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Abstract This article is devoted to the characterization of the basin of attraction of
pattern solutions for some slow-fast Reaction-Diffusion systems with a symmetric
property and an underlying oscillatory reaction part. We characterize some subsets of
initial conditions that prevent the dynamical system to evolve asymptotically towards
these solutions. We also perform numerical simulations that illustrate theoretical re-
sults and give rise to symmetric and non-symmetric pattern solutions. We obtain these
last solutions by choosing particular random initial conditions.
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1 Introduction

Pattern formation arises naturally in widely applications such as chemistry, fluid me-
chanics, bacteria development, morphogenesis, animals coats designs, visual halluci-
nations... Among the mathematical models that allows pattern formation, Reaction-
diffusion (RD) models are quite relevant. Recall that (RD) systems are partial differ-
ential equations with the following form:

Ut = F(U)+K∆U.

We give below some striking biological examples of pattern formation whose behav-
ior has been successfully modeled by Reaction-Diffusion systems. Obviously, this
is not exhaustive. The most famous chemical example is certainly the Belousov-
Zhabotinsky family of chemical reactions. A mix of a solution of sodium bromate
and sulfuric acid and a solution of malonic acid sodium bromure, with a few drops
of ferroin, in adequate proportions, will oscillate between red and blue color. If the
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same kind of mixture lies on a petri dish, one can observe target or spiral patterns for-
mation. Another patterns such as Turing structures or standing waves have also been
observed in Belousov Zhabotinsky chemical reaction types, see [3,10,?,?,?]. Bacte-
ria development also furnishes striking examples of patterns. In this context, RD sys-
tems have been successfully used to obtain diffusion-limited aggregation-like, Eden-
like, concentric ring-like, disk-like and dense branching morphology-like patterns for
the bacteria Bacillus Subtilis development, see [8,9,11]. Dictyostellium Discodeum
amoeba, in condition of starvation also exhibits spectacular patterns that have been
modelled by reaction diffusion systems, see [7,?]. In physiological context spiral or
target patterns can be found in excitable or oscillatory cells such as cardiac tissue or
brain, see [12]. A well known example of pattern formation in physiological context
is the appearance of visual patterns related to drug induced hallucinations. A math-
ematical modeling approach has been developed for that, see [5,4] and references
therein cited. From a mathematical point of view pattern formation in reaction diffu-
sion systems has attracted numerous researchers. The first mathematical well-known
analysis came with the seminal work of Turing[15], in which a two component sys-
tem of reaction diffusion is proposed to explain the morphogenesis. Mathematically,
the phenomena known as Turing mechanism occurs when the diffusion-less system
possess a stable stationary solution and the diffusion term turn the stationary point un-
stable, leading to stable patterns solutions. The mathematical technique, largely used,
consists then on exhibiting sufficient conditions in order to obtain positive eigenval-
ues for the jacobian at the steady state, see for example [12]. In the same idea, one
can get stable patterns if the underlying ODE system possesses a bistability property.
When the underlying ODE is either excitable or oscillatory wave propagation may
occur that eventually results on pattern formation. In the context of excitable media,
wave propagation results from the diffusion term: the excitation wave may propagate
trough excitation of neighbors. Note that this idea already appears in the works of
[?,?]. In case of oscillatory media the wave propagation results from a shift in oscil-
lations regarding to the space location. It is important to note that symmetry plays a
key role in pattern formation. This idea was already found in [15]. Since this pioneer-
ing work, an important and interesting theory has been developed to study the role
of symmetry in dynamical systems, see [6]. Among all these cases where RD sys-
tems may lead to pattern formation, we will focus in the following one: RD-systems
with two components and a symmetric oscillatory reaction term. More precisely, we
will focus on the characterization of the basin of attraction of special patterns for
reaction-diffusion systems whose underlying ODE reaction system has the following
property: the unique fixed point is the origin and all solution initiating from a value
distinct from the origin evolves asymptotically around a limit cycle. We will also
assume that, the ODE has a symmetry property, for example if U(t) is a solution,
−U(t) also is a solution. A typical ODE system of this kind is given by the following
FitzHugh−Nagumo system: {

εut = f (u)− v
vt = u−δv (1)

where f (u) = −u3 + 3u, ε is small parameter, and δ not to large. Let us recall
that the FitzHugh-Nagumo system is a simplification of the Hodgkin-Huxley model
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that can exhibit oscillatory or excitable behavior. In this system, the variable u repre-
sents the cellular electric potential while the variable v is a recovery variable. For the
version studied here, it is oscillatory. Indeed, the figure 1 illustrates the asymptotic
behavior of system (1).

Throughout this paper we will mainly deal with the following reaction-diffusion
system: {

εut = f (u)− v+du∆u
vt = u−δv+dv∆v (2)

whith f (u) =−u3 +3u, ε small, δ not to large, du > 0,dv ≥ 0 and Neumann Bound-
ary conditions (NBC) but theoretical results remain valid for systems with analog
properties. We are interested in the characterization of the basin of attractions of
(2). More precisely, we know that the system generates a semi-group and posseses a
global attractor in L2(Ω)×L2(Ω) and a bound in L∞(Ω)×L∞(Ω), see for example
[AMbrosio, Marion, Phan. ..]. Note that other frameworks are possible such as classi-
cal and holder function spaces, see [13]. Amoung the elements of the attractor, some
are well-known: the elements constant in space and belonging to the attractor of (1).
In other words, if we choose initial conditions of (2), (u0(x),v0(x)) constant in space,
and if (u,v) is a solution of (2), then for all fixed x ∈Ω , (u(x, t),v(x, t)) is a solution
of (1) which evolves toward the limit-cycle as soon as (u0(x),v0(x)) 6= (0,0). Nu-
merical simulations show that almost of initial conditions will evolve asymptotically
toward this solution. In the case where,

λdu > 3, (3)

where λ is the smallest non-zero eigenvalue of−∆ with NBC, all the solutions evolve
asymptotically towards space homogeneous solutions, that is, towards the limit cycle
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of (1) or towards (0,0), see [1,2]. A question naturally arises: when (3) is not fulfilled,
are we able to characterize the initial conditions that will not evolve toward homoge-
neous space solutions? The aim of this article is to discuss this question and furnish
some theoretical and numerical elements of response. Indeed, the article is divided in
five parts as follows. After the current introducing part, we give some crucial elements
giving some insights on the stability of the space-homogeneous periodic solution of
(2), in the second part. In the third part, we give sufficient conditions that implies an
asymptotic non-homogeneous space behavior. This means that we will characterize
some elements of the basin of attractions of non-homogeneous-space elements of the
attractor. For this we use the symmetry of the equation (2): if (u,v) is a solution, also
−(u,v) is. Also we will consider symmetric domains. This means that we will be able
to choose appropriate initial conditions, leading to null integrals

∫
Ω

udx and
∫

Ω
vdx.

Therefore, this prevents the solution to evolve toward the limit cycle solution of (1).
In the forth part, we perform numerical simulations. We illustrate some applications
of the theoretical results of the third part and also exhibit numerically another ini-
tial conditions that will evolve asymptotically to non-homogeneous space solutions.
For this we will choose initial conditions distributed along stochastic laws. We will
show numerical evidence that choosing initial conditions with stochastic laws of null
expectancy leads to asymptotically non-homogeneous space solutions but woth less
symmetry. The conclusion is left to the last part. We denote by (ũ, ṽ) the periodic
solution of (1).

2 Stability of the homogeneous solution (ũ, ṽ) for (2)

In this part we give two propositions giving insights on the stability of (ũ, ṽ) using
slow-fast analysis. The rigorous proof of this stability, however, present some techni-
cal subtelties and it is left for a forthcoming paper. We rewrite (2) around (ũ, ṽ), this
gives: {

εut = f ′(ũ)u+ f ′′(ũ)
2 u2−u3− v+du∆u

vt = u−δv+dv∆v
(4)

The layer system writes:{
ut = f ′(ũ(0))u+ f ′′(ũ(0))

2 u2−u3− v+du∆u
vt = 0

(5)

while the reduced system writes:{
0 = f ′(ũ(t))u+ f ′′(ũ(t))

2 u2−u3− v+du∆u
vt = u−δv+dv∆v

(6)

We split the proof into two lemmas. We start with the first one which gives the asymp-
totical behavior of the layer system. Let us consider the following equation:

ut = g(u)− v+du∆u. (7)

We have:
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Proposition 1 Let X =C0(Ω̄) endowed with the norm || f ||= supx∈Ω̄
| f (x)|. We as-

sume that g∈C1() is such that g(0) = 0 and g′(0)< 0, then for ||v|| small enough and
u0 ∈ X ∩C2(Ω̄) such that ||u0|| small enough the solution u of (7) evolves towards
the (locally) unique stationary solution of (7) in X.

Proof The proof basically relies on maximum principles. Note that because of Neu-
mann boundary conditions maximum or minimums cannot occur on boundaries, see
[?]. We give here a direct proof. Since g′(0) < 0, g is locally decreasing in a closed
interval I containing 0, for ||v|| small enough, we can find u0 and two constant values
a and b ∈ I such that a < u0(x)< b, with:

g(a)− v(x)> 0,

g(b)− v(x)< 0,

and g′(x)< 0 in [a,b]. This means that a is sub-solution and b an upper-solution of (7),
see for example [14]. Let us denote by ua(x, t) the solution of (7) with ua(x,0) = a,
then for all t > 0, a < ua < b. Indeed, if ua reaches b for the first time, equation
(7) leads to 0 ≤ uat = g(b)− v+ du∆ua < 0, which is a contradiction. Analogously,
since uat(x,0) = g(a)− v > 0, ua is greater than a for t small enough. Therefore, if
ua reaches a for the first time, we have 0 ≥ uat = g(a)− v+ du∆ua > 0 which is a
contradiction. Therefore for all t > 0, a < ua < b. Note that this result remains valid
for any solution such that a ≤ u0 ≤ b, but we focus for the moment on the solution
with u0 = a. We set w = uat . Then

wt = g′(ua)w+du∆w, (8)

and
w0 = g(a)− v > 0.

By analog arguments we can prove that w ≥ 0 (consider the first time such that w
reaches a value w− < 0). We will prove that in fact w > 0 and we will give an uniform
bound, depending only on time. Let lm =minx∈[a,b] g′(x) and lM =maxx∈[a,b] g′(x). We
have lm < lM < 0. Let w the solution of wt = lmw with w0 = infx∈[a,b] w0. Then we
have

wt ≥ lmw+du∆w,

and therefore,
(w−w)t ≥ lm(w−w)+du∆(w−w).

Hence w−w≥ 0, which means:

uat ≥ w0elmt .

With same arguments, we show that uat = w converges uniformly toward 0. Let ub
the solution of (7) with u(0) = b, u converges uniformly to a continuous function. By
analog comparison arguments we show that ub− ua converges uniformly toward 0.
Indeed, let h = ub−ua. We have:

ht = g′(θ)h+du∆h
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with θ(x, t)∈]a,b[. We have h≥ 0. Let h̄ solution of ht = lMh with h̄0 =maxx∈Ω̄
(ub−

ua) and h solution of ht = lmh with h0 = minx∈Ω̄
(ub−ua). Then,

ht ≤ lMh+du∆h,

and
(h̄−ht)≤ lM(h̄−h)+du∆(h̄−h).

Also,
(h−h)t ≥ lm(h−h)+du∆(h−h).

Therefore,
h0elmt ≤ h≤ h̄0elMt .

It follows that h converges uniformly toward 0. Therefore ua and ub converge uni-
formly towards a function, let’s say u∗. Next, we show that u∗ is a solution of g(b)−
v+du∆u = 0. As uat converges uniformly toward 0, we have

g(u∗)− v+du∆u∗ = 0. (9)

Also, as uat and g(ua) converges uniformly, this implies that ∆ua converges uni-
formly. Same arguments are valid to show, that any solution of (7), starting with
u0 ∈ [a,b], will converge uniformly toward a solution of (9). For the unicity, let u1
and u2 two solutions of the stationary equation belonging to the interval [a,b]. Then:

g′(θ)(u1−u2)+du∆(u1−u2) = 0.

By integrating by parts or by a maximum principle this implies that u1−u2 = 0.

The proposition 2 shows that the reduced system decreases exponentially in norm L2

as long as (ũ, ṽ) and (u,v) remain in the attractive parts of the cubic. We set g(t,u) =
f ′(ũ(t))u+ f ′′(ũ(t))

2 u2− u3 = 3(1− ū2)u− 3ūu2− u3. Let a(t) = −ū− 1 and b(t) =
−ū+1. Let v(x, t) a solution of (6).

Proposition 2 Let I = [t0, t1] such for all t ∈ I that f ′(ū(t))<−1 (resp f ′(ū(t))> 1)
and that v(x, t) ∈ [g(t,a(t)),+∞[ (resp ]−∞,g(t,b(t))]). Then for all t ∈ [t0, t1], we
have ∫

Ω

v2(x, t)dx≤ e−δ (t−t0)
∫

Ω

v2(x,0)dx

Proof We multiply the second equation of (6) by and integrate over Ω , we obtain:

d
dt

∫
Ω

v2(x, t)dx = 2(
∫

Ω

uvdx−δ

∫
Ω

v2dx−
∫

Ω

v∆vdx).

By multiplying now the first equation of (6) and integrating over Ω , we have∫
Ω

uvdx =
∫

Ω

g(t,u)udx+
∫

Ω

udu∆udx.

The assumptions of the proposition imply that
∫

Ω
g(t,u)udx≤ 0 for t ∈ [t0, t1]. There-

fore, using green formula, we obtain:

d
dt

∫
Ω

v2(x, t)dx≤−2δ

∫
Ω

v2dx).

Then the result follows from multiplying by e2δ t and integrating.



Title Suppressed Due to Excessive Length 7

3 A condition for evolution toward patterns

Let us denote (ū, v̄) the limit-cycle of (1). The following theorem exhibits initial con-
ditions that prevent the solution of (2) to be asymptotically homogeneous and evolve
to (ū, v̄).

Theorem 1 Suppose that we can divide the domain into a partition Ω =(∪i∈{1,...,l})∪
(∪i∈{1,...,l}Vi) such that for i ∈ {1, ..., l} there exists a diffeomorphism φ from Ui to Vi
with |detJφi |= 1, where J is the jacobian of φ and initial conditions such that for all
x ∈ ∪i∈{1,...,l}Ui) and for all t ∈+, (ui(φi(x), t),vi(φi(x), t)) =−(ui(x, t),vi(x, t)) then
the solution of (2) can not evolve asymptotically toward (ū, v̄).

Proof If the hypothesis of theorem 1 are verified then, for all t > 0:

∫
Ω

u(x, t)dx =
l

∑
i=1

∫
Ui

u(x, t)dx+
l

∑
i=1

∫
Vi

u(x, t)dx

=
l

∑
i=1

∫
Ui

u(x, t)dx+
l

∑
i=1

∫
Ui

u(φi(x), t)|detJφi |dx

=
l

∑
i=1

∫
Ui

u(x, t)dx−
l

∑
i=1

∫
Ui

u(x, t)dx

= 0

The result is valid for
∫

Ω
v(x, t)dx. And we know that for all t:∫

Ω

(ū(t), v̄(t) 6= (0,0).

The two following corollaries give examples of situations where theorem 1 apply.

Corollary 1 Suppose that the domain Ω has (0,0) as symmetry center and that
for all x = (x1,x2) ∈ Ω(u0,v0)(x) = −(u0,v0)(−x) then for all t > 0 and for all
x ∈Ω ,(u,v)(x, t) =−(u,v)(−x, t)(resp(u,v)(x, t) =−(u,v)(−x1,x2, t),(u,v)(x, t) =
−(u,v)(x1,−x2, t)). Then the solution of (2) can not be asymptotically homogeneous
and evolve asymptotically toward (ū, v̄).

Proof This follows from symmetry, and the property that ( f (−u) + v,−u+ δv) =
−( f (u)− v,u−δv).

Corollary 2 Suppose that the domain Ω has (x1,0) as axis symmetry and that for all
x = (x1,x2) ∈ Ω (u0,v0)(x1,x2)) = −(u0,v0)(x1,−x2)) then for all t > 0 and for all
x ∈Ω , (u,v)(x, t) =−(u,v)(x1,−x2, t)). It follows that the solution of (2) can not be
asymptotically homogeneous and evolve asymptotically toward (ū, v̄).

Proof This follows from symmetry, and the property that ( f (−u)+v = ∆(−u),−u+
δv) =−( f (u)− v+∆u,u−δv).
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Fig. 1 This figure shows the asymptotical evolution of a solution of (2). More precisely, it represents the
isovalues of u(x1,x2, t) for time t = 190. It is obtained by choosing (u0(x),v0(x) = (1,0) on the quarter
left-up square, (u0(x),v0(x) = (0,1) on the quarter right-up square, quarter left-up square, (u0(x),v0(x) =
(0,−1) on the quarter left-down square and (u0(x),v0(x) = (−1,0) on the quarter right-down square. This
illustrates an asymptotic non homogeneous space behavior of a spiral type. It is an application of the
corollary 1

4 Numerical simulations

In this section we present some numerical simulations of (2) leading to pattern for-
mation. We use a C++ program with aa difference finite scheme in space and RK4
in time. We choose a time step dt = 0.01 on the intervall [0,200] and a space step
h = 1 on the square domain [0,100]× [0,100]. Also we choose du = 1,dv = 0,ε =
0.1,δ = 0.2. Numerical simulations in figures above.



Title Suppressed Due to Excessive Length 9

Fig. 2 This figure shows the asymptotic evolution of a solution of (2) at some space points. Indeed, the
green line represents u(x1,x2, t) for (x1,x2) = (50,50, t), for time t ∈ [180,200]. The red line represents
u(x1,x2, t) for (x1,x2) = (50,100, t), for time t ∈ [180,200]. Finally, the blue line represents

∫
Ω

u(x, t)dx,
which is zero as predicted by the theory. It is obtained by choosing the same initial conditions as in figure
4. This illustrates an asymptotic non homogeneous space behavior. For each x ∈ Ω the trajectory evolves
asymptotically around limit cycles of same period, the patterns observed result from a phase shift.

Fig. 3 This figure shows the asymptotic evolution of a solution of (2). It represents u(x1,x2, t) for time
t = 190. It is obtained by reproducing for times the initial conditions of figure 4 by axial symmetry. More
precisely, we reproduce the initial conditions of figure 4 in the upper-left quarter square. Then, we operate
an axial symmetry of axis (x1,0) to obtain the initial conditions on the quarter down-left square, and an
axial symmetry of axis (0,x2) to obtain the initial conditions on the upper-right quarter square. Finally, we
choose initial conditions on the down-right quarter by central symmetry of the upper-left or equivalently
by axial symmetry of the upper-right or down-left quarter square. Then, we obtain four spirals. By the way,
we can show by symmetry that choosing such initial conditions, implies that the solution on the upper-left
quarter verify (2) with NBC. Then, it comes from symmetry that we obtain four times the same patterns.
We can repeat this procedure as many times as needed.
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for time t ∈ [180,200], which is zero as predicted by the theory. It is obtained by choosing the same initial
conditions as in figure 4. This illustrates an asymptotic non homogeneous space behavior. For each x ∈Ω

the trajectory evolves asymptotically around limit cycles of same period, the patterns observed result from
a phase shift.

Fig. 5 This figure shows the asymptotic evolution of a solution of (2). It represents u(x1,x2, t) for time
t = 190. It is obtained by operating two times the procedure described in figure 4. We obtain sixteen
spirals. However, we have to notice that in this case, because of our discretization, we don’t have a perfect
symmetry for initial conditions. Indeed, some domains are slighty bigger than other, for example the left-
down corner in which we take a constant initial contain 13×13 (because 13 = 100/8+1) points while the
opposite region where we choose symmetric value contains 12×12 points. Therefore, the symmetry is not
perfectly verified.

3. Epstein, I.R., Showalter, K.: Nonlinear chemical dynamics: Oscillations, patterns, and chaos. J. Phys.
Chem. 100, 13,132–13,147 (1996)

4. Ermentrout, G., Cowan, J.: A mathematical theory of visual hallucilations patterns. Biol. Cybernetics
34, 137150 (1979)

5. Golubitsky, M., Shiau, L.J., Torok, A.: Symmetry and pattern formation on the visual cortex. Dynam-
ics and Bifurcation of Patterns in Dissipative Systems. Series on Nonlinear Science 12, 3–19 (2004)

6. Golubitsky, M., Stewart, I.: The Symmetry Perspective. Birkhauser (2002)
7. Halloy, J., Lauzeral, J., Goldbeter, A.: Modelling oscillations and waves of camp in dictyostelium

discoideum cells. Biophysical chemistry 79, 9–19 (1998)



Title Suppressed Due to Excessive Length 11

Fig. 6 This figure shows the asymptotic evolution of a solution of (2) at some space points. Indeed, the
green line represents u(x1,x2, t) for (x1,x2) = (50,50, t), for time t ∈ [180,200]. The red line represents
u(x1,x2, t) for (x1,x2) = (50,100, t), for time t ∈ [180,200]. Finally, the blue line represents

∫
Ω

u(x, t)dx,
for time t ∈ [180,200]. It is obtained by choosing the same initial conditions as in figure 4. This illustrates
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Fig. 8 This figure shows the asymptotic evolution of a solution of (2) at some space points. Indeed, the
green line represents u(x1,x2, t) for (x1,x2) = (50,50, t), for time t ∈ [180,200]. The red line represents
u(x1,x2, t) for (x1,x2) = (50,100, t), for time t ∈ [180,200]. Finally, the blue line represents

∫
Ω

u(x, t)dx,
for time t ∈ [180,200]. As previously the figure is obtained by choosing for all x ∈Ω , (u0(x),v0(x)) as a
realization of an uniform stochastic variable on [−1,1]. This illustrates an asymptotic non homogeneous
space behavior. For each x ∈ Ω the trajectory evolves asymptotically around the same limit cycle, the
patterns observed result from a phase shift. We can see that the value of

∫
Ω

u(x, t)dx oscillate between
approximatively −0.2 and 0.2 as it was the case for the solution with sixteen spirals. In this case also the
zero-integral condition with symmetry is not verified for initial conditions.

Fig. 9 This figure shows the asymptotic evolution of a solution of (2). More precisely, it represents
u(x1,x2, t) for time t = 190. It is obtained by choosing for all x ∈ Ω , (u0(x),v0(x)) as a realization of
a stochastic variable following the law N (0,1). This illustrates an asymptotic non homogeneous space
behavior as it was the case for stochastic uniform initial conditions.
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Fig. 10 This figure shows the asymptotic evolution of a solution of (2) at some space points. Indeed, the
green line represents u(x1,x2, t) for (x1,x2) = (50,50, t), for time t ∈ [180,200]. The red line represents
u(x1,x2, t) for (x1,x2) = (50,100, t), for time t ∈ [180,200]. Finally, the blue line represents

∫
Ω

u(x, t)dx,
for time t ∈ [180,200]. As previously the figure is obtained by choosing for all x ∈ Ω , (u0(x),v0(x))
as a realization of a stochastic variable following the law N (0,1). This illustrates an asymptotic non
homogeneous space behavior. For each x ∈Ω the trajectory evolves asymptotically around the same limit
cycle, the patterns observed result from a phase shift.As previously the value of

∫
Ω

u(x, t)dx oscillate
between approximately −0.2 and 0.2.


