the analytical results are derived through an averaging approximate method with need small value of
l. One finds that in the region of c1 defined as c1 2 [0.251;0.321], a complete quenching phenomena of oscil-
lations occurs, In this state, the model can serve as an electromechanical vibration absorber [14] of undesirable
self-excited vibrations in mechanical systems. The quenching of self-excited oscillations had also been reported
in Refs. [11,15]. Here, the quenching of mechanical self-excited oscillations could be insured by an appropriate
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choice of the system parameters of an electrical circuit (assuming that the mechanical oscillator is described by
the nonlinear oscillator and the electrical circuit by the linear oscillator). Analyzing the effects of the number n

of the linear mechanical oscillators on the resonant oscillatory state solutions, we find that when the number n

evolves, the resonant oscillatory state amplitude could not change. This is not surprising because the self-sus-
tained electromechanical system has a similar behavior like that of a Van der Pol model, and therefore gen-
erates the limit cycle solution which does not depend on the number of linear mechanical oscillators and the
system parameters. It is important to note that this limit cycle solution, is known to be a fairly strong attractor
since it attracts all trajectories except the one initiated from the trivial fixed point.

3.2. Stability analysis

The stability of the resonant oscillatory state motions can be determined by investigating the nature of the
stationary oscillatory state solutions of Eq. (5). To accomplish this, we let
A ¼ Aas þ dA;

Ai ¼ AiðasÞ þ dAi;

wi ¼ wis þ dwi;

ð8Þ
where wis are the phases of the amplitudes of the stationary oscillatory state solutions. Substituting expressions
(8) into Eq. (5), expanding for small dA, dAi and dwi and keeping linear terms in dA, dAi and dwi, one obtains
the following 2n + 1 set of first-order differential equations
ðdAÞ0 ¼ � 1

2
l 1� 3

4
A2

as

� �
dAþ 1

2

Xn

i¼1

kiwiðdAi cos wi � dwiAiðasÞ sin wiÞ;

ðdA1Þ0 ¼ �
1

2
c1dA1 þ

k11

2w1

dA cos w1 � dw1Aas sin w1f g;

..

.

ðdAiÞ0 ¼ �
1

2
cidAi þ

ki1

2wi
dA cos wi � dwiAas sin wif g;

..

.

ðdAnÞ0 ¼ �
1

2
cndAn þ

kn1

2wn
dA cos wn � dwnAas sin wnf g;

ðdw1Þ
0 ¼ k11

2w1A1ðasÞ
þ k1w1A1ðasÞ

2Aas

� �
sin w1sdA� 3

4
bAasdA� k11Aas

2w1A1ðasÞ
þ k1w1

2Aas

� �
sin w1sdA1

þ k11Aas

2w1A1ðasÞ
� k1w1A1ðasÞ

2Aas

� �
cos w1sdwi;

..

.

ðdwiÞ
0 ¼ ki1

2wiA1ðasÞ
þ kiwiAiðasÞ

2Aas

� �
sin wisdA� 3

4
bAasdA� ki1Aas

2wiAiðasÞ
þ kiwi

2Aas

� �
sin wisdAi

þ ki1Aas

2wiAiðasÞ
� kiwiAiðasÞ

2Aas

� �
cos wisdwi;

..

.

ðdwnÞ
0 ¼ kn1

2wnAnðasÞ
þ knwnAnðasÞ

2Aas

� �
sin wnsdA� 3

4
bAasdA� kn1Aas

2wnAnðasÞ
þ knwn

2Aas

� �
sin wnsdAn

þ kn1Aas

2wnAnðasÞ
� knwnAnðasÞ

2Aas

� �
cos wnsdwn:

ð9Þ
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The stability of the stationary oscillatory state solutions depends on the eigenvalues S of the coefficient matrix
on the right-hand sides of Eq. (8). But due to the order of the Jacobian matrix (2n + 1 · 2n + 1), it is difficult
to find the eigenvalue equation, we restrict our analysis to the case of one function (n = 1) and Eq. (9) become
ðdAÞ0 ¼ C11dAþ C12dA1 þ C13dw1;

ðdA1Þ0 ¼ C21dAþ C22dA1;

ðdw1Þ
0 ¼ C31dAþ C32dA1 þ C33dw1;

ð10Þ
where the parameters Cij are the elements of the Jacobian matrix (C) and are given by
C11 ¼ �
1

2
l 1� 9

8
A2

as

� �
; C12 ¼

1

2
k1w1 cos w1s;

C13 ¼
1

2
k1w1Aas sin w1s; C21 ¼

k11

2w1

cos w1s; C22 ¼ �
1

2
c1;

C31 ¼ �
3

4
bAas þ

k11

2w1A1ðasÞ
þ k1w1A1ðasÞ

2Aas

� �
sin w1s;

C32 ¼ �
k11Aas

2w1A1ðasÞ
þ k1w1

2Aas

� �
sin w1s;

C33 ¼
k11Aas

2w1A1ðasÞ
� k1w1A1ðasÞ

2Aas

� �
cos w1s
Due to the Routh–Hurwitz, if the real parts of the roots of the characteristic equation of system (10) are neg-
ative, the corresponding stationary oscillatory state solutions is stable, if at least one root has a positive real
part, the oscillatory state solution is unstable. The characteristic equation may be written as
S3 þ Q1S2 þ Q2S þ Q3 ¼ 0; ð11Þ

where the coefficients Qi are given as follows
Q1 ¼ �C11 � C22 � C33;

Q2 ¼ C11C22 þ C33ðC11 þ C22Þ � C13C31 � C23C32 � C21C12;

Q3 ¼ �C11C22C33 � C21C32C13 � C31C12C23 þ C13C31C22 þ C23C31C11 þ C12C21C33:
The determination of signs of the real parts of the root S may be carried out by making use of the Routh–
Hurwitz criterion [9]. In applying this criterion, we find that the real parts of the roots are negative if we have
Qi > 0 ði ¼ 1; 2; 3Þ;
Q1Q2 � Q3 > 0;

Q3ðQ1Q2 � Q3Þ > 0;

ð12Þ
Additionally, the eigenvalues S of the Jacobian (C) are functions of the parameters of the system. Let us eval-
uate the trace tr(C) and the determinant det(C) of K as
trðCÞ ¼ Q1;

detðCÞ ¼ C11C22C33 � C21C12C33 þ C21C32C13 � C31C13C22;
ð13Þ
Considering the special case where at some parameters values l = l0, one finds, through the Hopf theory, that
the eigenvalue of the Jacobian matrix (C) is purely imaginary under the following transversally condition
trðCÞ ¼ 0;

detðCÞ > 0:
ð14Þ
The two above conditions (12) and (14) are used to find the value of the l0 coefficient in which the eigenvalues
S are purely imaginary and then define the curves (see Fig. 2) in which the amplitude oscillations (limit cycle)
exists. Though the Hopf theory guarantees the existence of such periodic orbits for l = l0, it does not guar-
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antees the existence of the oscillations for the point l furthest away from the point l0. Often, however, the
periodic orbit persists and grows in amplitude as jl � l0j increases.

4. The forced self-sustained electromechanical model

In this section, we find the interactions between the self-sustained oscillation and the external periodic forc-
ing. One note that the frequencies of the forcing and the self-sustained oscillations are very important in the
determination of the dynamics of the system. With the external force, the equations of motion become
€x� lð1� _x2Þ _xþ xþ bx3 þ
Xn

i¼1

ki _xi ¼ E0 cos wt;

€x1 þ c1 _x1 þ w2
1x1 � k11 _x ¼ 0;

..

.

€xi þ ci _xi þ w2
i xi � ki1 _x ¼ 0;

..

.

€xn þ cn _xn þ w2
nxn � kn1 _x ¼ 0:

ð15Þ
where w and E0 are respectively the frequency and amplitude of the external excitation. Our aim is to study the
interaction of the external excitation with the amplitude of the limit cycle solution and find various bifurcation
structures which appear in the self-sustained electromechanical system.

4.1. The amplitude of harmonic oscillatory states

We derive in this subsection the amplitudes of the harmonic oscillatory states of the equations of motion
(15). For this purpose, we suppose that the fundamental component of the solutions has a period of the sinu-
soidal voltage source. The harmonic balance method [8,9] enables us to find the solutions x and xi in the form
x ¼ a1 cos xt þ a2 sin xt;

xi ¼ bi1 cos xt þ bi2 sin xt;
ð16Þ
Inserting Eq. (16) into Eq. (15) and equating the coefficients of sinxt and cosxt separately to zero (assuming
that the terms due to higher frequencies can be neglected), we obtain
1� x2 þ 3

4
bA2

� �
a1 � lx 1� x2

4
A2

� �
a2 þ

Xn

i¼1

kixibi2 ¼ E0;

lx 1� x2

4
A2

� �
a1 þ 1� x2 þ 3

4
A2

� �
a2 �

Xn

i¼1

kixibi1 ¼ 0;

ðx2
1 � x2Þb11 þ c1xb12 � k11xa2 ¼ 0;

� xc1b11 þ ðx2
1 � x2Þb12 þ k11xa1 ¼ 0;

..

.

ðx2
i � x2Þbi1 þ cixbi2 � ki1xa2 ¼ 0;

� xcibi1 þ ðx2
i � x2Þbi2 þ ki1xa1 ¼ 0;

..

.

ðx2
n � x2Þbn1 þ cnxbn2 � kn1xa2 ¼ 0;

� xcnbn1 þ ðx2
n � x2Þbn2 þ kn1xa1 ¼ 0:

ð17Þ
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It comes after some algebraic manipulations that the amplitudes of the harmonic oscillatory states satisfy the
following nonlinear equations
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xiki1ffiffiffiffiffi

Di
p A;

ð18Þ
where
A2 ¼ a2
1 þ a2

2; A2
i ¼ b2

i1 þ b2
i2;

Di ¼ ðx2
i � x2Þ2 þ x2c2

i ;

F n ¼ 1� x2 �
Xn

i¼1

kiki1ðx2
i � x2Þ

Di
;

Gn ¼ �lxþ
Xn

i¼1
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In the presence of the external excitation, we provide in Fig. 3 the frequency–response curves for several
different values of the number of the linear mechanical oscillators. It appears that the curves show antireso-
nance and resonance peaks, and the hysteresis phenomenon for some values of n. It is important to note that
around the resonance peaks, the amplitudes and the accumulate energies of the self-sustained electromechan-
ical device are higher than those received in any oscillations. In this case, the self-sustained model can give
more interesting applications in electromechanical engineering, particularly when the model is used as a per-
forator electromechanical device, but the model with high energies is very dangerous since it can give rise to
catastrophe damage. In the antiresonance peaks, the self-sustained electromechanical device vibrates with
small amplitude and accumulates energy. This phenomena is of particular interest when the model is used
as an electromechanical vibration absorber [10]. In Fig. 3, the effects of a number of linear mechanical oscil-
lators are observed and the curves also show the resonance and antiresonance peaks, and hysteresis phenom-
ena when the number n increases. We note that the multiplicity of the response curves due to cubic
nonlinearity has a significant impact from the physical point of view because it leads to jump and hysteresis
0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

ω

 A

ANALYTICAL RESULTS +++
NUMERICAL RESULTS ........ 

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

ω

 A
i

ANALYTICAL  RESULTS ......
NUMERICAL RESULTS ++++ 

Fig. 5. Comparison between analytical and numerical results. The parameters used are those of Fig. 3 and n = 1.
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phenomena with two stable amplitudes. Consequently, the self-sustained electromechanical device can vibrate
in these domains with two different amplitudes of the harmonic oscillations depending on the initial condi-
tions. Fig. 4 provides the amplitudes–response curves A(E0) and Ai(E0) for several values of n. This figure illus-
trates the effects of the number n of the linear mechanical oscillators on the behavior of the self-sustained
electromechanical system. The following findings are observed. In the case of the model with one function,
A(E0) and Ai(E0) show the jump phenomena, which disappear for the increasing of the number n of linear
mechanical oscillators. For instance, with the parameters of Figs. 3 and 4, the disappearance of the jump phe-
nomenon is obtained when the number n increases, in this case it is interesting to see that a further increase of
the number n can absorb the jump phenomenon. Fig. 5 shows the comparison between analytical and numer-
ical frequency–response curves. The discrepancy of the results obtained from the analytical method as com-
pared to that obtained from the numerical method is observed for some region of w. This is due to the fact
that one assume that the fundamental component of the solutions has a period of the sinusoidal voltage
source, in which ignore the solution in the autonomous system.
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Fig. 7. Bifurcation diagram and Lyapunov exponent versus the amplitude E0 with the parameters of Fig. 6.
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4.2. Phase difference between the mechanical oscillators

In practical engineering use, it is important to analyze the phase difference between the linear mechanical
oscillators. To this aim, we find through Eqs. (16) and (17) that the phases /i and /i+1 of the ith and (i + 1)th
linear mechanical oscillators are given by
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Fig. 9. Bifurcation diagram and Lyapunov exponent versus the amplitude E0 with the parameters of Fig. 6 and l = 5.

Fig. 10. Stability chart in the (E0,l) plane with the parameters of Fig. 6.
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The phase difference is then defined as
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Our aim is to find the conditions in which all the linear mechanical oscillators vibrate in phase (phase-locked).
One finds that all the linear mechanical oscillators are phase-locked in the following two situations:

• When all the n + 1 oscillators (electrical and n linear mechanical oscillator) enter in resonance (internal res-
onance wi = 1) and for a fixed frequency w, Hi,i+1 remains constant as the others parameters of the system
vary.

• When all the n + 1 oscillators enter in internal (wi = 1) and external (wi = 1) resonance, all the ith and
(i + 1)th linear mechanical oscillator vibrate in phase and we have
tan /i ¼ tan /iþ1 ¼
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4.3. Bifurcation structures and stability chart

The aim of this subsection is to find some bifurcation structures and derive the stability chart in the forced
self-sustained electromechanical model as the parameters of the system evolve. For this purpose, we numer-
ically solve the equations of motion (15) and plot the resulting bifurcation diagrams as the amplitude of the
external excitation E0 varies. The stroboscopic time period used to map various transitions which appear in
the model is T = 2p/w. With the following set of parameters l = 2; c1 = 0.1; k1 = 0.4; k11 = 0.2; w1 = 1;
b = 0.8; w = 1; n = 25, our investigations show that the model exhibits chaotic behavior at E0 = 13.0 and
the chaotic phase portrait of the model is shown in Fig. 6. Fig. 7 shows a representative bifurcation diagram
and the variation of the corresponding Lyapunov exponent as the amplitude E0 varies. These curves are
obtained by numerically solving Eq. (15) and the corresponding variational equations. The one dimensional
Lyapunov exponent is defined by
0

0.5

1

1.5

X

0

0.5

1

1.5

2

 X

Fig. 12
and l
Lya ¼ lim
t!1

Inðdnþ1ðtÞÞ
t

ð22Þ
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

E0 E0

n=4

1 2 3 4 5 6

0

0.5

1

1.5

 X

n=6

0 5 10 15 20 25
 E0

n=18

0 5 10 15 20 25

0

0.5

1

1.5

2

 E0

 X

n=25

. Effects of the number n of the linear mechanical oscillators on the bifurcation structures of the model with the parameters of Fig. 6
= 4.



1548 R. Yamapi, M.A. Aziz-Alaoui / Communications in Nonlinear Science and Numerical Simulation 12 (2007) 1534–1549
with
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where dx, d _x, dxi and d _xi are respectively the variations of x, _x, xi and _xi. As the amplitude E0 increases from
zero, the amplitude of the quasi-periodic oscillations exists until E0 = 9.6 where a period-3 orbit takes place.
At E0 = 10.5, the system bifurcates from a period-3 orbit to a chaotic orbit until E0 = 15.8 where the period-7
orbit appears. From E0 = 18.0, we have another region of chaotic motion. At E0 = 18.8, the system passes
from the chaotic orbit to the period-3 orbit and remains until E0 = 20.5 where the quasi-periodic motion takes
place before bifurcates to the period-1 orbit at E0 = 20.5. The other bifurcation mechanisms which appear in
the system are shown in Figs. 8 and 9 for respectively l = 4 and l = 5. In Fig. 10, we derive the stability chart
using numerical simulations of the equations of motion (15) as well as the above transitions. The chart shown
in the (l,E0) plane is traced out by using the bifurcation diagram when the amplitude E0 varies for a fixed l
coefficient. One observes that as the amplitude E0 increases, the forced self-sustained electromechanical system
exhibits quasi-periodic, and period-m oscillations, and chaotic motions within a range of the l coefficient (see
Fig. 10). For example, for l = 4, we have the quasi-periodic oscillations for E0 2 [0.0;10.6] [ [12.3; 18.6], cha-
otic motions for E0 2 [10.6;13] [ [14.2; 17.2], period-7 orbit for E0 2 [14.2;17.2], period-3 orbit for
E0 2 [20.2;22]. Fig. 11 shows various phase portraits for several different values of E0 chosen on the above
mentioned domains, with the parameters of Fig. 6. The effects of the number of linear mechanical oscillators
on the bifurcation structures are analyzed in Fig. 12 and it indicated that the bifurcation structures are affected
with the increase of the number of linear mechanical oscillators. For example, with n = 5;6, it appears that the
forced self-sustained electromechanical system exhibit periodic and quasi-periodic oscillations, while for
n = 18;25, the system presents the chaotic behaviors together with the periodic and quasi-periodic oscillations.
In summary, with the set of parameters used in this section, we find that the chaotic behaviors appears in the
forced self-sustained electromechanical system only when n becomes large.
5. Conclusion

In this paper, we have studied the dynamics of the self-sustained electromechanical system with multiple
functions, consisting of an electrical Rayleigh–Duffing oscillator magnetically coupled to linear mechanical
oscillators. In the autonomous case, the amplitude of oscillatory states and their stability have been derived
using the averaging method and it appears that the quenching of oscillations occurs for some sets of param-
eters. For the nonautonomous case, the harmonic balance method has enabled us to derive the amplitude of
harmonic oscillations. The effects of the number of linear mechanical oscillators on the behaviors of the model
have been analyzed. Our analytical results have been confirmed by numerical simulation. Various bifurcation
structures showing different types of transitions from quasi-periodic motions to multi-periodic and chaotic
motions have been drawn and the results have been presented in the stability chart.
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[2] Szempliǹska-Stupnicka W, Rudowski Jersys. Neimark bifurcation, almost-periodicity and chaos in the forced Van der Pol–Duffing

system in the neighbourhand of the principal resonance. Phys Lett A 1994;192:201–6.



R. Yamapi, M.A. Aziz-Alaoui / Communications in Nonlinear Science and Numerical Simulation 12 (2007) 1534–1549 1549
[3] Venkatesan A, Lukshmanan M. Bifurcation and chaos in the double-well Duffing–Van der Pol oscillator; numerical and analytical
studies. Phys Rev E 1997;56(6):6321–30.

[4] Camacho E, Rand R, Howland H. Dynamics of two Van der Pol oscillators coupled via bath. Int J Solids Struct 2004;41:2133–43.
[5] Yamapi R, Chabi Orou JB, Woafo P. Harmonic oscillations, stability and chaos control in a non-linear electromechanical system. J

Sound Vib 2003;259(5):1253–64.
[6] Woafo P, Yamapi R, Chabi Orou JB. Dynamics of a nonlinear electromechanical system with multiple functions in series. Commun

Nonlinear Sci Numer Simul 2005;10(3):229–51.
[7] Yamapi R, Bowong S. Dynamics and chaos control in the self-sustained electromechanical device with and without discontinuity.

Commun Nonlinear Sci Numer Simul 2006;11(3):355–75.
[8] Nayfeh AH, Mook DT. Nonlinear oscillations. New York: Wiley-Interscience; 1979.
[9] Hayashi C. Nonlinear oscillations in physical systems. New-York: Mc-Graw-Hill; 1964.

[10] Oksasoglu A, Vavriv D. Interaction of low- and high-frequency oscillations in a nonlinear RLC circuit. IEEE Trans Circ Syst-I
1994;41:669–72.

[11] Chedjou JC, Woafo P, Domngang S. Shilnikov chaos and dynamics of a self-sustained electromechanical transducer. J Vib Acoust
2001;123:170–4.

[12] Hasler MJ. Electrical circuits with chaotic behavior. Proc IEEE 1987;75:1009–21.
[13] Olson HF. Acoustical engineering. Princeton: Van Nostrand; 1967.
[14] Korenev BG, Reznikav LM. Dynamics vibration absorbers. New york: Wiley; 1989.
[15] Asfar KR. Quenching of self-excited vibrations. Trans ASME J Vib Acoust Stress Reliab Des 1989;121:130–3.


	Vibration analysis and bifurcations in the self-sustained electromechanical system with multiple functions
	Introduction
	Description and equations of motion
	The resonant oscillatory states
	The resonant oscillatory states and quenching phenomena
	Stability analysis

	The forced self-sustained electromechanical model
	The amplitude of harmonic oscillatory states
	Phase difference between the mechanical oscillators
	Bifurcation structures and stability chart

	Conclusion
	Acknowledgements
	References


