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Abstract

We focus on the long time behavior of complex networks of reaction-
diffusion (RD) systems. We prove the existence of the global attractor
and a L∞-bound for a network of n RD systems with d variables each.
This allows us to prove the identical synchronization for general class of
networks and establish the existence of a coupling strength threshold value
that ensures such a synchronization. Then, we apply these results to some
particular networks with different structures (i.e. different topologies) and
perform numerical simulations. We found out theoretical and numerical
heuristic laws for the minimal coupling strength needed for synchroniza-
tion relatively to the number of nodes and the network topology, and
discuss the link between spatial dimension and synchronization.

Reaction-Diffusion systems, complex networks, attractor, synchronization.

1 Introduction

Networks of dynamical systems appear naturally in the modeling of numerous
applications. The simplest mode for the coordinated motion between dynamical
systems is their identical synchronization when all nodes of the network acquire
identical dynamical behavior. Such cooperative behavior has been observed in
natural or artificial systems such as neural networks, chemical and biological
systems, computer clocks, social networks... In this paper, we will focus on
RD systems networks that can be seen as neural networks. Besides, a classical
question in dynamical systems is the existence of the attractor: basically, a set
that attracts the trajectories for large time.

Contributions. There are three main contributions in the present paper.
First, we prove of the existence of the network attractor, and therefore, within
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this attractor, we analyze the synchronization behavior. Finally, we perform
numerical simulations with different kind of initial conditions and study numer-
ically the spatial effects on synchronization and pattern formation.

Mathematical framework and preliminaries. First of all, we introduce
the mathematical framework we will use throughout this paper. Mathematically
speaking, the network is represented by a graph, the nodes of which are a d-
dimensional RD system and the edges correspond to the coupling functions
between these subsystems. The general system reads as:

Uit = Q̃∆Ui + F̃ (Ui) + H̃i(U1, ..., Un), i ∈ {1, ..., n}. (1)

In this equation, each variable Ui represents a function from Ω × R+ into Rd,
Ω is a bounded domain of RN and F̃ : Rd → Rd is the nonlinear reaction term.
For all i ∈ {1, ..., n}, H̃i : Rnd → Rd is the coupling function between nodes
whereas Q̃ is a diagonal matrix of Rd×d with positive coefficients. If we add
boundary conditions to (1), we obtain a general reaction-diffusion system. We
will not go into details concerning the existence of the semi-group of (1). We
refer to [19, 20, 25, 29] or [15, 17, 22, 27, 28], for classical results on the existence
of semi-group in Lp(Ω) or in Ck,α(Ω) spaces. Our first theoretical result is the
proof of the existence of the global attractor for a particular class of networks of
type (1) that generalizes the FitzHugh-Nagumo (FHN) equations. Recall that
(FHN) equations are a simplification in two variables of the HodgKin-Huxley
model of four equations for the action propagation in nerve, [14, 18, 23]. A
good qualitative analysis of the (FHN) reaction-diffusion system is given in [26],
while in [2] we gave a first analysis of a particular network of (FHN) reaction-
diffusion systems. Here we extend some results of [2], and also of [21] where
a system of two scalar equations, in which the diffusive term appears only in
the first equation but not in the second one, was considered. We present some
results for a network of n partially diffusive systems with d equations. Indeed,
we suppose that we can split the system (1) into two subsystems, diffusive and
non-diffusive, with s and d− s equations. Therefore, we set for all i ∈ {1, ..., n},
Ui = (ui, vi), and write (1) in the following way:{
uit = F (ui, vi) +Q∆ui +Hi(u1, ..., un), on Ω×]0,+∞[, i ∈ {1, ..., n}
vit = −σ(x)vi + Φ(x, ui) on Ω×]0,+∞[,

(2)
with Neumann Boundary conditions on ∂Ω, and where ui take values in Rs,
1 ≤ s < d whereas vi take values in Rd−s, Q is a diagonal matrix in Rs×s
with coefficients qj , j ∈ {1, ..., s}, and Hi take values in Rs. We use the classical
notation ut for ∂u

∂t . This means that diffusion and coupling terms appear only in
the s first variables of each subsystem of the network. Finally, σ(x) is a matrix

in R(d−s)×(d−s) that verifies:
∑d−s
j=1

∑d−s
l=1 σjl(x)vlv

k
j > σ

∑d−s
j=1 v

k+1
j , for all k ∈

N, k odd, and some positive constant σ, and with bounded derivatives. The
application Φ takes values in R(d−s). Under some conditions on functions the
system (2) generates a semi-group on H = (L2(Ω))nd, see [21, 25, 29]. Before
going into details of the analysis of system (2), we present some key features for
systems with one variable and two variables used to prove the existence of the
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global attractor. These techniques will be generalized to system (2) in section
2. Let us start with the following equation:

ut = ∆u− u3 + u2 + u, (3)

considered in a bounded domain Ω with Neumann boundary conditions. Mul-
tiplying (3) by u gives,

d

dt

∫
Ω

u2 + 2

∫
Ω

|∇u|2 =−
∫

Ω

(u4 − u3 − u2) (4)

≤− δ
∫

Ω

u2 +K, (5)

for some constants δ and K. By Gronwall Lemma, there exists a constant K ′

such that, ∫
Ω

u2 ≤ K ′,

for all initial conditions in L2(Ω) and for t large enough. Now, integrating (5)
between t and t+ r for a given constant r gives,∫ t+r

t

∫
Ω

|∇u|2 ≤ K for another K. (6)

Multiplying (3) by u2k−1, by analog computations, we find that there exists
a constant K ′′ such that ∫

Ω

u2k ≤ K ′′, (7)

for all initial conditions in L2(Ω) and for t large enough.
Also, multiplying (3) by −∆u gives,

d

dt

∫
Ω

|∇u|2 =− 2

∫
Ω

(∆u)2 + 2

∫
Ω

(u4 − u3 − u2)∆u

≤−
∫

Ω

(∆u)2 +
3

2

∫
Ω

(u8 + u6 + u4) by using Young inequality.

Therefore, thanks to (6) and (7), we deduce, by using uniform Gronwall Lemma
(see appendix), that ∫

Ω

|∇u|2 < K,

for a constant K and for all initial conditions in L2(Ω) for t large enough.
This gives the compacity of trajectories of (3) thanks to the compact injection
of H1 in L2. Now, we consider the system with two variables,{

ut = ∆u− u3 + u2 + u+ v
vt = −δv + u

(8)
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Multiplying the first equation of (8) by u and the second by v, integrating, using
Green formula, Young inequality, and Gronwall lemma leads to:∫

Ω

(u2 + v2) < K,

for a constant K, for all initial conditions in L2(Ω) × L2(Ω), and time large
enough. Then, we will show the same result in L2k(Ω)× L2k(Ω) for all k ∈ N∗.
As we saw above, this result is true for k = 1. We multiply first equation of (8)
by u2k−1 and the second by v2k−1, sum the two equations and integrate. We
obtain:

d

dt

∫
Ω

(u2k+v2k) = −
∫

Ω

u2k−2|∇u|2−
∫

Ω

(u2k+2+u2k+1+u2k)+

∫
Ω

vu2k−1+

∫
Ω

uv2k−1−δ
∫

Ω

v2k.

Using Young inequality ab ≤ cpap

p + bq

cqq , provides:

d

dt

∫
Ω

(u2k+v2k) ≤ −
∫

Ω

(u2k+2+u2k+1+u2k)+γ1

∫
Ω

v
2k+2

3 +γ2

∫
Ω

u2k+2+γ3

∫
Ω

u2k+γ4

∫
Ω

v2k−δ
∫

Ω

v2k,

with γ2 < 1 and γ4 < δ. Then, since 2k+2
3 < 2k, there exists constants γ and

K such that:
d

dt

∫
Ω

(u2k + v2k) ≤ −
∫

Ω

(u2k + v2k) +K.

It follows that there exists a constant K (depending on k) such that:∫
Ω

(u2k + v2k) < K,

for all initial conditions in L2(Ω) × L2(Ω), and time large enough. By analog
computations as for (3), we obtain:∫

Ω

|∇u|2 < K.

It remains to consider
∫

Ω
|∇v|2. By multiplying gradient of the second equation

of (8) by ∇v, we obtain:

d

dt

∫
Ω

|∇v|2 = −2δ|∇v|2 + 2∇u.∇v,

it follows that,
d

dt

∫
Ω

|∇v|2 ≤ −δ|∇v|2 +K,

which gives, ∫
Ω

|∇v|2 < K,
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for t large enough. We have bounds in Lq for all q ∈ [1,+∞[. We can obtain
bounds in L∞(Ω) thanks to a result in [27].

Note that we can apply the same techniques for the generalized system:{
ut = ∆u+ f(u, v)
vt = −δv + g(x, u)

(9)

if the following conditions hold

uf(u, v) ≤ −δ1up + δ2uv + δ3 (10)

and,
|f(u, v)| ≤ δ1|u|p−1 + δ2|v|+ δ3 (11)

|∂g
∂x

(x, u)| ≤ c|u| and |∂g
∂u

(x, u)| ≤ K, (12)

where p > 2, δi > 0, i ∈ {1, ..., 3}.
Paper Organization After the present introduction, the theoretical results

are presented in section 2 and 3. In section 2, we prove, under some assump-
tions, the existence of the global attractor for the network of FHN-type (2)
in (L2(Ω)d)n, for any network topology. This allows us to show, in section 3,
theoretical results on the synchronization onset of system (2) with linear cou-
pling functions. Then, we apply these results to complete and ring networks.
In section 4, we present the numerical simulations for fully connected and uni-
directionally coupled ring network. Each node, in the graph, is represented by
a system of FitzHugh-Nagumo reaction-diffusion equations. This gives an in-
sight on the relation between the number of neurons and the minimal coupling
strength needed to reach the synchronization, with a particular attention on
the effects of spatial dimension. For fully connected networks, our numerical
simulations show that the minimal strength value for synchronization follows a
“ 1
n” law, independently of the patterns induced by initial conditions. In unidi-

rectional coupled ring network, the minimal strength value for synchronization
follows a “n2” law. Our conclusion is left to the last section.

2 Existence of the global attractor

Now we prove the existence of the global attractor for the dynamical system
(2) in H = (L2(Ω)d)n. The global attractor is a compact invariant set for
the flow that attracts all trajectories (see for example [4, 21, 25, 29]). The
existence of the global attractor is essential since it is a set where the solutions
asymptotically evolve. In particular, all the patterns that we will see later in our
numerical simulations, belong, for enough large time, to the global attractor.
Also, our proof of synchronization given in section 3 uses L∞-bounds that we
prove in this section. Now, we specify some assumptions that we will assume
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throughout the article. First, we assume that for all i ∈ {1, ..., n}, and for all
j ∈ {1, ..., s},

ujiF
j(ui, vi) ≤ −δ1|uji |

p + δ2|uji |
s∑

k=1

|uki |p1 + δ3|uji |
d−s∑
k=1

|vki |+ δ4, (13)

with p > 2, δ1, δ2, δ3 > 0, 0 ≤ p1 < p− 1, and,

|F j(ui, vi)| ≤ δ1|uji |
p−1 + δ2

s∑
k=1

|uki |p1 + δ3

d−s∑
k=1

|vki |+ δ4. (14)

Condition (13) generalizes (10). It indicates a decrease of order p at infinity
and permit to obtain bounds in Lq spaces. Condition (14) generalizes (11) and
allows us to apply Young inequalities in order to obtain bounds in H1. In our
case, a typical example for which (13)-(14) hold, is given by a function F where
the component j reads as:

F j(u1
i , ..., u

s
i , v

1
i , ..., v

d−s
i ) = −ap−1(uji )

p−1 +

p−2∑
k=0

∑
αk1+...+αks=k

ak1...ks

s∏
l=1

(uli)
αkl

+

d−s∑
l=1

bkv
l
i,

with ap−1 > 0, ak1...ks , bk ∈ R and p even. This simply means that, relatively
to ui, F

j is polynomial of several variables, with the dominant term given by
(uji )

p−1, with negative coefficient, and p even. The other terms have a degree
lower than p− 1. Whereas F j is a linear function of vi.

Moreover, in order to maintain the effect of the decrease condition (13), we
suppose that the coupling functions have a polynomial increase lower than p−1.
This reads as:

|Hj
i (u1, ..., un)| ≤ δ4(1 +

n∑
k=1

|ujk|
p1), 0 < p1 < p− 1. (15)

Finally, we suppose that for all j ∈ {1, ..., d− s},∣∣∣∣∂Φj

∂xk
(x, ui)

∣∣∣∣ ≤ δ5(1 +

s∑
j=1

|uji |), k ∈ {1, ..., N}, (16)

and, ∣∣∣∣∂Φj

∂uki
(x, ui)

∣∣∣∣ ≤ δ5. (17)

Conditions (16) and (17) generalize condition (12). They are not very restrictive
and include functions Φ with spatial heterogeneity, that allow rich behavior,
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bifurcations and pattern formation (see [1, 4]). We deduce from (16) and (17)
that for all j ∈ {1, ..., d− s},

∣∣Φj(x, ui)∣∣ ≤ δ6(1 +

s∑
l=1

∣∣uli∣∣). (18)

Let us remark that all these assumptions appear naturally in the proof of the
existence of the attractor of system (2) . They appear also in [21, 25].

The following theorem gives the existence of the global attractor.

Theorem 1. Under assumptions (13)-(17), the semi-group associated with (2)
possesses a connected global attractor A in H = (L2(Ω))nd. Furthermore, A
is bounded in (L∞(Ω))nd.

The proof of theorem 1 relies on a general result that gives the existence
of the global attractor in Banach Spaces, see [29]. If there exists a bounded
absorbing set B in H , which means that B verifies the following condition:

for all bounded set B ⊂H ,∃tB ;∀t > tB , S(t)B ⊂ B, (19)

and if,

for all bounded set B ⊂H ,∃tB ;∪t≥tBS(t)B is relatively compact in H ,
(20)

then the ω-limit set of B, is an invariant connected compact set that attracts
all the trajectories. Therefore, we divide the proof of theorem 1 into four parts,
which for the reader’s convenience, we present as different lemmas. Before
going into details let us briefly present the sketch of the proof. We first show,
in lemma 1, the existence of a bounded absorbing set in H , that is (19). Then,
in lemma 2, we prove a result of compacity for trajectories, that is (20). More
precisely, we establish the existence of a bounded absorbing set in (H1(Ω))nd.
The result follows from the compact injection of H1(Ω) in L2(Ω). Note that
proving lemmas 1 and 2 gives the global attractor existence. After, in lemma
3, we obtain the (L∞(Ω))nd-bound: we show (Lq(Ω))nd-bounds for all q ∈ N.
Finally, we prove theorem 1, by using a result that links L∞ and Lq-norms for
linear parabolic equations, see [27].
Let us introduce the following notations:

|u|p,Ω =
( ∫

Ω

|u|pdx
) 1

p , (21)

if u is a real or vector valued function. We also use

||u||

to denote the euclidian norm for a real vector. The lemma below establishes
the existence of a bounded absorbing set in H .
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Lemma 1. There exists an absorbing bounded set in H , that is, there is a
constant K, such that for all initial conditions in H :

(|u|22,Ω + |v|22,Ω)(t) ≤ K for t large enough.

Proof. The proof mainly relies on the presence of −δ1|uji |p in (13) and the
condition on σ(x). In the following, parameters δ, c and K are generic constants.
We multiply each scalar equation in (2), for all i and j, by uji or vji , and sum.
We show, by using Young inequality, ab ≤ ap

εpp + εqbq

q , and as it has been done

for equation (8) that:

d

dt
(|u|22,Ω + |v|22,Ω) + δ1(|u|22,Ω + |v|22,Ω) + δ2|u|pp,Ω + δ3|∇u|22,Ω ≤ δ4. (22)

Then by Gronwall inequality we have for t large enough:

(|u|22,Ω + |v|22,Ω)(t) ≤ K. (23)

Now, we will show the compactness of trajectories in H , by establishing
(20). We have:

Lemma 2. There exists an absorbing bounded set in (H1(Ω))nq, that is, there
is a constant K, such that for all initial conditions in H and t large enough,

|∇u(t)|2,Ω ≤ K.

Proof. By integrating (22) between t and t+ r, we have for t large enough and
∀r > 0: ∫ t+r

t

|∇u|22,Ω + δ

∫ t+r

t

|u|pp,Ω ≤ K + δr. (24)

Now, we multiply each component of the first equation of (2) by −∆uji , we
integrate and sum over i and j. We obtain:

1

2

d

dt
|∇u|22,Ω = −

n∑
i=1

s∑
j=1

(∫
Ω

(F j(ui, vi)∆u
j
i + qj∆u

j
i∆u

j
i +Hj

i (u1, ..., un)∆uji

)
,

(25)
which, thanks to (14) and (15) leads to:

1

2

d

dt
|∇u|22,Ω + q|∆u|22,Ω ≤c

n∑
i=1

s∑
j=1

∫
Ω

(
1 +

s∑
l=1

|uli|p−1 +

d−s∑
k=1

|vki |+
n∑
l=1

|ujl |
p1
)
|∆uji |

≤ c
n∑
i=1

s∑
j=1

∫
Ω

( c
2q

(
1 +

s∑
l=1

|uli|p−1 +

d−s∑
k=1

|vki |+
n∑
l=1

|ujl |
p1
)2

+
q

2c
(∆uji )

2
)
,
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where q = mini∈{1,...,s} qi and c is a generic constant. It follows that:

1

2

d

dt
|∇u|22,Ω ≤ c

n∑
i=1

s∑
j=1

∫
Ω

(
1 +

s∑
l=1

|uli|2p−2 +

d−s∑
k=1

|vki |2 +

n∑
l=1

|ujl |
2p1
)

≤ c(1 + |u|2p−2
2p−2,Ω + |v|22,Ω).

Thanks to the techniques we use in lemma 3, we can prove that for t large
enough:

|u|2p−2
2p−2,Ω ≤ K. (26)

Then we can apply the uniform Gronwall lemma (see appendix), and show that:

|∇u|22,Ω(t) ≤ K for t large enough.

It remains to find a bound for |∇v|2,Ω. For all i ∈ {1, ..., n}, and k ∈ {1, ..., N},
we have:

d

2dt
|vixk
|22,Ω =

∫
Ω

(−σ′xk
(x)vi·vixk

−σ(x)vixk
·vixk

+Φ′xk
(x, ui)·vixk

+

s∑
j=1

ujixk
Φ′
uj
i

(x, ui)·vixk
),

(27)
with vixk

= ∂vi
∂xk

. Using Young and Cauchy-Schwarz inequalities, we find, thanks

to (16) and (17), for enough large time:

d

dt
|vixk
|22,Ω ≤ −

σ

2
|vixk
|22,Ω +K. (28)

Finally, the result follows by using Gronwall inequality and summing over i.

Lemma 3. For all q ∈ N, there exists an absorbing bounded set in (Lq(Ω))nd,
that is, for all q ∈ N there is a constant Kq such that for all initial conditions
in H :

(|u|qq,Ω + |v|qq,Ω)(t) ≤ Kq for t large enough.

Proof. In the following, K is a generic constant. We multiply the first equation
of (2) by |uji |2k−2uji , for all i, j and integrate. We obtain:

1

2k

d

dt

∫
Ω

|uji |
2k =

∫
Ω

F (ui, vi)|uji |
2k−2uji +

∫
Ω

qj∆uji |u
j
i |

2k−2uji +Hi|uji |
2k−2uji .

(29)
But we have: ∫

Ω

qj∆uji |u
j
i |

2k−2uji = −(2k − 1)

∫
Ω

|∇uji |
2|uji |

2k−2. (30)

Thanks to (13) and to (15), it follows that:

1

2k

d

dt

∫
Ω

|uji |
2k ≤ −δ1′

∫
Ω

|uji |
2k−2+p+δ2

′
d−s∑
k=1

∫
Ω

|uji ||v
k
i |+

n∑
k=1

∫
Ω

|uki |p1 |u
j
i |

2k−2uji .

(31)
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Hence by Young inequality,

1

2k

d

dt
|u|2k2k,Ω ≤ −δ1|u|2k2k,Ω +K. (32)

By Gronwall lemma:
|u|2k2k,Ω ≤ K, (33)

for t large enough.
Besides, by similar techniques, we have:

d

dt
|vi|2k2k,Ω = −σ|vji |

2k
2k,Ω +K. (34)

Then, the result follows by Gronwall Lemma.

Proof of theorem 1. It remains to prove the L∞-bound . For all i ∈ {1, ..., n},
and for all j ∈ {1, ..., s}, we have:

uji (t) = T (t)uji0 +

∫ t

0

T (t− τ){F j(uji , v
j
i )(τ) +Hj

i (u1(τ), ..., un(τ)) + uji (τ)}

(35)
where T represents the semi-group associated with ∂ϕ

∂t − q
j∆ϕ + ϕ = 0 and

Neumann boundary conditions. We know, see [27], lemma 3 p 25, that T
verifies:

|T (t)ϕ|∞,Ω ≤ cm(t)−
1
2 e−λt|ϕ|2N,Ω, (36)

where m(t) = min(1, t), λ is the smallest eigenvalue of the operator I − qj∆,
and c is a positive constant. This allows us to conclude.

3 Identical synchronization of a network of n

reaction-diffusion systems

Now, as we have shown the existence of the global attractor, we can think about
synchronization of solutions within this attractor. Therefore, in the present sec-
tion, we focus on this ubiquitous phenomenon and restrict ourselves to identical
synchronization, in networks with linear coupling. We will determine sufficient
coupling strength values ensuring the identical synchronization in complex net-
works (2). We refer to [5, 9, 10, 12, 13, 24] for relevant works on the synchro-
nization phenomenon. These values reveal the dependence on the number of
nodes, the coupling configuration, the properties of each subsystem. Such a
result holds in case of spatial heterogeneity. This point will be discussed in
more details in the last section. Technically, to establish the synchronization,
we exhibit a Lyapunov function for the network. Since we obtained L∞-bounds
in the previous section, it is always possible to find such a Lyapunov function
provided that the coupling strength is large enough. We rely on previous works
for networks of ODE’s (see [6, 7]) and assume that the connectivity matrix has
zero row and column sums. However, we extend the results to networks of
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reaction-diffusion systems and improve computations, which lead us to find the
same threshold synchronization values, see below and theorems 2 and 3.

Definition 1 (see [2]). Let U(t) = (U1(t), U2(t), ..., Un(t)) be a network with a
given topology. We say that U synchronizes identically if,

lim
t→+∞

n−1∑
i=1

|Ui(t)− Ui+1(t)|2,Ω = 0.

where notations are those of (2) and (21).

We consider the network,{
uit = F (ui, vi) +Q∆ui +

∑n
k=1 cikuk, i ∈ {1, ..., n}

vit = −σ(x)vi + Φ(x, ui),
(37)

with Neumann Boundary conditions on ∂Ω which is a particular case of (2) with
Ui = (ui, vi), where :

Hi(u1, ...., un) =

n∑
k=1

cikuk.

We will assume that the matrix G = (cik)1≤i,k≤n has vanishing row and column-
sums and non-negative off-diagonal elements, i.e., cik ≥ 0 for i 6= k, and

cii = −
n∑

k=1,k 6=i

cik = −
n∑

k=1,k 6=i

cki. (38)

The connectivity matrix G defines the graph topology as well as the coupling
strength between nodes. Indeed, there is an edge between node i and node k if
and only if cik > 0. We consider here an arbitrary connected and directed net-
work of linearly coupled RD systems satisfying (38). Obviously, symmetrically
networks with vanishing row-sums are a particular case of the one considered
here. In order to ensure the existence of the global attractor, we assume that
the network (37) verifies the assumptions (13)-(17). Note that (15) holds au-
tomatically thanks to the linear coupling. Before going more into details, let
us summarize the main ideas of the section. We establish the synchronization
result in theorem 2 which relies on the statement of a Lyapunov function V that
reads as the sum of the norms of all vectors Ui − Uj . More precisely, the first
step exhibits a diagonal definite positive matrix A that annihilates the effects
of nonlinear terms of (37), this is done in lemma 4, then the proof follows from
computations that use property (38), which itself uses all the couples (i, j) in
V . However, the result of theorem 2 can not be applied directly to concrete net-
works. This is the purpose of theorem 3, which gives a sufficient condition for
synchronization applicable in networks with arbitrary topology. Its proof relies
on the computation of the sum of all minimal lengths joining any couple of nodes
passing through a given edge of the graph. This idea comes from lemma 5 which
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bounds all terms in the left hand side of (39) (in which all the couples (i, j) ap-
pear) by terms of the right hand side (only the couples (i, j) corresponding to
non zero coupling, i.e. cij 6= 0, i.e. edges of the graph, appear).

We start with the lemma 4 that establishes the existence of a diagonal
definite-positive matrix A that annihilates the effects of nonlinear terms. Let us
denote by X an arbitrary vector of Rd, Xs the vector of the s first coordinates
and Xd−s, the vector of the d− s last coordinates of X.

Lemma 4. For each solution (U1, U2, ..., Un) of (37), there exists a time T , a
positive constant κ and a definite positive diagonal matrix A ∈ Rs × Rs, such
that for all t > T , for all X ∈ Rd, and for all i, j ∈ {1, ..., n},

Xs.

[∫ 1

0

DF (θUj + (1− θ)Ui)dθ
]
X+

Xd−s.
(
−σ(x)Xd−s +

[∫ 1

0
DΦ(θuj + (1− θ)ui)dθ

]
Xs

)
−AXs.Xs ≤ −κ||Xd−s||2.

Proof. This follows from the L∞-bound of solutions of (2), and by using young
inequality.

We will now present the main result that furnishes sufficient conditions for
identical synchronization. To this aim, we introduce the following notations:
for all i, j ∈ {1, ..., n}, wij = uj − ui, zij = vj − vi, i, j ∈ {1, ..., n}, εij =

cij+cji
2

and a = maxl∈{1,...,s}All.

Theorem 2. If we assume that

a

n

∑
i<j

|wij |22,Ω <

n∑
i<j

εij |wij |22,Ω (39)

then the system (37) synchronizes in the sense of definition 1.

Proof. We split G into the sum of two symmetric and antisymmetric matrices,
E = (εik), i, k ∈ {1, ..., n} and L = (δik), i, k ∈ {1, ..., n}:

G = E + L, (40)

where,

δik =
1

2
(cik − cki). (41)

One can easily check that both matrices E and L have zero row sums. As
wij = uj − ui, zij = vj − vi, i, j ∈ {1, ..., n}, we obtain,{
wijt = F (uj , vj)− F (ui, vi) +Q∆wij +

∑n
k=1(εjkwjk − εikwik + δjkwjk − δikwik),

zijt = −σ(x)zij + Φ(x, uj)− Φ(x, ui).
(42)
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Besides,

F (uj , vj)−F (ui, vi) =

∫ 1

0

d

dθ
F (θUj + (1− θ)Ui)dθ =

[∫ 1

0

DF (θUj + (1− θ)Ui)dθ
]

(Uj−Ui),

where DF is the s× d Jacobian matrix of F , and,

Φ(x, uj)−Φ(x, ui) =

∫ 1

0

d

dθ
Φ(θuj + (1− θ)ui)dθ =

[∫ 1

0

DΦ(θuj + (1− θ)ui)dθ
]
wij .

Hence, we can write,

wijt =

[∫ 1

0

DF (θUj + (1− θ)Ui)dθ
]

(Uj − Ui) +Q∆wij+

n∑
k=1

(εjkwjk − εikwik + δjkwjk − δikwik),

zijt = −σ(x)zij +

[∫ 1

0

DΦ(θuj + (1− θ)ui)dθ
]
wij .

(43)

where i, j ∈ {1, ..., n}. Now, let us introduce the following function:

V (t) =

n∑
i=1

n∑
j=1

(
|wij |22,Ω + |zij |22,Ω

)
. (44)

In order to reach the synchronization, it is sufficient to find conditions ensuring
that V is a Lyapunov function with negative orbital derivative. As the graph
is connected, it would be natural to include in V , only terms wij corresponding
to non-zero coefficients εij . However, as we will see, including all terms wij in
V will allows to vanish sums.

Then,

1

2

d

dt
V =

n∑
i=1

n∑
j=1

∫
Ω

(wij .wijt + zij .zijt)

=

n∑
i=1

n∑
j=1

(

∫
Ω

wij .(

[∫ 1

0

DF (θUj + (1− θ)Ui)dθ
]

(Uj − Ui) +Q∆wij

+

n∑
k=1

(εjkwjk − εikwik + δjkwjk − δikwik))

+

∫
Ω

zij .(−σ(x)zij +

[∫ 1

0

DΦ(θuj + (1− θ)ui)dθ
]
wij)).

Now by lemma 4, and using green formula, there exists a definite positive
diagonal matrix A such that,
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1
2
dV
dt ≤

n∑
i=1

n∑
j=1

(∫
Ω

Awij .wij +

∫
Ω

wij .

(
n∑
k=1

(εjkwjk − εikwik)

)

+

∫
Ω

wij .

(
n∑
k=1

(δjkwjk − δikwik)

)
− κ|zij |22,Ω

)
.

The last term in the above equation vanishes, indeed:
n∑

i,j,k=1

wij .
(
δjkwjk − δikwik

)
= 2

∑n
i,j,k=1 wij .δjkwik (because

∑n
k=1 δjk = 0)

= 2
∑n
i,j δjj ||wij ||2 + 2

∑n
i,j=1

∑
k 6=j δjkwij .wik.

Obviously since δjj = 0,

n∑
i,j

δjj ||wij ||2 = 0.

Moreover, since δjk = −δkj , we have, for all i ∈ {1, ..., n},
n∑
j=1

∑
k 6=j

δjkwij .wik = 0.

Therefore, asymmetric connectivity matrices with zero column-sums and
row-sums can be treated as symmetric matrices. Now we deal with the other
terms. We have:

n∑
i=1

n∑
j=1

wij .

n∑
k=1

(εjkwjk − εikwik) =

n∑
i,j,k=1

εjkwij .wjk −
n∑

i,j,k=1

εikwij .wik

=

n∑
i,j,k=1

εjkwij .wjk −
n∑

i,j,k=1

εjkwji.wjk

= 2

n∑
i,j,k=1

εjkwij .wjk

= 2

n∑
i,j,k=1

εjk(wik.wjk − w2
kj),

since wij = wik + wkj . Moreover,

n∑
i,j,k=1

wik.εjkwjk ≤
n∑

i,j,k=1

1

2
εjk(||wik||2 + ||wjk||2)

=
1

2

n∑
i,k=1

||wik||2
n∑
j=1

εjk +
n

2

n∑
j,k=1

εjk||wjk||2

=
n

2

n∑
j,k=1

εjk||wjk||2,
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since

n∑
j=1

εjk = 0. Finally, we obtain:

1
2
dV
dt ≤

n∑
i,j=1

(−κ|zij |22,Ω +

∫
Ω

Awij .wij)− n
∫

Ω

( n∑
j,k=1

(εjk||wjk||2
)

= 2
∑
i<j

(−κ|zij |22,Ω +

∫
Ω

Awij .wij)− 2n

∫
Ω

( n∑
i<j

(εij ||wij ||2
)

≤ −2κ
∑
i<j

|zij |22,Ω + 2a
∑
i<j

|wij |22,Ω − 2n

n∑
i<j

εij |wij |22,Ω

< 0,

if (wij , zij) 6= 0 thanks to hypothesis (39).

Now we would like to prove theorem 3 which gives a sufficient condition
for synchronization which can be applied for general networks. An apparent
difficulty comes from the fact that in the left-hand side of (39), all the variables
appear while in the right-hand side, because of the parameters εij , only variables
corresponding to edges appear. The following lemma allows to obtain a bound
with only terms corresponding to edges.

Lemma 5. For all i, j ∈ {1, ..., n}, and for all sequence, (il)l∈{0,...,k}, with
i0 = i, ..., ik = j, we have:

||wij ||2 ≤ k(

k−1∑
l=0

||wilil+1
||2). (45)

Proof. We write:

||wij ||2 = ||
k−1∑
l=0

wilil+1
||2

= (

k−1∑
l=0

wilil+1
).(

k−1∑
l=0

wilil+1
)

=

k−1∑
l=0

||w2
ilil+1

||+ 2
∑
l<m

wilil+1
wimim+1

≤ k

k−1∑
l=0

||wilil+1
||2 by Young inequality.

Note that the lemma is valid for an arbitrary sequence, but we will use it
for sequences corresponding to edges in the graph.
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Without taking care of the edges direction in the graph, for each (i, j), i < j,
we choose a unique path of minimal length in the graph joining nodes i and j.
We denote this path Pij , l(Pij) its length, and its nodes by: (il)l∈{0,...,length(Pij)},
with i0 = i, ..., ilength(Pij) = j. For each (k, l), k < l corresponding to an edge
in the graph (i.e. εkl 6= 0), we define αkl as the sum of all the lengths of the
minimal paths passing trough the edge (k, l). If (k, l) is not an edge of the
graph, we set αkl = 0:

αkl =

{ ∑
i<j,(k,l)∈Pij

length(Pij) if (k, l) is an edge of the graph,

0 if (k, l) is not an edge of the graph.
(46)

Figure 3 gives an example of the computation of these coefficients.

Theorem 3. Let us assume that for each edge (k, l), we have,

a

n
αkl < εkl,

then system (37) synchronizes in the sense of definition 1.

Proof. Now, the proof of theorem 3 follows from theorem 2 and lemma 5. We
have,

∑
i<j

||wij ||2 ≤
∑
i<j

length(Pij)

length(Pij)−1∑
l=0

||wilil+1
||2 thanks to lemma 5

=
∑
k<l

αkl||wkl||2 by reordering the terms of the sum along the edges of the graph.

Now the result follows from theorem 2. Such a result has been found in [6, 7]
for ODE systems.

Figure 1: Example of calculus of the number αkl. The minimal path
joining 1 and 2 is P12 = 1 − 2, P13 = 1 − 2 − 3, P14 = 1 − 2 − 4,
P15 = 1−2−4−5, P23 = 2−3, P24 = 2−4,P25 = 2−4−5, P34 = 3−4,
P35 = 3− 4− 5, P45 = 4− 5. It follows that α23 = 2 + 1 = 3.

Corollary 1 (Fully connected network). We assume that ∀i, j ∈ {1, ..., n},
i 6= j εij >

a
n , then (37) synchronizes in the sense of definition 1.

Proof. This result comes obviously from theorem 3, since for fully connected
network, αij = 1. Note that in the particular case of fully connected network,
we could also conclude from theorem 2.
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Corollary 2 (Unidirectionally ring network). We assume that the connectivity
matrix G = (cij), 1 ≤ i, j ≤ n, is given by cii = −c < 0 ∀i ∈ {1, ..., n},
cii+1 = cn1 = c ∀i ∈ {1, ..., n − 1}, and cij = 0 otherwise. Then, if we assume
that

c >


a
12 (n2 − 1) if n odd
a
12 (n2 + 2) if n and n

2 even
a
12 (n2 + 8) if n even and n

2 odd

the network (37) synchronizes in the sense of definition 1.

Proof. We start with the case of n odd. For each couple of nodes of the graph,
there is a unique path of minimal length joining the nodes. If we suppose that
n = 2k + 1, then for each node indexed by l:

αll+1 = (1 + ...+ k) + (2 + ....+ k) + ...+ (k − 1 + k) + k

=
∑k
i=1

∑k
j=i j

= (n−1)(n+1)n
24 .

The figure 2-a gives an example of such a network. In the case where of n even,
we assume that n = 2k. For each couple of nodes (i, j) in the graph, if the
distance between i and j is less than k, there exists a unique path of minimal
length joining the nodes. But if the distance between i and j is equal to k, there
exists two distinct paths of minimal length joining the nodes. Therefore, we
can choose for each couple (i, j) of distance k, alternatively the minimal path
trough the left and trough the right (i.e. for example, for node 1, the minimal
path of length k trough the left). Then we find, if n

2 is even,

αll+1 = (1 + ...+ k) + (2 + ....+ k − 1) + ...+ (k − 1 + k) + k − 1

=
∑k
i=1

∑k
j=i j −

k
2k

= n(n2+2)
24 .

Figure 2-b gives an example of such a network. If n
2 is odd and in the worst

case,

αll+1 = (1 + ...+ k) + (2 + ....+ k − 1) + (3 + ....+ k) + ...+ (k − 1) + k

=
∑k
i=1

∑k
j=i j −

k−1
2 k

= n(n2+8)
24 .

4 Numerical simulations

In this section, we consider networks of type (37) with:

d = 2, s = 1,

F (u, v) =
1

ε
(−u3 + 3u− v), Q =

du
ε

σ(x) = b, φ(x, u) = au+ c,
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Figure 2: Unidirectionally ring. In panel a), the graph has an odd number
of nodes, n = 7. There exists a unique minimal path joining each couple of
nodes in the graph. For example, the computation of α12 is given by α12 =
(1 + 2 + 3) + (2 + 3) + (3). The order of the computation follows from the
counting of all the lengths of the minimal paths passing trough the edge (1, 2),
starting at 1,7 and 6. In panel b), the graph has an even number of nodes,
n = 8. If the distance between two nodes is equal to n

2 = 4, there exist two
distinct minimal paths joining these nodes. For example, we can link node 1
and node 5 either by the path 1−2−3−4−5 or by 1−8−7−6−5. Therefore,
we choose the path 1−2−3−4−5 to connect nodes 1 and 5, whereas we choose
the path 2− 1− 8− 7− 6 to connect 2 and 6, and so on. Then computation of
α12 is given by α12 = (1 + 2 + 3 + 4) + (2 + 3) + (3 + 4).

i.e. each node is represented by the following reaction-diffusion system of
FitzHugh-Nagumo type,{

εut = du∆u− u3 + 3u− v on Ω×R+

vt = au− bv + c(x) on Ω×R+ (47)

where u = u(x, t), v = v(x, t), du, a, b > 0, Ω ⊂ RN is a regular bounded open
set, and with Neumann zero flux conditions on the boundary.

We perform numerical simulations in two cases, fully connected networks in
one hand and unidirectionally coupled ring networks in the other hand, both
with linear coupling. As far as we know, only few results exists for networks
of reaction-diffusion systems, the case of a chain network has been partially
investigated in [2]. We use the following parameters values:

a = 1, b = 0.001, ε = 0.1, du = 0.05. (48)

The numerical integration of the network is realized using a C + + program, on
Ω× [0, T ] = [0, 100]× [0, 100]× [0, 3000]. The main concern of this section are:

• heuristic laws of strength coupling with respect to the number of nodes in
the graph

• influence of space heterogeneity in initial conditions with regard to the
synchronization phenomenon.

Our main conclusion is that heterogeneity in initial conditions does not af-
fect the general law of synchronization with respect to the number of nodes in
the graph. As for ODE’s, and in good agreement with our theoretical results,
the threshold value for synchronization is given by a 1

n law in case of a fully
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connected network, see figure 4 and a n2 law in case of a ring network, see figure
12 . However, it appears that the space heterogeneity of initial conditions will
increase the threshold value, see figure 8. Besides, the persistence of patterns
require some symmetry. This kind of question have been mentioned for example
in [2, 16], and the persistence of patterns, with respect to the size of Ω and the
diffusion coefficient have been studied in [2, 8]. If there is not a certain kind of
symmetry the network evolves towards homogeneous solutions whereas hetero-
geneous patterns persist under some symmetry conditions on initial conditions.
In the case of one node, this question is theoretically treated in a forthcoming
paper [3]. Indeed, in figure 5, we show how the increase of coupling strength
for non symmetric initial conditions, make the patterns disappear. Most of our
simulations are done with c(x) = 0 which correspond to the periodic regime of
the FHN system. However, we also perform some numerical simulations with
c(x) depending on x. This allows us to take advantage of both excitability and
oscillatory regime of the FHN system. The emerging laws are the same in this
case.

We split this section in two subsections corresponding to the fully and uni-
directional connected ring networks.

4.1 Fully connected network

For the fully connected network, the system reads as:
εuit = −u3

i + 3ui − vi + du∆ui − gn
n∑

j=1,j 6=i

(ui − uj)

vit = aui − bvi + c(x)

i = 1, n, (49)

where gn is the constant coupling strength between each couple of nodes in the
graph. We present here five figures.

• The figure 3 represents the evolution of the network, for n = 3, when
we choose two initial conditions with spirals and one homogeneous. The
simulations show that we obtain synchronization for a threshold value of
g3 ' 0.015. They also show that we obtain asymptotically three spirals
patterns.

• In figure 4, we represent the evolution of the coupling strength value gn
needed for synchronization with respect to the number of nodes in the
graph. The number of nodes is varied from 3 to 20, and we obtain an
heuristic law in 1

n . This is in good accordance with our theoretical results
and is similar with previous results for ODE’s networks. We have also
obtained the same heuristic laws when we choose only spirals for initial
conditions or only uniform laws on [−1, 1] or even with c(x) non-constant
function. Thus the spatial effects induced by initial conditions do not
affect this heuristic law already found on ODE’s fully linearly coupled
networks.
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• In figure 5, we show a possible effect of increasing the coupling strength.
For some values of the coupling strength, if the initial conditions are near
a symmetric configuration a pattern will persist otherwise they asymp-
totically evolve to a space homogeneous periodic solution, see [3] and the
references therein for a discussion in the case of a single reaction-diffusion
system of FHN type. Here in the case of the fully connected network of
FHN systems, for a coupling strength g3 = 0.5, and with to spirals and one
homogeneous for initial conditions, we observe that the network evolves
toward a space homogeneous synchronized state: the system synchronizes
but there is no more patterns.

• The figure 6 is obtained in an analogous way as the figure 3 but with
different initial conditions. Here, for each x ∈ Ω, we choose ui(x, 0) and
vi(x, 0), i ∈ {1, 2, 3} as random uniform values in [−1, 1]. The simulations
show that we obtain synchronization for a threshold value of g3 ' 0.014.
They also show that we obtain asymptotically three similar patterns.

• In figure 7, as in figure 4, we represent the evolution of the coupling
strength value gn needed for synchronization with respect to the number
of nodes in the graph. The number of nodes is varied from 3 to 20, and
we obtain an heuristic law in 1

n . Thus the spatial effects induced by initial
conditions do not affect this heuristic law.

• In figure 8, we show the evolution of the coupling strength value g20 needed
for synchronization with respect to the ratio between random uniform
initial conditions and space homogeneous initial conditions in the fully
connected network. The figure shows that increasing the space dispersion
in initial conditions increase the coupling strength threshold.

• Finally, in 9, we show the synchronization of a fully linearly connected
network of type (49) with n = 3, and c(x) a non constant function: c(x) =
0 if x is in a small neighborhood of (0, 0), and c(x) = −1.1 overwise.
For one subsystem, and because of the oscillatory-excitable of the FHN
system, this induces generation of periodic pulses starting at (0, 0). For
initial conditions, we choose three distinct space-homogeneous values. We
observe that the synchronization occurs for g3 ≥ 0.013.. Asymptotically,
the three subsystems evolve with spiral patterns.
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Figure 3: Synchronization of a fully linearly connected network of type (49)
with n = 3, c(x) = 0. For initial conditions, we choose two spirals and one
homogeneous in space. We observe that the synchronization occurs for g3 ≥
0.015.. Indeed, each row, from up to down, correspond respectively to the
following values for g3: 0.005, 0.01, 0.013, 0.015. The two first columns represent
the synchronization error respectively between u1 and u2 and u2 and u3. The
three others columns represent respectively from left to right the isovalues of
u1, u2 and u3 for all x = (x1, x2) ∈ Ω at time 3000. Asymptotically, the three
subsystems evolve with spiral patterns.
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Figure 4: Evolution of the coupling strength value gn needed for
synchronization with the respect to the number of nodes, n in the
graph for a fully connected network of type (49) with c(x) = 0, when
n is varied from 3 to 20. For initial conditions, we choose approx-
imately 50% of spirals and 50% of homogeneous. The blue points
represent the values obtained numerically, the red curve represents

the function gn =
0.046

n
− 0.00043. Thus, we obtain heuristically a

1
n law which is common in other areas and highlights the synchro-
nization emergent property, see for example [9, 10, 11].

Figure 5: Synchronization of a fully linearly connected network of
type (49) with n = 3, c(x) = 0 and g3 = 0.5. For initial conditions,
we choose two spirals and one homogeneous in space. This shows
an effect of the increasing of the coupling strength. Indeed, the
simulation is the same as in figure 3 with a coupling strength equal to
0.5. We observe that the spiral patterns disappear, and the network
evolve to space homogeneous solutions. This comes from a lack of
symmetry in initial solutions
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Figure 6: Synchronization of a fully linearly connected network of
type (49) with n = 3, c(x) = 0. For initial conditions, we choose ran-
dom initial conditions as follows: for each x ∈ Ω, we whose ui(x, 0)
and vi(x, 0), i ∈ {1, 2, 3} as random uniform values in [−1, 1]. We
observe that the synchronization occurs for g3 ≥ 0.014.. Indeed,
each row, from up to down, correspond respectively to the following
values of g3: 0.001, 0.005, 0.01, 0.014. The two first columns repre-
sent the synchronization error respectively between u1 and u2 and
u2 and u3. The three others columns represent respectively from
left to right the isovalues of u1, u2 and u3 for all x = (x1, x2) ∈ Ω
at time 3000. Asymptotically, the three subsystems evolve with the
same patterns.
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Figure 7: Evolution of the coupling strength value gn needed for
synchronization with the respect to the number of nodes, n in the
graph for a fully connected network of type (49) with c(x) = 0,
when n is varied from 3 to 20. For initial conditions, we choose
random uniform values in [−1, 1]. The blue points represent the
values obtained numerically, the red curve represents the function

gn =
0.042

n
. Thus, we obtain heuristically a 1

n law. Note that this

heuristically law is independent of the spatial structure of the initial
conditions.
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Figure 8: Evolution of the coupling strength value g20 needed
for synchronization with the respect to the ratio between random
uniform initial conditions and space homogeneous initial conditions
in the fully connected network. The blue points represent the
values obtained numerically, the red curve represents the function
gn(p) = 352× 10−9p2 − 11× 10−6 + 0.00305.
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Figure 9: Synchronization of a fully linearly connected network of
type (49) with n = 3, and c(x) = 0 if x is in a small neighborhood
of the center of Ω, c(x) = −1.1 overwise. For one subsystem, and
because of the oscillatory-excitable of the FHN systeclearpagem,this
induces generation o periodic pulses starting at (0, 0). For initial
conditions, we choose three distinct space-homogeneous values. We
observe that the synchronization occurs for g3 ≥ 0.013. Indeed,
each row, from up to down, correspond respectively to the following
values for g3: 0.01 and 0.013. The two first columns represent the
synchronization error respectively between u1 and u2 and u2 and
u3. The three others columns represent respectively from left to
right the isovalues of u1, u2 and u3 for all x = (x1, x2) ∈ Ω at
time 3000. Asymptotically, the three subsystems evolve with spiral
patterns.

4.2 Unidirectionally coupled ring network

For the unidirectionally ring connected network, the system reads as:
εuit = du∆ui − u3

i + 3ui − vi − gn
n∑

j=1,j 6=i

(ui − ui+1)

vit = aui − bvi + c(x)

i = 1, n, (50)

where gn is the constant coupling strength between each couple of nodes corre-
sponding to an edge in the graph. As for fully connected networks We present
here three figures.

• The figure 10 represent the evolution of the network, for n = 3, when
we choose all initial conditions with spirals. The simulations show that
we obtain synchronization for a threshold value of g3 ' 0.001. They also
show that we obtain asymptotically three spirals patterns.

• The figure 11 is obtained in an analogous way as the figure 10 but with
different initial conditions. Here, for each x ∈ Ω, we choose ui(x, 0) and
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vi(x, 0), i ∈ {1, 2, 3} as random uniform values in [−1, 1]. The simulations
show that we obtain synchronization for a threshold value of g3 ' 0.02.
They also show that we obtain asymptotically three similar patterns.

• In figure 12, we represent the evolution of the coupling strength value
gn needed for synchronization with respect to the number of nodes in
the graph. The number of nodes is varied from 3 to 20, and we obtain an
heuristic law in n2. This is in good accordance with our theoretical results
and with previous results for ODE’s networks. We have also obtained the
same heuristic laws when we choose only spirals for initial conditions or
spirals and homogeneous or even with c(x) non-constant function. Thus
the spatial effects induced by initial conditions do not affect this heuristic
law already found on ODE’s ring linearly coupled networks.
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Figure 10: Synchronization of a fully linearly connected network
of type (50) with n = 3, c(x) = 0. For initial conditions, we
choose three spirals. We observe that the synchronization occurs
for g3 ≥ 0.001. Indeed, each row, from up to down, correspond re-
spectively to the following values for g3: 0.0003, 0.0005, 0.001. The
two first columns represent the synchronization error respectively
between u1 and u2 and u2 and u3. The three others columns rep-
resent respectively from left to right the isovalues of u1, u2 and u3

for all x = (x1, x2) ∈ Ω at time 3000. Asymptotically, the three
subsystems evolve with spiral patterns.



Complex network of reaction-diffusion equations 29

Figure 11: Synchronization of a fully linearly connected network of
type (50) with n = 3, c(x) = 0. For initial conditions, we choose
random initial conditions as follows: for each x ∈ Ω, we whose
ui(x, 0) and vi(x, 0), i ∈ {1, 2, 3} as random uniform values in [−1, 1].
We observe that the synchronization occurs for g3 ≥ 0.02. Indeed,
each row, from up to down, correspond respectively to the following
values of g3: 0.001, 0.005, 0.02. The two first columns represent the
synchronization error respectively between u1 and u2 and u2 and
u3. The three others columns represent respectively from left to
right the isovalues of u1, u2 and u3 for all x = (x1, x2) ∈ Ω at time
3000. Asymptotically, the three subsystems evolve with the same
patterns.
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Figure 12: Evolution of the coupling strength value gn needed for synchroniza-
tion with the respect to the number of nodes, n in the graph of the unidirection-
ally ring connected network of type (50) with c(x) = 0, when n is varied from 3
to 20. For initial conditions, we choose approximately 50% of spirals and 50%
of homogeneous. The blue points represent the values obtained numerically, the
red curve represents the function gn = 0.0000167n2 + 0.00062n+ 0.02.

5 Conclusion

In this paper, we have considered a network of n coupled reaction-diffusion sys-
tems. We obtained three main contributions. First, we prove of the existence
of the network attractor, and therefore, within this attractor, we have analyzed
the synchronization behavior. We found out theoretically threshold values for
synchronization for general class of networks with linear coupling. Finally, we
have performed numerical simulations with different kind of initial conditions
and studied numerically the spatial effects on synchronization and pattern for-
mation. Thanks for the numerical experiments, we exhibited heuristic laws with
regard to the number of nodes in the graph. The general form of these heuris-
tic laws does not depend on spatial heterogeneity of asymptotic behavior. Our
numerical simulations also show the persistence of asymptotic spatial patterns
in complex networks. In future work, we aim to apply these results to more
realistic neuronal networks.

Appendix

Theorem 4. Let g,h and y ∈ L1(R) three positive functions. We suppose that
for all t ≥ t0:

dy

dt
≤ gy + h (51)

and, ∫ t+r

t

g(s)ds ≤ a1,

∫ t+r

t

h(s)ds ≤ a2,

∫ t+r

t

y(s)ds ≤ a3, (52)

where r, a1, a2, a3 are positive constants. Then

y(t+ r) ≤ (a3r + a2)ea1 ,∀t ≥ t0. (53)
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Proof. Let s0 ≥ t0. By (51), we have:

d

dt

(
e
−

∫ t
s0
g(s)ds

y(t)
)
≤ e−

∫ t
s0
g(s)ds

h. (54)

We integrate (54) between t and s0 + r for t ∈ [s0, s0 + r]. We obtain:

e
−

∫ s0+r
s0

g(s)ds
y(s0 + r)− e−

∫ t
s0
g(s)ds

y(t) ≤
∫ s0+r

t

exp{−
∫ t′

s0

g(s)ds}h(t′)dt′.

(55)
It follows that:

e−a1y(s0 + r)− e−
∫ t
s0
g(s)ds

y(t) ≤
∫ s0+r

t

h(t′)dt′. (56)

By multiplying by exp{
∫ t
s0
g(s)ds}, we find:

e
∫ t
s0
g(s)

e−a1y(s0 + r)− y(t) ≤ e
∫ t
s0
g(s)ds

∫ s0+r

t

h(t′)dt′. (57)

Then we integrate between s0 and s0 + r with respect to t. This gives:

e−a1y(s0 + r) ≤ a3 + a2r, (58)

thus:
y(s0 + r) ≤ (a3 + a2r)e

a1 . (59)

Corollary 3. Let y, h ∈ L1(R) two positive functions. We assume that fort
t ≥ t0:

dy

dt
≤ h (60)

and, ∫ t+r

t

h(s)ds ≤ a2,

∫ t+r

t

ds ≤ a3, (61)

where r, a2, a3 are positive constants. Then

y(t+ r) ≤ a3

r
+ a2,∀t ≥ t0. (62)

Proof. It follows obviously from theorem 4 with a1 = 0. We can also give a
direct proof:

y(s0 + r)− y(t) ≤
∫
t

s0 + rhds. (63)

Then we integrate between s0 et s0 + r with respect to t. We obtain,

y(s0 + r) ≤ a3

r
+ a2. (64)
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