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Abstract

We consider a FitzHugh-Nagumo Reaction-Diffusion type system (FHN). The dy-
namics of the reaction part induces a unique repulsive stationnary point (0, 0) and a
unique attractive limit cycle. After a description of the asymptotic behaviour of the
FHN system, we deal with the synchronization and control analysis of N coupled
FHN systems.

1. Introduction

In 1952, after experiences on the squid giant axon, Hodgkin and Huxley pro-
posed the first neuron model, see for example, [6], [8], [9], [10], [13],

C
dV

dt
= −ḡKn4(V − VK)− ḡNam

3h(V − VNa)− ḡL(V − VL) + I

dm

dt
= αm(V )(1−m)− βm(V )m

dn

dt
= αn(V )(1− n)− βn(V )n

dh

dt
= αh(V )(1− h)− βh(V )h

where,
V represents the membrane potential,
I represents an external applied current,
m,n and h, varying between 0 and 1, represent respectively the sodium activation,
the sodium inactivation and the potassium activation. They determine the mem-
brane permeability with respect to the associated ion.
C is the membrane capacitance.
ḡK , ḡNa and ḡL represent the maximal conductance of the membrane respectively
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for the potassium, sodium and leakage (mainly carried by chlorure ions) current.
VK , VNa and VL represent the Nernst equilibrium potential for potassium, sodium
and leakage current. The α’s and β’s are functions of V , they represent the transfert
rates, and have been experimentally determined by Hodgkin and Huxley. Thus,
the Hodgkin-Huxley model gives a description of the main ionic fluxes across
the neuron membrane creating the nervous signal. In 1961, FitzHugh proposed
a 2D model that reproduces excitability and ocillatory features found in Hodgkin-
Huxley model, see [4]. It is a modification of the well-known Van der Pol model,
and has been initially called, the Bonhoeffer-van der Pol (BVP) model,

{
xt = c(F (x) + y + z)

yt =
1

c
(x− a+ by)

with,

wt =
dw

dt
,

and where F is a cubic function, a, b > 0, z corresponds to a stimulus intensity.
In the same paper [4], FitzHugh showed that the quantities u = V − 36m,

w = 0.5(n− h) obtained from the Hodkin-Huxley model evolve like the variables
x and y of the BVP model. In 1962, Nagumo et al. proposed an electronic circuit
whose behaviour is modeled by the BVP model, see [9]. The BVP model is now
called the FitzHugh-Nagumo model. Another way to reduce the Hodgkin-Huxley
to the FitzHugh-Nagumo model is to use properties of the Hodgkin-Huxley model
and set, h = 0.85−n and m(V ) = αm(V )

αm(V )+βm(V ) , then approximate the nullclines
by a cubic and a straight line, see for example [8]. Thus, we consider here the
following model of FitzHugh-Nagumo type,{

ϵut = f(u)− v
vt = u− δv

(1)

where
f(u) = −u3 + 3u and ϵ > 0, δ > 0 are small parameters.

In this case, all the solutions of system (1) different from (0, 0) evolve towards the
unique attractive limit cycle (see Figure 1 and for example [1], in the limit case
δ = 0).

Based on the model (1), we study a Reaction-Diffusion system of FitzHugh-
Nagumo type (FHN), see also [2],{

ϵut = f(u)− v + du∆u
vt = u− δv + dv∆v

(2)
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Figure 1: Solutions of system (1).

with u = u(x, t), v = v(x, t), on a smooth bounded domain Ω ⊂ Rn with du, dv >
0 and with Neumann zero flux conditions on the boundary Γ of Ω,

∂u

∂ν
=

∂v

∂ν
= 0.

If the solutions of system (1) are well-known, what can we expect about the asymp-
totic behavior of solutions of system (2)? This is the aim of the first part of Section
2, in which we also provide sufficient conditions under which the solutions go
to (0, 0). In the second part of this section, we extend the obtained result for N
coupled systems of FHN type, N = 1, 2, ... and give results on synchronization
phenomenom in the last section of this paper.

2. Analytical results on the space temporal behaviour of N coupled systems
of FHN type

This section deals with the asymptotic behaviour of the solutions of N cou-
pled systems of FHN type and mainly with the space homogenous charateristic or
pattern formation.

2.1. One system of FHN type

Our concern here, is the asymptotic behaviour of solutions of system (2) when
those of system (1) are known. Such a question may be found, for example, in
Conway et al. [3]. Using these techniques, one can prove the following result:
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Theorem 1. Let λ be the smallest non zero eigenvalue of the Laplacian operator
with zero flux Neumann boundary conditions. If,

3− λdu < 0 (3)

then,
lim

t→+∞
(||(u− ū||L2(Ω) + ||v − v̄||L2(Ω)) = 0 (4)

where,

ū(t) =

∫
Ω u(x, t)dx

|Ω|
, v̄ =

∫
Ω v(x, t)dx

|Ω|
and where ū,v̄ are solutions of the following system,

{
ϵūt = f(ū)− v̄ + g(t)
v̄t = ū− δv̄

(5)

with g(t) → 0 with exponential rate when t goes to +∞ .

This means that, asymptotically, the solutions are space homogeneous, and for
each x ∈ Ω, solutions of system (2) are solutions of system (1) which,

(i) either evolve around the limit cycle of (1),
(ii) or evolve towards (0, 0).

(6)

Remark 1. Let us recall, see [3], that the eigenvalue λ increases when the size of
Ω decreases. This means that condition (3) is satisfied when the size of Ω is small
or the diffusion coefficients du, dv are large.

Proof of Theorem 1. Let ϕ(t) = 1
2(ϵ||∇u||2L2(Ω) + ||∇v||2L2(Ω)) then,

ϕ̇ =

∫
Ω
(ϵ∇u∇ut +∇v∇vt)

=

∫
Ω
(∇u∇(f(u)− v + du∆u) +∇v∇(u− δv + dv∆v))

=

∫
Ω
(f ′(u)|∇u|2 − δ|∇v|2 − du(∆u)2 − dv(∆v)2)

≤
∫
Ω
3|∇u|2 − λdu

∫
Ω
|∇u|2 − δ|∇v|2 − λdv

∫
Ω
|∇v|2

≤ (3− λdu)

∫
Ω
|∇u|2 − (λdv + δ)

∫
Ω
|∇v|2
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Now, since, λdu > 3 we have,

ϕ̇ ≤ −2min(
λdu − 3

ϵ
, λdv + δ)ϕ

thus,

ϕ(t) ≤ ϕ(0)e−c1t

where,

c1 = 2min(
λdu − 3

ϵ
, λdv + δ)

Furthermore,

||u− ū||2L2(Ω) + ||v− v̄||2L2(Ω) ≤
1

λ
(||∇u||2(L2(Ω))n + ||∇v||2(L2(Ω))n) ≤ 2

λϵ
ϕ(t)

which implies (4). In the remaining of the proof, we show that, ū et v̄ are solutions
of (5). We have,

{
ϵūt = 1

Ω

∫
Ω f(u)− v̄

v̄t = ū− v̄

thus,

{
ϵūt = 1

Ω

∫
Ω(f(u)− f(ū)) + f(ū)− v̄

v̄t = ū− δv̄

that is, {
ϵūt = g(t) + f(ū)− v̄
v̄t = ū− δv̄

where,

g(t) =
1

|Ω|

∫
Ω
(f(u)− f(ū)).

But,

|g(t)| = | 1

|Ω|

∫
Ω
(f(u)− f(ū))|

≤ M

|Ω|

∫
Ω
|u− ū|

≤ M

|Ω|
1
2

||u− ū||L2(Ω)
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where,
M = sup

t∈R+

|f ′(ū)|

since from a result in [1], we know that (u, v) ∈ L∞(Ω) × L∞(Ω), one can also
see [12]. Which completes the proof.

The following proposition gives a sufficient condition to the occurence of the
asymptotic behaviour (ii) given by (6).

Proposition 1. If condition (3) of Theorem 1 is satisfied and if,∫
Ω
u(0, x)dx =

∫
Ω
v(0, x)dx =

∫
Ω
f(u(0, x))dx = 0, (7)

and,

∀t ≥ 0,

∫
Ω
f(u(t, x))dx = 0, (8)

then,
lim

t→+∞
(||u||L2(Ω) + ||v||L2(Ω)) = 0

Proof. By integrating system (2) and dividing by |Ω|, we have,

{
ϵ ∂
∂t ū = 1

|Ω|
∫
Ω f(u)− v̄

∂
∂t v̄ = ū− δv̄

(9)

since ∫
Ω
∆udx =

∫
Ω
∆vdx = 0,

and

(ū(t), v̄(t)) = (

∫
Ω u(x, t)dx

|Ω|
,

∫
Ω v(x, t)dx

|Ω|
).

Thus, due to condition (7) and (8), we obtain that (0, 0) is the unique solution of
(9). Then, the result follows obviously from application of Theorem 1.

If condition (3) is satisfied, Theorem 1 gives a comprehensive description of
the asymptotic behaviour. If condition (7) is satisfied, the solutions of system (2)
evolve towards solutions of kind (ii) given by (6), that is space homogenous so-
lution (0, 0), whereas if not, solutions evolve towards solutions of kind (i) given
by (6), that is the asymptotic behaviour is space-homogeneous and time-periodic.
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Now, we consider the case where condition (3) is not satisfied and perform nu-
merical simulations to analyze the asymptotic behaviour of solutions. We use the
following parameter values,

Ω = [0, 100]× [0, 100] ⊂ R2

ϵ = 0.1
δ = 0.001

du = dv = 1.

(10)

We observe that, if (7) is not satisfied, the system still evolves like solutions of kind
(ii) given by (6). For instance, Figure 2 shows such a behaviour in the case where
the initial conditions u(x, 0), v(x, 0) follow a uniform law on the interval [0, 1]
forall x = (x1, x2) ∈ Ω. This figure and all the following have been obtained,
using an explicit finite difference scheme, with C++ language, and with a time step
discretization equals to 0.01 and space step discretization equals to 1.

While, if condition (7) is satisfied, our numerical simulations show special
patterns. Indeed, Figure 3 shows a mirror solution of system (2) for particular
initial conditions satisfying (7). Likewise Figure 4 and Figure 5, show a spiral and
a multiple spiral solutions of system (2) for particular initial conditions satisfying
(7).

Under the same conditions, as those used for Figure 3,4,5, if we choose ini-
tial conditions following a uniform law on [−1, 1] forall x ∈ Ω, that is, near the
set of functions satsfying condition (7), our numerical simulations show a more
complicated asymptotic behaviour as done in Figure 6.

Remark 2. Let us remark that wave propagation and pattern formation are of
great interest in understanding the behaviour of lot of systems and in particular
the brain or cardiac dynamics. For example, in [7], and references therein cited,
formation of spiral patterns have been experimentally shown in neocortex.
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Figure 2: Space homogeneous and periodic-time asymptotic behaviour of system (2) for almost
initial conditions, with parameter values given by (10), (a) initial condition u(x, 0), (b) asymptotic
behaviour u(x, 200).
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Figure 3: Mirror asymptotic behaviour of system (2) for particular initial conditions near the set
of functions satisfying (7), with parameter values given by (10), (a) initial condition u(x, 0), (b)
asymptotic behaviour u(x, 200).
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Figure 4: Spiral asymptotic behaviour of system (2) for particular initial conditions near the set
of functions satisfying (7), with parameter values given by (10), (a) initial condition u(x, 0), (b)
asymptotic behaviour u(x, 200).
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Figure 5: Multiple spirals solution asymptotic behaviour of system (2) for particular initial conditions
near the set of functions satisfying (7), with parameter values given by (10), (a) initial condition
u(x, 0), (b) asymptotic behaviour u(x, 200).
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Figure 6: solution asymptotic behaviour of system (2) for particular random initial conditions near
the set of functions satisfying (7), with parameter values given by (10), (a) initial condition u(x, 0),
(b) asymptotic behaviour u(x, 200).

2.2. Coupling N systems of FHN type

We can extend these results to N coupled systems of FHN type. Let us consider
the following system,

ϵu1t = f(u1)− v1 + du1∆u1
v1t = u1 − δ1v1 + dv1∆v1

...
ϵuit = f(ui)− vi + dui∆ui + αi(ui−1 − ui)
vit = ui − δivi + dvi∆vi + βi(vi−1 − vi)

...
ϵuNt = f(uN )− vN + duN∆uN + αN (uN−1 − uN )
vNt = uN − δNvN + dvN∆vN + βN (vN−1 − vN )

(11)
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where βi ≥ 0, for i = 2, ..., N, and with zero flux boundary Neumann conditions.
Then, if αi = 0, i = 2, ..., N, we have the following result which can be also easily
proved when αi ̸= 0,

Theorem 2. Let λ be the smallest non zero eigenvalue of the Laplacian operator,
with zero flux Neumann boundary conditions. Assume that,

3− λdui < 0 ∀i ∈ 1, .., N, (12)

(13)

then,

lim
t→+∞

N∑
i=1

(||ui − ūi||L2(Ω) + ||vi − v̄i||L2(Ω)) = 0, (14)

where,

ūi(t) =

∫
Ω ui(x, t)dx

|Ω|
, v̄i =

∫
Ω vi(x, t)dx

|Ω|
, ∀i ∈ 1, ..., N

with (ūi,v̄i) satisfying,

{
ϵūit = f(ūi)− v̄i + gi(t)
v̄it = ūi − δiv̄i + βi(v̄i−1 − v̄i)

(15)

and where, gi(t) → 0 when t → +∞ with exponential rate decay.

Proof. It comes from an induction argument, by using similar techniques as those
given in the proof of Theorem 1. More precisely, let,

ϕi =
1

2

∫
Ω
(ϵ|∇ui|2 + |∇vi|2),

by algebraic computations we obtain,

ϕ̇i ≤ (3− λdui)

∫
Ω
|∇ui|2 − (λdvi + δi +

βi
2
)

∫
Ω
|∇vi|2 +

βi
2

∫
Ω
|∇vi−1|2

≤ (3− λdui)

∫
Ω
|∇ui|2 − (λdvi + δi +

βi
2
)

∫
Ω
|∇vi|2 +

βi
2
Ki−1e

−ci−1t

where Ki−1, ci−1 are positive constants.
This yields,

ϕi(t) ≤ Kie
−cit.

The remaining of the proof is similar as one of Theorem 1.
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Similarly, one can easily extend Proposition 1.

Proposition 2. If condition (12) of Theorem 2 are satisfied, and if,∫
Ω
ui(x, 0) =

∫
Ω
vi(x, 0) =

∫
Ω
f(ui(x, 0)) = 0

and
∀t ≥ 0,

∫
Ω
f(ui(x, t))dx = 0

then,

lim
t→+∞

N∑
i=1

(||ui||L2(Ω) + ||vi||L2(Ω)) = 0. (16)

Proof. Similar to the proof of proposition 1.

3. Synchronization

Synchronization phenomenom has been widely studied, mainly for ordinary or
delay differential equations. However, for partial differential equations, only few
results exist, see for example [5], [11], [14].

3.1. General result for coupled FHN systems
Definition 1. Let Si = (ui, vi). We say that Si and Sj synchronize if,

lim
t→+∞

(||ui − uj ||L2(Ω) + ||vi − vj ||L2(Ω)) = 0.

The quantity,
(||ui − uj ||2L2(Ω) + ||vi − vj ||2L2(Ω)))

1
2

is called the norm of synchronization error between Si and Sj . Let S = (S1, S2, ..., SN ).
We say that S synchronize if,

lim
t→+∞

N−1∑
i=1

(||ui − ui+1||L2(Ω) + ||vi − vi+1||L2(Ω)) = 0

The quantity,

(

N−1∑
i=1

(||ui − ui+1||2L2(Ω) + ||vi − vi+1||2L2(Ω)))
1
2

is called the norm of synchronization error of S.

11



Let us consider the system (11) with dui = duj , dvi = dvj and δi = δj = δ
∀i, j ∈ 1, ..., N , then we have the folowing result,

Theorem 3. Assume that βi ≥ 0, i = 2, ..., N . If,

αi > 3, i = 2, ..., N,

then the system S = ((u1, v1), (u2, v2), ..., (uN , vN )) synchronize.

Proof. Let,

ϕi(t) =
1

2

∫
Ω
(ϵ(ui − ui−1)

2 + (vi − vi−1)
2).

Our proof is based on an induction idea, thus, we first consider the system (u2, v2).
By derivating ϕ2 and using Green formula, we obtain,

ϕ̇2(t) ≤
∫
Ω
((f(u2)− f(u1)− α2(u2 − u1))(u2 − u1)− (δ + β2)(v2 − v1)

2)dx

≤
∫
Ω
(f ′(u1)− α2 +

f ′′(u1)

2
(u2 − u1)− (u2 − u1)

2)(u2 − u1)
2 − (δ + β2)(v2 − v1)

2),

≤
∫
Ω
((f ′(u1)− α2 +

(f ′′(u1))
2

16
)(u2 − u1)

2 − (δ + β2)(v2 − v1)
2)

since for all real b,c,

−x2 + bx+ c ≤ b2

4
+ c.

this yelds,

ϕ̇2(t) ≤
∫
Ω
((3− 3

4
u21 − α2)(u2 − u1)

2 − (δ + β2)(v2 − v1)
2)

Since, α2 > 3, we obtain,
ϕ2(t) ≤ ϕ2(0)e

−c2t,

where c2 is a positive constant. The remaining of the proof follows by induction
and using the same technique as in Theorem 2.

3.2. Numerical simulations
Now, we consider the system (11) for N = 2 or 3 and dui = dvi = 1, δi =

0.001, ∀i ∈ 1, ..., N , that are two or three coupled FHN systems. Moreover, we set
αi = 0, choose βi > 0, ∀i ∈ 1, ..., N, and fix ϵ = 0.1. First of all, let us consider
two coupled FHN systems,

ϵu1t = f(u1)− v1 +∆u1
v1t = u1 − δv1 +∆v1
ϵu2t = f(u2)− v2 +∆u2
v2t = u2 − δv2 +∆v2 + β2(v1 − v2).

(17)
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Our numerical simulations, see figure 7, 8, show that system (17) synchronize for
a coupling strength β2 belonging to the interval [0.15441558, 0.15441559]. In this
figure, the initial conditions are u1(x, 0) = v1(x, 0) = 1 and u2(x, 0), v2(x, 0)
particular functions leading to the spiral pattern formation as done in Figure 4.
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Figure 7: Synchronization of two systems of type FHN for δ = 0.001 and ϵ = 0.1. Isovalues, of
u2(x, t) at fixed time t = 200 and respectively for the coupling strength (a)β2 = 0.15, (b)β2 =
0.15441558, (c)β2 = 0.15441559.
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Figure 8: Synchronization of two systems of type FHN for δ = 0.001 and ϵ = 0.1. The norm of
synchronization error given by the definition 1 on interval of time [0, 200] for the coupling strength
respectively (a)β2 = 0.15, (b)β2 = 0.15441558, (c)β2 = 0.15441559.

Now, we consider three coupled FHN systems,

ϵu1t = f(u1)− v1 +∆u1
v1t = u1 − δv1 +∆v1
ϵu2t = f(u2)− v2 +∆u2
v2t = u2 − δv2 +∆v2 + β2(v1 − v2)
ϵu3t = f(u3)− v3 +∆u3
v3t = u3 − δv3 +∆v3 + β3(v2 − v3)

(18)

Our numerical simulations, see figure 9, 10, show that system (18) synchronize
for a coupling strength β2 = β3 belonging to the interval [0.23, 0.24]. In this
figure, the initial conditions are u1(x, 0) = v1(x, 0) = 1 and (u2(x, 0), v2(x, 0)) =

13
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Figure 9: Synchronization of three systems of type FHN for δ = 0.001 and ϵ = 0.1. Isovalues,
of u3(x, t) at fixed time t = 200 and respectively for the coupling strength (a)β2 = β3 = 0.23,
(b)β2 = β3 = 0.24.
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Figure 10: Synchronization of three systems of type FHN for δ = 0.001 and ϵ = 0.1. The norm of
synchronization error between S2 and S3 given by the definition 1 on the interval of time [0, 200] for
the coupling strength respectively (a)β2 = β3 = 0.23, (b)β2 = β3 = 0.24.

(u3(x, 0), v3(x, 0)) particular functions leading to the spiral pattern formation as
done in Figure 4.

4. Conclusion

In this paper we have studied a reaction diffusion FitzHugh-Nagumo type sys-
tem. A natural question was how the asymptotic behaviour of the PDE was related
to one of the ODE. By using techniques from existing works we have compre-
hensively responded to this question in case where a condition on the Laplacian
operator was satisfied. In particular, this condition is verified if the domain have a
small size or if the diffusion coefficents are large. We also exhibited a condition
that allows the formation of special spacial time-periodic patterns. These patterns
have been oberved in brain or cardiac dynamics. We then extended our results to

14



N coupled FHN systems, and studied a synchronization phenomenom. In neuro-
science context, this can be interpreted in terms of control. Particular neurons or
external signals could be used to control the behaviour of other ones. Several open
questions and further work on FHN systems are in progress and left to forthcoming
papers.
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